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SKEW n-DERIVATIONS ON SEMIPRIME RINGS

Xiaowei Xu, Yang Liu, and Wei Zhang

Abstract. For a ring R with an automorphism σ, an n-additive mapping
∆ : R × R × · · · × R → R is called a skew n-derivation with respect to
σ if it is always a σ-derivation of R for each argument. Namely, if n− 1
of the arguments are fixed, then ∆ is a σ-derivation on the remaining
argument. In this short note, from Brešar Theorems, we prove that a
skew n-derivation (n ≥ 3) on a semiprime ring R must map into the
center of R.

Let R be a ring with an automorphism σ. Recall that an additive mapping
µ : R → R is called a σ-derivation if µ(xy) = σ(x)µ(y) + µ(x)y holds for all
x, y ∈ R. An n-additive mapping

∆ : R×R× · · · ×R → R

(i.e., additive in each argument) is called a skew n-derivation with respect to
σ in the sense that if n− 1 of the arguments are fixed, then ∆ is a σ-derivation
on the remaining argument. Namely, if a1, . . . , ai−1, ai+1, . . . , an ∈ R are fixed,
then for all xi, yi ∈ R, we have

∆(a1, . . . , xi + yi, . . . , an) = ∆(a1, . . . , xi, . . . , an) + ∆(a1, . . . , yi, . . . , an)

and

∆(a1, . . . , xiyi, . . . , an) = ∆(a1, . . . , xi, . . . , an)yi + σ(xi)∆(a1, . . . , yi, . . . , an).

Note that the skew derivation is an ordinary derivation when σ is the identity
map 1R. Naturally a skew n-derivation with respect to the identity map 1R is
called an n-derivation.
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In order to illustrate the results in the literature focused on this area clearly
we will introduce some additional concepts related to skew n-derivations al-
though our results will mainly concern skew n-derivations on prime and semi-
prime rings. A skew n-derivation ∆ is called permuting or symmetric if

∆(x1, x2, . . . , xn) = ∆(xπ(1), xπ(2), . . . , xπ(n))

holds for all x1, x2, . . . , xn ∈ R and π ∈ Sn the symmetric group of degree n.
The function δ : R → R defined by δ(x) = ∆(x, x, . . . , x) is called the trace
of ∆. A skew 2-derivation with respect to the automorphism σ is also called
a σ-biderivation. Naturally a 2-derivation is called a biderivation. Generalized
n-derivations on rings can be defined similarly (see [10] for the definitions of
generalized biderivations).

A ring R is called prime if aRb 6= 0 for all a, b ∈ R\{0}. A ring R is called
semiprime if aRa 6= 0 for all 0 6= a ∈ R. For a semiprime ring R, denote its
extended centroid by C and its symmetric Martindale ring of quotients by Qs

(see [7] for reference). Note that the extended centroid of a prime ring is a
field. Denote the center of R by Z(R). An automorphism σ of a semiprime
ring R is called X-inner if there exists an invertible element p ∈ Qs such that
σ(x) = pxp−1 holds for all x ∈ R. Otherwise σ is called X-outer. For a, b ∈ R,
write the commutator ab − ba of a and b by [a, b]. We will always use the
commutator formulas [a, bc] = b[a, c] + [a, b]c and [ab, c] = a[b, c] + [a, c]b for
a, b, c ∈ R. At last recall that for a ring R with a nonempty subset S a mapping
f : R → R is called centralizing (resp. commuting) on S if [f(x), x] ∈ Z(R)
(resp. [f(x), x] = 0) for all x ∈ S.

The notion of a symmetric biderivation had been introduced by Maksa [21]
in 1980. In 1989, Vukman [26] initiated the research of biderivations on prime
and semiprime rings. He extended classical Posner Theorem [25] to symmetric
biderivations in prime and semiprime rings. Thereafter many articles were
focused on biderivations of prime and semiprime rings (see [1, 2, 3, 4, 5, 6, 9,
10, 11, 12, 13, 15, 16, 18, 19, 22, 27, 28, 29, 30] for reference). Among these
papers, the most important results are due to Brešar [8, 9, 10]. He gave the
construction of biderivations on semiprime rings.

