ON THE STRUCTURE OF ZERO-DIVISOR ELEMENTS IN A NEAR-RING OF SKEW FORMAL POWER SERIES

Abdollah Alhevaz, Ebrahim Hashemi, and Fatemeh Shokuhifar

Abstract

The main purpose of this paper is to study the zero-divisor properties of the zero-symmetric near-ring of skew formal power series $R_{0}[[x ; \alpha]]$, where R is a symmetric, α-compatible and right Noetherian ring. It is shown that if R is reduced, then the set of all zero-divisor elements of $R_{0}[[x ; \alpha]]$ forms an ideal of $R_{0}[[x ; \alpha]]$ if and only if $Z(R)$ is an ideal of R. Also, if R is a non-reduced ring and $\operatorname{ann}_{R}(a-b) \cap \operatorname{Nil}(R) \neq 0$ for each $a, b \in Z(R)$, then $Z\left(R_{0}[[x ; \alpha]]\right)$ is an ideal of $R_{0}[[x ; \alpha]]$. Moreover, if R is a non-reduced right Noetherian ring and $Z\left(R_{0}[[x ; \alpha]]\right)$ forms an ideal, then $a n n_{R}(a-b) \cap \operatorname{Nil}(R) \neq 0$ for each $a, b \in Z(R)$. Also, it is proved that the only possible diameters of the zero-divisor graph of $R_{0}[[x ; \alpha]]$ is 2 and 3.

1. Introduction and preliminary definitions

Throughout this paper R always denotes an associative ring with unity. Recall that a ring R is said to be symmetric if $a b c=0$, then $b a c=0$ for each $a, b, c \in R$. Also, R is called reversible if $a b=0$ implies $b a=0$ for each $a, b \in R$. Moreover, R is said to be semicommutative if $a b=0$ implies $a R b=0$ for each $a, b \in R$.

Recall that a ring R is said to be right (left) uniserial if its right (left) ideals are linearly ordered by inclusion.

We denote the set of all nilpotent elements of a ring R by $\operatorname{Nil}(R)$. Recall that a ring R is called reduced if $\operatorname{Nil}(R)=\{0\}$. Also, if $X \subseteq R$, then $\langle X\rangle_{\ell}$, $\langle X\rangle_{r}$ and $\langle X\rangle$ denote the left ideal generated by X, the right ideal generated by X and the ideal generated by X, respectively. Moreover, for a given ring or near-ring R, we write $Z(R)=Z_{\ell}(R) \cup Z_{r}(R)$, where $Z_{\ell}(R)$ and $Z_{r}(R)$ are the set of all left zero-divisors of R and the set of all right zero-divisors of R, respectively.

[^0]Let α be an endomorphism of a ring R. Then the skew power series ring $R[[x ; \alpha]]$ is the ring of power series over R in the variable x, with term-wise addition and with coefficient written on the left of x, subject to the skewmultiplication rule $x r=\alpha(r) x$ for $r \in R$. Following [20], an endomorphism α of ring R is called rigid if $a \alpha(a)=0$ implies $a=0$ for $a \in R$. Also, R is called α-rigid if there exists a rigid endomorphism α of R. In [16], authors proved that any rigid endomorphism of a ring is a monomorphism and α-rigid rings are reduced.

According to [13], a ring R is called α-compatible if for each $a, b \in R, a b=$ $0 \Leftrightarrow a \alpha(b)=0$. Hence α-compatible rings are a generalization of rigid rings. In fact, R is an α-rigid ring if and only if R is reduced and α-compatible, by [13, Lemma 2.2].

The collection of all skew power series with positive orders using the operations of addition and substitution is denoted by $R_{0}[[x ; \alpha]]$. Notice that the system $\left(R_{0}[[x ; \alpha]],+, \circ\right)$ is a zero-symmetric left near-ring, since the operation " \circ ", left distributes but does not right distribute over addition. For example, let $f=\sum_{i=1}^{\infty} a_{i} x^{i}$ and $g=\sum_{j=1}^{\infty} b_{j} x^{j} \in R_{0}[[x ; \alpha]]$, then

$$
\begin{aligned}
g \circ f & =a_{1} g+a_{2} g^{2}+a_{3} g^{3}+\cdots \\
& =a_{1} b_{1} x+\left[a_{1} b_{2}+a_{2} b_{1} \alpha\left(b_{1}\right)\right] x^{2} \\
& =\left[a_{1} b_{3}+a_{2} b_{1} \alpha\left(b_{2}\right)+a_{2} b_{2} \alpha^{2}\left(b_{1}\right)+a_{3} b_{1} \alpha\left(b_{1}\right) \alpha^{2}\left(b_{1}\right)\right] x^{3}+\cdots,
\end{aligned}
$$