Brešar Theorem ([8, Theorem 4.1]). Let R be a semiprime ring, and let

B : R × R → R be a biderivation. Then there exist an idempotent ε ∈ C

and an element µ ∈ C such that the algebra (1 − ε)R is commutative and

εB(x, y) = µε[x, y] for all x, y ∈ R. Particularly if R is a noncommutative

prime ring, then there exists λ ∈ C such that B(x, y) = λ[x, y] for all x, y ∈ R.

In [10] skew biderivations and inner generalized biderivations on prime rings
were also characterized. So almost all results appearing in the articles listed
above can be implied by the Brešar Theorems [8, 10].

In 2007, Jung and Park [17] considered permuting 3-derivations on prime
and semiprime rings and obtained the following results:
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Theorem A (Jung and Park, [17, Theorem 2.3]). Let R be a noncommutative

3-torsion free semiprime ring and let I be a nonzero two-sided ideal of R.

Suppose that there exists a permuting 3-derivation ∆ : R × R × R → R such

that δ is centralizing on I, where δ is the trace of ∆. Then δ is commuting on

I.

Theorem B (Jung and Park, [17, Theorem 2.4]). Let R be a noncommutative

6-torsion free prime ring and let I be a nonzero two-sided ideal of R. Suppose

that there exists a nonzero permuting 3-derivation ∆ : R × R × R → R such

that δ is centralizing on I, where δ is the trace of ∆. Then R is commutative.

Park [23] obtained similar results for permuting 4-derivations on prime and
semiprime rings. Furthermore in 2009, Park [24] considered permuting n-
derivations on prime and semiprime rings.

In [14] Fošner introduced the notion of permuting skew 3-derivations of prime
or semiprime rings and proved that under some certain conditions a prime ring
with a nonzero permuting skew 3-derivation has to be commutative.

In this short note, from Brešar Theorems ([8, Theorems 3.1 and 4.1]), we
prove that an arbitrary skew n-derivation (n ≥ 3) on a semiprime ring R must
map into the center of R. As a corollary, we obtain that an arbitrary skew
n-derivation (n ≥ 3) on a noncommutative prime ring R must be zero. These
results can reveal the reason why Theorems A, B and results obtained in the
literatures [23, 24] hold.

This short note depends heavily on Brešar Theorems [8, Theorems 3.1 and
4.1]. In view of their proofs, we give a very mild modification of these two
theorems in order to apply them better. The proof of [8, Theorem 3.1] implies
its following form.

Remark 1 (Brešar, [8, Theorem 3.1]). Let S be a set and R be a semiprime
ring. If functions f and g of S into R satisfy that

f(s)xg(t) = ξg(s)xf(t) for all s, t ∈ S, x ∈ R,

where ξ ∈ C is an invertible element, then there exist idempotents ε1, ε2, ε3 ∈ C

and an invertible element λ ∈ C such that εiεj = 0, for i 6= j, ε1 + ε2 + ε3 = 1,
and

ε1f(s) = λε1g(s), ε2g(s) = 0, ε3f(s) = 0, (1 − ξ)ε1f(s) = 0

holds for all s ∈ S.

Proof. It is a small modification of the proof of [8, Theorem 3.1]. Define ϕ :
E → R by

ϕ
(

ε1

(

n
∑

i=1

xif(si)yi

)

+ (1− ε1)r
)

= ξε1

(

n
∑

i=1

xig(si)yi

)

+ (1− ε1)r,

and then add ξ in corresponding formulas of the proof of [8, Theorem 3.1]. At
last (1− ξ)ε1f(S) = 0 can be deduced from

(

(1− ξ)ε1f(t)
)

R
(

(1− ξ)ε1f(t)
)

= 0
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for all t ∈ S. �

A modification of the proof for [8, Theorem 4.1] will give the following
remark.

Remark 2. Let R be a semiprime ring with an automorphism σ, and let B :
R × R → R be a σ-biderivation. Then there exist idempotents ε1, ε2, ε3 ∈ C

and invertible elements p ∈ Qs, λ ∈ C such that

• ε1 + ε2 + ε3 = 1, ε1ε2 = ε1ε3 = ε2ε3 = 0,
• ε1B(x, y) = ε1p[x, y], ε2B(x, y) = 0, and ε3[x, y] = 0 for all x, y ∈ R.

Proof. By [10, Lemma 2.3] we have that for all x, y, z, u, v ∈ R

B(x, y)z[u, v] = [σ(x), σ(y)]σ(z)B(u, v).(1)

If σ is X-outer, then for fixed x, y, u, v we deduce that

B(x, y)z[u, v] = [σ(x), σ(y)]z1B(u, v)

holds for all z, z1 ∈ R by [20, Theorem 2]. Moreover B(x, y)z[u, v] = 0 holds
for all x, y, z, u, v ∈ R. So by [7, Theorem 2.3.9 and Lemma 2.3.10] there
exists an idempotent ε ∈ C such that εB(x, y) = (1 − ε)[x, y] = 0 holds for
all x, y ∈ R. Setting p = 1, ε1 = 0, ε2 = ε, ε3 = 1 − ε, we get the conclusion
in this case. If σ is X-inner, then there exists an invertible element p ∈ Qs

such that σ(x) = pxp−1 for all x ∈ R. Now observing (1) we get that for all
x, y, z, u, v ∈ R

p−1B(x, y)z[u, v] = [x, y]zp−1B(u, v).

Following the proof of [8, Theorem 4.1] we complete the proof. �

Remark 3. In Remark 2 for σ-biderivations B1, . . . , Bt, the elements λ, ε1, ε2, ε3
are different for different σ-biderivations in general. However p is the same when
σ is X-inner. We can set p = 1 when σ is X-outer. So p can be chose such
that p is same for different σ-biderivations.

Now we need some lemmas. Lemmas 1 and 2 are used to prove Lemma
3. Lemma 3 is crucial in the proof of Theorem 1. The proofs are elementary
computation.

Lemma 1. Let R be a semiprime ring and a ∈ R. Then [a, [a, x]] = 0 holds

for all x ∈ R if and only if a2, 2a ∈ Z(R).

Proof. We only deal with the “only if” part because the other part is obvious.
For all x, y ∈ R

(2)
0 =

[

a, [a, xy]
]

= x
[

a, [a, y]
]

+ [a, x][a, y] + [a, x][a, y] +
[

a, [a, x]
]

y

= 2[a, x][a, y].

Putting x = yz in (2) and applying (2) we have [2a, y]R[2a, y] = 0 holds for all
y ∈ R. Then 2a ∈ Z(R) since R is semiprime. Moreover for any x ∈ R, we
obtain

0 = [a, [a, x]] = a2x+ xa2 − 2axa = a2x+ xa2 − x(2a2) = a2x− xa2.
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So a2 ∈ Z(R). �

Lemma 2. Let R be a semiprime ring with extended centroid C and a, b ∈ R.

Then [a, [b, x]] = 0 holds for all x ∈ R if and only if there exist idempotents

ε1, ε2, ε3 ∈ C and an invertible element λ ∈ C such that

• ε1 + ε2 + ε3 = 1, ε1ε2 = ε1ε3 = ε2ε3 = 0 and

• ε1a− λε1b, ε2a, ε3b, 2ε1b, ε1b
2 ∈ C.

Proof. The “if” part can be checked by direct computation. Now we consider
the “only if” part. For any x, y ∈ R

(3)
0 = [a, [b, xy]] = x

[

a, [b, y]
]

+ [a, x][b, y] + [b, x][a, y] +
[

a, [b, x]
]

y

= [a, x][b, y] + [b, x][a, y].

Putting x = xz in (3) and applying (3) we have that

[a, x]z[b, y] + [b, x]z[a, y] = 0(4)

holds for all x, y, z ∈ R. By Remark 1 there exist idempotents ε1, ε2, ε3 ∈ C

and an invertible element λ ∈ C such that

• ε1 + ε2 + ε3 = 1, ε1ε2 = ε1ε3 = ε2ε3 = 0,
• ε1[a, x] = λε1[b, x], ε2[a, x] = 0 and ε3[b, x] = 0 for all x ∈ R.

That is ε1a− λε1b, ε2a, ε3b ∈ C. Then for all x ∈ R [ε1b, [ε1b, x]] = 0 since λ

is invertible. By Lemma 1 we obtain 2ε1b, ε1b
2 ∈ C. �

Lemma 3. Let R be a semiprime ring with extended centroid C and a, b ∈ R.

Then [[a, x], [b, x]] = 0 holds for all x ∈ R if and only if there exist an idempotent

ε ∈ C and an element ζ ∈ C such that εa− ζεb, (1− ε)b ∈ C.