where g^{i} is the product of i copies of g in the ring $R[[x ; \alpha]]$ for each i.
Recall that a graph G is connected if there is a path between any two distinct vertices of G. Also, the diameter of G is

$$
\operatorname{diam}(G)=\sup \{d(a, b) \mid a, b \text { are vertices of } G\}
$$

where $d(a, b)$ is the length of the shortest path from a to b.
In [7], Beck introduced and studied the zero-divisor graph of a commutative ring. Since then, the concept of zero-divisor graphs has been studied extensively by many authors, (cf. $[3-5,7,18,22]$). Now, we are interested to study the undirected zero-divisor graph of a near-ring $R_{0}[[x ; \alpha]]$ which is denoted by $\Gamma\left(R_{0}[[x ; \alpha]]\right)$ and defined as follows: the set of vertices of $\Gamma\left(R_{0}[[x ; \alpha]]\right)$ is the non-zero zero-divisor elements of $R_{0}[[x ; \alpha]]$ and two distinct vertices f and g are adjacent if and only if $f \circ g=0$ or $g \circ f=0$.

In this work, we first characterize the zero-divisor elements of a near-ring $R_{0}[[x ; \alpha]]$, where R is a symmetric, α-compatible and right Noetherian ring. Then we study the zero-divisor graph of $R_{0}[[x ; \alpha]]$, and show that $\operatorname{diam}\left(\Gamma\left(R_{0}[[x ; \alpha]]\right)\right)$ is 2 or 3 , where R is a symmetric and α-compatible ring. Moreover, we prove that if R is an α-rigid right Noetherian ring, then $Z\left(R_{0}[[x ; \alpha]]\right)$ forms an ideal of $R_{0}[[x ; \alpha]]$ if and only if $Z(R)$ is an ideal of R. Also, giving some examples, we will show that the assumption being right Noetherian for R is not redundant. Finally, for symmetric non-reduced rings, it is proved that (1) if $a n n_{R}(a-b) \cap \operatorname{Nil}(R) \neq 0$ for each $a, b \in Z(R)$, then
$Z\left(R_{0}[[x ; \alpha]]\right)$ is an ideal of $R_{0}[[x ; \alpha]]$, and (2) if R is right Noetherian and $Z\left(R_{0}[[x ; \alpha]]\right)$ forms an ideal of $R_{0}[[x ; \alpha]]$, then $\operatorname{ann}_{R}(a-b) \cap N i l(R) \neq 0$ for each $a, b \in Z(R)$.

2. Zero-divisor elements in a near-ring of skew formal power series

We start by summarizing some useful lemmas, which will become building blocks of the main results. The following lemma can be found in [14].

Lemma 2.1 ([14, Lemma 2.3]). Let R be an α-compatible ring. Then we have the following:
(1) If $a b=0$, then $a \alpha^{n}(b)=\alpha^{n}(a) b=0$ for any positive integer n.
(2) If $\alpha^{k}(a) b=0$ for some positive integer k, then $a b=0$.
(3) If $f=\sum_{i=0}^{\infty} a_{i} x^{i} \in R[[x ; \alpha]]$ and $r \in R$, then $f r=0$ if and only if $a_{i} r=0$ for each i.
(4) If $f \in R[[x ; \alpha]]$ and $r \in R$, then $r f=0$ if and only if $r x f=0$.

Let f be an element of a ring $R[[x ; \alpha]]$ or a near-ring $R_{0}[[x ; \alpha]]$. Then we use C_{f} to denote the set of all coefficients of f.
Lemma 2.2. Let R be an α-rigid ring. Then we have the following:
(1) [12, Proposition 2.3] If f and g are elements of a ring $R[[x ; \alpha]]$, then $f g=0$ if and only if $a_{i} b_{j}=0$ for all $a_{i} \in C_{f}$ and all $b_{j} \in C_{g}$.
(2) [10, Lemma 2.4] If f and g are elements of a near-ring $R_{0}[[x ; \alpha]]$, then $f \circ g=0$ if and only if $a_{i} b_{j}=0$ for all $a_{i} \in C_{f}$ and all $b_{j} \in C_{g}$.