Proof. The “if” part is obvious. Now we deal with the “only if” part. Firstly,
we will prove [a, b] = 0. For any x, y ∈ R, we get

[

[a, x + y], [b, x + y]
]

= 0.
Then for any x, y ∈ R

[

[a, x], [b, y]
]

+
[

[a, y], [b, x]
]

= 0.(5)

Put x = xb in (5). Then for any x, y ∈ R
[

x[a, b] + [a, x]b, [b, y]
]

+
[

[a, y], [b, x]b
]

= 0.

That is for any x, y ∈ R

x
[

[a, b], [b, y]
]

+
[

x, [b, y]
]

[a, b] + [a, x]
[

b, [b, y]
]

+
[

[a, x], [b, y]
]

b

+ [b, x]
[

[a, y], b
]

+
[

[a, y], [b, x]
]

b = 0.

Then by (5) for any x, y ∈ R

x
[

[a, b], [b, y]
]

+
[

x, [b, y]
]

[a, b] + [a, x]
[

b, [b, y]
]

+ [b, x]
[

[a, y], b
]

= 0.(6)

Put y = b in (6). Then for any x ∈ R

[b, x]
[

[a, b], b
]

= 0.(7)
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Putting x = xy in (7) and applying (7) we have that

[b, x]y
[

[a, b], b
]

= 0(8)

holds for all x, y ∈ R. Putting x = −[a, b] in (8), we get that
[

[a, b], b
]

y
[

[a, b], b
]

= 0 holds for all y ∈ R. Then
[

[a, b], b
]

= 0 since R is a semiprime ring. Putting

y = a into (6) and applying
[

[a, b], b
]

= 0 we obtain that
[

x, [b, a]
]

[a, b] = 0(9)

holds for all x ∈ R. Putting x = xy into (9) and applying (9) we get that
[

x, [b, a]
]

y[a, b] = 0 holds for all x, y ∈ R. Particularly
[

x, [b, a]
]

y
[

x, [b, a]
]

= 0

for any x, y ∈ R. Then [a, b] ∈ Z(R) since R is semiprime. By
[

[a, ab], [b, ab]
]

=

0 and [a, b] ∈ Z(R) we find −[a, b]3 = 0. Then [a, b] = 0 since [a, b] ∈ Z(R) and
R is semiprime.

Thus, by (6) then for any x, y ∈ R

[a, x]
[

b, [b, y]
]

+ [b, x]
[

[a, y], b
]

= 0.(10)

Putting x = xz in (10) and applying (10) we obtain that

[a, x]z
[

b, [b, y]
]

+ [b, x]z
[

[a, y], b
]

= 0(11)

holds for all x, y, z ∈ R. Putting x = [b, x] in (11) and applying
[

[a, y], b
]

=

−
[

a, [b, y]
]

(because of [a, b] = 0), we have that
[

a, [b, x]
]

z
[

b, [b, y]
]

=
[

b, [b, x]
]

z
[

a, [b, y]
]

holds for all x, y, z ∈ R. Then by Brešar Theorem [8, Theorem 3.1] there exist
idempotents ω1, ω2, ω3 ∈ C and an invertible element ξ ∈ C such that

• ω1 + ω2 + ω3 = 1, ω1ω2 = ω1ω3 = ω2ω3 = 0,
• ω1[a, [b, x]] = ξω1[b, [b, x]], ω2[a, [b, x]] = 0 and ω3[b, [b, x]] = 0 for all
x ∈ R.

Putting x = −[a, y] in (11) and then multiplying it by ω3, we get that

ω3

[

[a, y], b
]

zω3

[

[a, y], b
]

= 0

holds for all y, z ∈ R. So ω3

[

a, [b, y]
]

= −ω3

[

[a, y], b
]

= 0 since R is semiprime.
Hence

[

ω1a− ξω1b, [b, x]
]

= 0 and
[

(1− ω1)a, [b, x]
]

= 0

hold for all x ∈ R. Thus
[

a − ξω1b, [b, x]
]

= 0 holds for all x ∈ R. Then
by Lemma 2 there exist idempotents ε1, ε2, ε3 ∈ C and an invertible element
λ ∈ C such that

• ε1 + ε2 + ε3 = 1, ε1ε2 = ε1ε3 = ε2ε3 = 0 and
• ε1(a− ξω1b)− λε1b = c1, ε2(a− ξω1b) = c2, ε3b, 2ε1b, ε1b

2 ∈ C.

Then
(ε1 + ε2)a = (λε1 + ξω1(ε1 + ε2))(ε1 + ε2)b+ c1 + c2.