As an immediate consequence of Lemma 2.2, we get the following lemma.
Lemma 2.3. Let R be an α-rigid ring. Then

$$
Z_{\ell}\left(R_{0}[[x ; \alpha]]\right)=Z_{r}\left(R_{0}[[x ; \alpha]]\right)=Z_{r}(R[[x ; \alpha]]) x=Z_{\ell}(R[[x ; \alpha]]) x .
$$

According to [17], a ring R has (right) left Property (A), if every finitely generated ideal consisting entirely of (left) right zero-divisor has a left (right) non-zero annihilator. Also, a ring R is said to have $\operatorname{Property}(A)$ if R has both right and left Property (A).

Since every symmetric ring is semicommutative by [8], then we get the following result from [11, Theorem 2.6].

Lemma 2.4. Let R be a symmetric and right Noetherian ring. Then R has left Property (A).

Motivated by [2], the authors in [14] calls a ring R with an endomorphism α to be right α-power-serieswise McCoy, whenever power series $f, g \in R[[x ; \alpha]] \backslash$ $\{0\}$ satisfy $f g=0$, then there exists a non-zero element $c \in R$ such that $f c=0$. Left α-power-serieswise $M c C o y$ is defined similarly. If a ring R is both right and left α-power-serieswise McCoy, then R is called α-power-serieswise McCoy.
Lemma 2.5 ([14, Corollary 2.7]). If R is a reversible, α-compatible and right Noetherian ring, then R is α-power-serieswise McCoy.

Remark 2.6. Let R be a reversible, α-compatible and right Noetherian ring. Notice that $Z(R[[x ; \alpha]]) \subseteq Z(R)[[x ; \alpha]]$, by Lemma 2.5. Now, let $Z(R)$ be an ideal of R and $f \in Z(R)[[x ; \alpha]]$. Since R is right Noetherian, then $Z(R)$ is finitely generated as right ideal. Hence there exists $0 \neq r \in R$ such that $r Z(R)=0$, by Lemma 2.4. Since $C_{f} \subseteq Z(R)$, then $r C_{f}=0$. It means that $r f=0$, and thus $Z(R)[[x ; \alpha]] \subseteq Z(R[[x ; \alpha]])$. Therefore $Z(R[[x ; \alpha]])=$ $Z(R)[[x ; \alpha]]$.

Combining Lemma 2.3 and Remark 2.6, we obtain the following corollary.
Corollary 2.7. Let R be an α-rigid and right Noetherian ring. If $Z(R)$ is an ideal of R, then $Z\left(R_{0}[[x ; \alpha]]\right)=Z(R[[x ; \alpha]]) x=Z(R)_{0}[[x ; \alpha]]$.
Lemma 2.8. Let R be a symmetric and α-compatible ring. If $f=\sum_{i=1}^{\infty} a_{i} x^{i}$ is a zero-divisor of $R_{0}[[x ; \alpha]]$, then $a_{1} \in Z(R)$.

Proof. Let $a_{1} \neq 0$. Since $f \in Z\left(R_{0}[[x ; \alpha]]\right)$, then there exists a non-zero $g=$ $\sum_{j=1}^{\infty} b_{j} x^{j} \in R_{0}[[x ; \alpha]]$ such that $g \circ f=0$ or $f \circ g=0$. Let k be the smallest integer such that $b_{k} \neq 0$. If $g \circ f=0$, then $a_{1} b_{k}=0$, and so the result follows. Now suppose that $f \circ g=0$. Then $b_{k} a_{1} \alpha\left(a_{1}\right) \cdots \alpha^{k-1}\left(a_{1}\right)=0$, since it is the coefficient of x^{k} in $f \circ g$. Hence $b_{k} a_{1}^{k}=0$, by Lemma 2.1. If $b_{k} a_{1}=0$, then $a_{1} \in Z(R)$. Now, assume that $b_{k} a_{1} \neq 0$. Then there exists $1 \leq s \leq k-1$ such that $b_{k} a_{1}^{s} \neq 0$ but $\left(b_{k} a_{1}^{s}\right) a_{1}=0$, as desired.

In [1], the authors studied the skew generalized power series rings over nil rings and provided some conditions under which the skew generalized power series ring is nil. Following [19], a ring R is α-nil-Armendariz whenever $f=$ $\sum_{i=0}^{\infty} a_{i} x^{i}$ and $g=\sum_{j=0}^{\infty} b_{j} x^{j}$ be elements of $R[[x ; \alpha]]$ with $f g \in N i l(R)[[x ; \alpha]]$, then $a_{i} \alpha^{i}\left(b_{j}\right) \in \operatorname{Nil}(R)$ for each i, j.