Setting ε = ε1 + ε2 and ζ = λε1 + ξω1(ε1 + ε2), we complete the proof. �
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Theorem 1. A skew n-derivation (n ≥ 3) on a semiprime ring R must map

into the center of R.

Proof. Let ∆ be a skew n-derivation on R with respect to the automorphism σ.
Then for fixed a1, . . . , an ∈ R we obtain ∆(a1, . . . , an) = ∆1(a1, a2, a3) where
∆1(x, y, z) = ∆(x, y, z, a4, . . . , an) is a skew 3-derivation with respect to σ. So
it is sufficient to prove that every skew 3-derivation on R must map into the
center of R. Let ∆ : R × R × R → R be a skew 3-derivation with respect to
σ. For fixed x0, y0, z0 ∈ R, we proceed to prove that ∆(x0, y0, z0) ∈ Z(R).
Obviously

∆(x0, y, z) = ϕx0
(y, z), ∆(x, y0, z) = ϕy0

(x, z) and ∆(x, y, z0) = ϕz0(x, y)

are all σ-biderivations on R. Then by Remark 2 for every t ∈ {x0, y0, z0} there
exist idempotents εt, ε

′

t, ε
′′

t ∈ C and invertible elements p ∈ Qs, λt ∈ C such
that

• εt + ε′t + ε′′t = 1, εtε
′

t = εtε
′′

t = ε′tε
′′

t = 0,
• εtϕt(r, s) = λtεtp[r, s], ε

′

tϕt(r, s) = 0 and ε′′t [r, s] = 0 for all r, s ∈ R.

So for all z ∈ R, we obtain

εx0
∆(x0, y0, z) = λx0

εx0
p[y0, z] and εy0

∆(x0, y0, z) = λy0
εy0

p[x0, z].

Then for all z ∈ R, we have

λx0
εx0

εy0
[y0, z] = εx0

εy0
p−1∆(x0, y0, z) = λy0

εx0
εy0

[x0, z].

Hence for all z ∈ R, we get λx0
εx0

εy0

[

[y0, z], [x0, z]
]

= 0. Then by Lemma 3
we obtain λx0

εx0
εy0

[x0, y0] = 0. Thus εx0
εy0

[x0, y0] = 0 since λx0
is invertible.

Then

εx0
εy0

εz0∆(x0, y0, z0) = εx0
εy0

(λz0εz0p[x0, y0]) = λz0εz0p(εx0
εy0

)[x0, y0] = 0.

Set
{

ε1 = εx0
εy0

(1− ε′′z0) + ε′x0
(1− ε′y0

) + ε′y0
,

ε2 = εx0
(εy0

ε′′z0 + ε′′y0
) + ε′′x0

(1− ε′y0
).

It can be verified from direct computation that ε1, ε2 ∈ C are idempotents such
that

• ε1 + ε2 = 1,
• ε1∆(x0, y0, z0) = 0 and ε2[x, y] = 0 for all x, y ∈ R.

So for all w ∈ R, we have

[∆(x0, y0, z0), w] = ε1[∆(x0, y0, z0), w] + ε2[∆(x0, y0, z0), w] = 0.

Then ∆(x0, y0, z0) ∈ Z(R) completes the proof. �

By Theorem 1 and [10, Theorem 3.2] we get the following result for prime
rings.

Theorem 2. A prime ring with a nonzero skew n-derivation (n ≥ 3) must be

commutative.
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Proof. Let ∆ be a nonzero skew n-derivation (n ≥ 3) on a noncommutative
prime ring R with respect to an automorphism σ. Then there exist a3, . . . , an ∈
R such that ∆1(x, y) = ∆(x, y, a3, . . . , an) is a nonzero σ-biderivation on R.
Then by Theorem 1 and [10, Theorem 3.2] there exists an invertible element
p ∈ Qs such that [p[x, y], z] = 0 holds for all x, y, z ∈ R. Particularly for all
x, y, z ∈ R

0 = [p[x, yx], z] = [p[x, y]x, z] = p[x, y][x, z].

Moreover for all x, y, z ∈ R we have [x, y]R[x, z] = 0 since p is invertible. So R

is commutative since R is prime. �

Acknowledgement. We would like to thank the reviewers of this manuscript
for giving many helpful suggestions and improving the results by indicating our
results can be extended from n-derivations to skew n-derivations.
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