Recall that an ideal I of R is an α-ideal if $\alpha(I) \subseteq I$. For example, if R is an α-compatible ring and $\operatorname{Nil}(R)$ is an ideal of R, then it is also an α-ideal. Therefore, by a similar way as used in the proof of [15, Proposition 1], one can prove the following result.

Proposition 2.9. Let R be an α-compatible ring and $N i l(R)$ be an ideal of R. Then R is an α-nil-Armendariz ring.

We will make use of the following lemma which appears in [19, Theorem 3.14].

Proposition 2.10. Let R be an α-compatible and α-nil-Armendariz ring. If $\operatorname{Nil}(R)$ is a nilpotent ideal of R, then $\operatorname{Nil}(R[[x ; \alpha]])=\operatorname{Nil}(R)[[x ; \alpha]]$.

Corollary 2.11. Let R be a symmetric, α-compatible and right Noetherian ring. Then $\operatorname{Nil}(R[[x ; \alpha]])=\operatorname{Nil}(R)[[x ; \alpha]]$.
Proof. Since R is symmetric and right Noetherian, then $\operatorname{Nil}(R)$ is a nilpotent ideal of R. Hence the assertion follows from Propositions 2.9 and 2.10.

Example 2.12. (1) Let D be an integral domain and $R=\left\{\left.\left[\begin{array}{ll}a & d \\ 0 & a\end{array}\right] \right\rvert\, a, d \in D\right\}$. Suppose that $u \in U(D)$. Consider $\alpha: R \longrightarrow R$ by $\alpha\left(\left[\begin{array}{ll}a & d \\ 0 & a\end{array}\right]\right)=\left[\begin{array}{cc}a & u d \\ 0 & a\end{array}\right]$. Thus R is a commutative and α-compatible ring. Also, $\operatorname{Nil}(R)=\left\{\left.\left[\begin{array}{cc}0 & a \\ 0 & 0\end{array}\right] \right\rvert\, a \in D\right\}$ is a nilpotent ideal of R. Therefore $\operatorname{Nil}(R[[x ; \alpha]])=\operatorname{Nil}(R)[[x ; \alpha]]$, by Propositions 2.9 and 2.10 .
(2) Let R be a right Artinian and right uniserial ring, and $S=R[y]$. Then R is right Noetherian, and so S is right Noetherian. Moreover, by [21, Proposition 3.5], S is symmetric. Hence $\operatorname{Nil}(R[[x]])=\operatorname{Nil}(R)[[x]]$, by Corollary 2.11.

Now we bring the following theorem, which has a key rule in our results.
Theorem 2.13. Let R be a symmetric, α-compatible and right Noetherian ring. Let $f=\sum_{i=1}^{\infty} a_{i} x^{i}$ and $g=\sum_{j=1}^{\infty} b_{j} x^{j}$ be non-zero elements of a nearring $R_{0}[[x ; \alpha]]$. If $f \circ g=0$, then
(1) $a_{1} b_{1}=0$,
(2) $r f=0$ for some non-zero $r \in R$,
(3) f is nilpotent or $s g=0$ for some non-zero $s \in R$.

Proof. (1) It is clear, since $b_{1} a_{1}$ is the coefficient of x in $f \circ g$.
(2) Since $f \circ g=0$, it follows that $b_{1} f+b_{2} f^{2}+b_{3} f^{3}+\cdots=0$. Hence

$$
\left(b_{1}+b_{2} f+b_{3} f^{2}+\cdots\right) f=0
$$

Since $b_{1}+b_{2} f+b_{3} f^{2}+\cdots$ is non-zero, $r f=0$ for some non-zero $r \in R$, by Lemma 2.5.
(3) Notice that $\left\langle C_{g}\right\rangle_{r}=\left\langle b_{1}, \ldots, b_{n}\right\rangle_{r}$ for some $n \geq 1$, since R is right Noetherian. Suppose that f is not nilpotent. It follows that there exists $a=a_{i}$ such that $a \notin \operatorname{Nil}(R)$, by Corollary 2.11. Let $\bar{R}=R / \operatorname{Nil}(R)$. Since $f \circ g=0$, then $\bar{f} \circ \bar{g}=\overline{0}$ in a near-ring $\bar{R}_{0}[[x ; \bar{\alpha}]]$. Since \bar{R} is a reduced and $\bar{\alpha}$-compatible ring, it follows that \bar{R} is an $\bar{\alpha}$-rigid ring, by [13, Lemma 2.2]. Thus $\bar{a}_{i} \bar{b}_{j}=\overline{0}$, by Lemma 2.2. Since R is right Noetherian, then $\operatorname{Nil}(R)$ is nilpotent, and so $\operatorname{Nil}(R)^{k}=0$ for some positive integer k. Thus $a^{k} b_{j}^{k}=0$ for each $j \geq 1$. Hence there exist integers $0 \leq t_{j} \leq k$ such that $a^{k} b_{j}^{t_{j}} \neq 0$ but $a^{k} b_{j}^{t_{j}+1}=0$ for each $j \geq 1$. Therefore there exist integers $0 \leq s_{j} \leq t_{j}$ such that $a^{k} b_{1}^{s_{1}} b_{2}^{s_{2}} \cdots b_{n}^{s_{n}} \neq 0$ but $a^{k} b_{1}^{s_{1}} b_{2}^{s_{2}} \cdots b_{n}^{s_{n}} b_{j}=0$ for each $1 \leq j \leq n$. Let $s=a^{k} b_{1}^{s_{1}} b_{2}^{s_{2}} \cdots b_{n}^{s_{n}}$. Thus $s g=0$, since $\left\langle C_{g}\right\rangle_{r}=\left\langle b_{1}, \ldots, b_{n}\right\rangle_{r}$.

Now, we determine the structure of the set of all zero-divisor elements of $R_{0}[[x ; \alpha]]$, where R is α-rigid.
Proposition 2.14. Let R be an α-rigid and right Noetherian ring. Then

$$
Z\left(R_{0}[[x ; \alpha]]\right)=\left\{f \in R_{0}[[x ; \alpha]] \mid r f=0 \text { for some non-zero } r \in R\right\} .
$$

Proof. We have $Z\left(R_{0}[[x ; \alpha]]\right) \subseteq\left\{f \in R_{0}[[x ; \alpha]] \mid r f=0\right.$ for some non-zero $r \in$ $R\}$, by Lemma 2.3 and Theorem 2.13. Now, suppose that $f \in R_{0}[[x ; \alpha]]$ and $r f=0$ for some non-zero $r \in R$. Thus $f \circ r x=0$, and so $f \in Z\left(R_{0}[[x ; \alpha]]\right)$. This completes the proof.

Lemma 2.15. Let R be a symmetric, α-compatible and right Noetherian ring. Then $Z_{\ell}\left(R_{0}[[x ; \alpha]]\right)=\left\{f \in R_{0}[[x ; \alpha]] \mid r f=0\right.$ for some non-zero $\left.r \in R\right\}$, when R is not reduced. In particular, $Z_{\ell}\left(R_{0}[[x ; \alpha]]\right) \subseteq Z_{r}\left(R_{0}[[x ; \alpha]]\right)$.
Proof. Let $0 \neq f \in R_{0}[[x ; \alpha]]$. Notice that if $r f=0$ for some $0 \neq r \in R$, then $f \circ r x=0$, and so $\left\{f \in R_{0}[[x ; \alpha]] \mid r f=0\right.$ for some non-zero $\left.r \in R\right\} \subseteq$ $Z_{\ell}\left(R_{0}[[x ; \alpha]]\right)$. Hence $Z_{\ell}\left(R_{0}[[x ; \alpha]]\right)=\left\{f \in R_{0}[[x ; \alpha]] \mid r f=0\right.$ for some nonzero $r \in R\}$, by Theorem 2.13.

For proving the last statement, suppose that $f=\sum_{i=1}^{\infty} a_{i} x^{i} \in Z_{\ell}\left(R_{0}[[x ; \alpha]]\right)$. Then $r f=0$ for some $0 \neq r \in R$, and thus $r a_{i}=0$ for each i, which implies that $r x \circ f=0$. Hence $f \in Z_{r}\left(R_{0}[[x ; \alpha]]\right)$, as wanted.

Next, we want to characterize the zero-divisor elements of the near-ring $R_{0}[[x ; \alpha]]$, where R is not reduced.

Theorem 2.16. Let R be a symmetric, α-compatible and right Noetherian ring which is not reduced. Then $Z\left(R_{0}[[x ; \alpha]]\right)=Z_{\ell}\left(R_{0}[[x ; \alpha]]\right) \cup B$, where $B=\left\{\sum_{i=1}^{\infty} a_{i} x^{i} \mid \operatorname{ann}_{R}\left(a_{1}\right) \cap \operatorname{Nil}(R) \neq 0\right.$ and $a_{i} \in R$ for each $\left.i \geq 2\right\}$.
Proof. Let $f=\sum_{i=1}^{\infty} a_{i} x^{i}$ be a non-zero element of $R_{0}[[x ; \alpha]]$. If $a n n_{R}\left(a_{1}\right) \cap$ $\operatorname{Nil}(R) \neq 0$, then $b a_{1}=0$ for some $0 \neq b \in \operatorname{Nil}(R)$. Hence there exists a positive integer t such that $b^{t}=0$ but $b^{t-1} \neq 0$. Therefore $b^{t-1} x \circ f=$ $\sum_{i=1}^{\infty} a_{i}\left(b^{t-1} x\right)^{i}=0$, by Lemma 2.1, which implies that $f \in Z\left(R_{0}[[x ; \alpha]]\right)$.

Now assume that $f \in Z\left(R_{0}[[x ; \alpha]]\right)$. Then $g \circ f=0$ for some non-zero $g=$ $\sum_{j=1}^{\infty} b_{j} x^{j} \in R_{0}[[x ; \alpha]]$, since $Z\left(R_{0}[[x ; \alpha]]\right)=Z_{r}\left(R_{0}[[x ; \alpha]]\right)$, by Lemma 2.15. If g is nilpotent, then $b_{i} \in \operatorname{Nil}(R)$ for each i, by Corollary 2.11. Suppose that s is the smallest integer such that $b_{s} \neq 0$. Then $b_{s} a_{1}=0$, which implies that $\operatorname{ann}_{R}\left(a_{1}\right) \cap \operatorname{Nil}(R) \neq 0$. On the other hand, if g is not nilpotent, then $r f=0$ for some non-zero $r \in R$, by Theorem 2.13. This shows that $f \in Z_{\ell}\left(R_{0}[[x ; \alpha]]\right)$, by Lemma 2.15.

3. The diameter of the zero-divisor graph $\Gamma\left(R_{0}[[x ; \alpha]]\right)$

According to [9, Theorem 2.2], we have $\operatorname{diam}(\Gamma(N)) \leq 3$, for every zerosymmetric near-ring N. Since $R_{0}[[x ; \alpha]]$ is a zero-symmetric near-ring with respect to "०", then $\operatorname{diam}\left(\Gamma\left(R_{0}[[x ; \alpha]]\right)\right) \leq 3$. In the following theorem, we determine the lower bound of $\operatorname{diam}\left(\Gamma\left(R_{0}[[x ; \alpha]]\right)\right)$, where R is a symmetric and α-compatible ring.

Theorem 3.1. Let R be a symmetric and α-compatible ring with $Z(R) \neq 0$. Then $\operatorname{diam}\left(\Gamma\left(R_{0}[[x ; \alpha]]\right)\right) \geq 2$.

Proof. First suppose that R is a reduced ring and $0 \neq a \in Z(R)$. Then $a x, a x^{2} \in Z\left(R_{0}[[x ; \alpha]]\right)$. Since $a x \circ a x^{2} \neq 0 \neq a x^{2} \circ a x$, it follows that $d\left(a x, a x^{2}\right) \geq 2$. Now, assume that R is not reduced. It means that there exists $0 \neq c \in R$ such that $c^{2}=0$. Thus $c x \circ x^{2}=c \alpha(c) x^{2}=0$ and $c x \circ x^{3}=c \alpha(c) \alpha^{2}(c) x^{3}=0$, by Lemma 2.1, which implies that $x^{2}, x^{3} \in$
$Z\left(R_{0}[[x ; \alpha]]\right)$. Since $x^{2} \circ x^{3} \neq 0 \neq x^{3} \circ x^{2}$, then $d\left(x^{2}, x^{3}\right) \geq 2$. Therefore $\operatorname{diam}\left(\Gamma\left(R_{0}[[x ; \alpha]]\right)\right) \geq 2$.

Proposition 3.2. Let R be a symmetric, α-compatible and right Noetherian ring which is not reduced. If $\operatorname{diam}\left(\Gamma\left(R_{0}[[x ; \alpha]]\right)\right)=2$, then

$$
Z\left(R_{0}[[x ; \alpha]]\right)=Z(R) x+R_{0}[[x ; \alpha]] x .
$$

Proof. Let $0 \neq f=\sum_{i=1}^{\infty} a_{i} x^{i} \in R_{0}[[x ; \alpha]]$. If $f \in Z\left(R_{0}[[x ; \alpha]]\right)$, then $a_{1} \in$ $Z(R)$, by Lemma 2.8. Hence $Z\left(R_{0}[[x ; \alpha]]\right) \subseteq Z(R) x+R_{0}[[x ; \alpha]] x$. For the reverse inclusion, if $a_{1} \in \operatorname{Nil}(R)$, then we are done, by Theorem 2.16. Hence suppose that $a_{1} \in Z(R) \backslash \operatorname{Nil}(R)$. Since R is not reduced, it follows that $a_{1} x, x^{2}$ are zero-divisor elements of $R_{0}[[x ; \alpha]]$ with $a_{1} x \circ x^{2} \neq 0 \neq x^{2} \circ a_{1} x$. Since $\operatorname{diam}\left(\Gamma\left(R_{0}[[x ; \alpha]]\right)\right)=2$, there exists a non-zero nilpotent element $g=$ $\sum_{j=1}^{\infty} b_{j} x^{j}$ such that $a_{1} x-g-x^{2}$ is a path. Thus $b_{j} \in N i l(R)$ for each j, by Corollary 2.11. Let s be the smallest integer such that $b_{s} \neq 0$. If $g \circ\left(a_{1} x\right)=0$, then $a_{1} b_{s}=0$. It means that $\operatorname{ann}_{R}\left(a_{1}\right) \cap \operatorname{Nil}(R) \neq 0$, and so $f \in Z\left(R_{0}[[x ; \alpha]]\right)$, by Theorem 2.16. Now assume that $\left(a_{1} x\right) \circ g=0$. Thus $\sum_{j=s}^{\infty} b_{j}\left(a_{1} x\right)^{j}=0$, which implies that $b_{s} a_{1} \alpha\left(a_{1}\right) \alpha^{2}\left(a_{1}\right) \cdots \alpha^{s-1}\left(a_{1}\right)=0$, since it is the coefficient of x^{s} in this equation. Hence $b_{s} a_{1}^{s}=0$, by Lemma 2.1. If $b_{s} a_{1}=0$, then we are done. Now suppose that $b_{s} a_{1} \neq 0$. Then there exists a positive integer $1 \leq k \leq s-1$ such that $b_{s} a_{1}^{k} \neq 0$ but $\left(b_{s} a_{1}^{k}\right) a_{1}=0$. Therefore $b_{s} a_{1}^{k} \in \operatorname{ann}_{R}\left(a_{1}\right) \cap \operatorname{Nil}(R)$, and so the result follows from Theorem 2.16.

Theorem 3.3. Let R be a symmetric, α-compatible ring which is not reduced. Then we have the following:
(1) If $\operatorname{ann}_{R}(\{a, b\}) \cap \operatorname{Nil}(R) \neq 0$ for each $a, b \in Z(R)$, then

$$
\operatorname{diam}\left(\Gamma\left(R_{0}[[x ; \alpha]]\right)\right)=2 .
$$

(2) If R is right Noetherian and $\operatorname{diam}\left(\Gamma\left(R_{0}[[x ; \alpha]]\right)\right)=2$, then for each $a, b \in Z(R), a n n_{R}(\{a, b\}) \cap \operatorname{Nil}(R) \neq 0$.

Proof. (1) Assume that $f=\sum_{i=1}^{\infty} a_{i} x^{i}$ and $g=\sum_{j=1}^{\infty} b_{j} x^{j}$ are non-zero zerodivisor elements of $R_{0}[[x ; \alpha]]$. By Lemma 2.8, $a_{1}, b_{1} \in Z(R)$, which implies that there exists $c \in \operatorname{Nil}(R)$ such that $c a_{1}=0=c b_{1}$. Hence there exists a positive integer k such that $c^{k}=0$ but $c^{k-1} \neq 0$. It follows that $f-c^{k-1} x-g$ is a path, by Lemma 2.1. This shows that $d(f, g) \leq 2$, and so the result follows from Theorem 3.1.
(2) Let $a, b \in Z(R)$. Then by Proposition 3.2,

$$
\left\{a x+x^{2}, b x+x^{2}\right\} \in Z\left(R_{0}[[x ; \alpha]]\right) .
$$

Since $\operatorname{diam}\left(\Gamma\left(R_{0}[[x ; \alpha]]\right)\right)=2$, there exists a non-zero nilpotent f such that $f \circ\left(a x+x^{2}\right)=0$ and $f \circ\left(b x+x^{2}\right)=0$, by Theorem 2.13. Let $f=\sum_{i=k}^{\infty} c_{i} x^{i}$ and $c_{k} \neq 0$. Thus $a c_{k}=0=b c_{k}$. Also, by Corollary 2.11, we have $c_{k} \in \operatorname{Nil}(R)$. Hence $a n n_{R}(\{a, b\}) \cap \operatorname{Nil}(R) \neq 0$.

In [14, Theorems 2.21 and 2.23], the authors characterized the diameter of the zero-divisor graph $\Gamma(R[[x ; \alpha]])$, where R is a reversible and α-compatible ring with $Z(R) \neq 0$. They proved that $\operatorname{diam}(\Gamma(R[[x ; \alpha]]))=1$ if and only if R is a non-reduced ring with $Z(R)^{2}=0$. Also, if R is right Noetherian, then (1) $\operatorname{diam}(\Gamma(R[[x ; \alpha]]))=2$ if and only if $|Z(R)|>3$ and either (i) R is a reduced ring with exactly two minimal primes, or (ii) $Z(R)$ is an ideal of R with $Z(R)^{2} \neq 0$. (2) $\operatorname{diam}(\Gamma(R[[x ; \alpha]]))=3$ if and only if R is not a reduced ring with exactly two minimal primes and $Z(R)$ is not an ideal of R.

Applying Lemma 2.2, one can get the next interesting result.
Proposition 3.4. Let R be an α-rigid ring. Then
(1) $\operatorname{diam}(\Gamma(R[[x ; \alpha]]))=2$ if and only if $\operatorname{diam}\left(\Gamma\left(R_{0}[[x ; \alpha]]\right)\right)=2$.
(2) $\operatorname{diam}(\Gamma(R[[x ; \alpha]]))=3$ if and only if $\operatorname{diam}\left(\Gamma\left(R_{0}[[x ; \alpha]]\right)\right)=3$.

The next example shows that the assumption " R is α-rigid" in Proposition 3.4 is not superfluous.

Example 3.5. (1) Let p be a prime integer number and $S=\mathbb{Z}(+) \mathbb{Z}\left(p^{\infty}\right)$ be the idealization of $\mathbb{Z}\left(p^{\infty}\right)$. Clearly, S is neither reduced nor Noetherian. Consider $\alpha: S \rightarrow S$ by $\alpha(n, \bar{m})=(n,-\bar{m})$ for each $n \in \mathbb{Z}$ and $\bar{m} \in \mathbb{Z}\left(p^{\infty}\right)$. Clearly, S is an α-compatible ring. Let $g=(0,(\overline{1 / p}))+\left(0,\left(\overline{1 / p^{2}}\right)\right) x+\left(0,\left(\overline{1 / p^{3}}\right)\right) x^{2}+\cdots$ and $f=(p, 0)+(1,0) x$. Then $f g=0$, and so $f \in Z(S[[x ; \alpha]])$. Now, let $h=(p, 0)$. Obviously, $h \in Z(S[[x ; \alpha]])$ but $h f \neq 0 \neq f h$. Notice that $a n n_{S[[x ; \alpha]]}(h)=$ $\left\{\sum_{i=0}^{\infty}\left(0, a_{i}\right) x^{i} \mid a_{i} \in\{0,(\overline{1 / p})\}\right.$ for each $\left.i \geq 0\right\}$. This shows that f and h have no common non-zero annihilator, and hence $\operatorname{diam}(\Gamma(S[[x ; \alpha]]))=3$, by [22, Theorem 3.2]. On the other hand, we have $Z(S)=p \mathbb{Z}(+) \mathbb{Z}\left(p^{\infty}\right)$, by [18, Example 5.6]. Since $(0,(\overline{1 / p})) Z(S)=0$ and $(0,(\overline{1 / p})) \in \operatorname{Nil}(S)$, then $\operatorname{diam}\left(\Gamma\left(S_{0}[[x ; \alpha]]\right)\right)=2$, by Theorem 3.3.
(2) Let K be a field and $D=K[w, y, z]_{M}$, where w, y and z are algebraically independent indeterminates and $M=\langle w, y, z\rangle K[w, y, z]$. Clearly, D is a domain. Let \mathcal{P} denote the height two primes of D and Q be the maximal ideal of D. Also, let $B=\sum F_{\gamma}$ where $F_{\gamma}=q f\left(D / P_{\gamma}\right)$ for each $P_{\gamma} \in \mathcal{P}$. Let $R=D(+) B$ be the idealization of B over D. Clearly, R is neither reduced nor Noetherian. Lucas [18, Example 5.2] showed that $\operatorname{diam}(\Gamma(R[[x]]))=3$ and R is a local ring with maximal ideal $Q(+) B=Z(R)$. He also proved that each two elements of $Z(R)$ has a non-zero nilpotent annihilator. This shows that $\operatorname{diam}\left(\Gamma\left(R_{0}[[x]]\right)\right)=2$, by Theorem 3.3.
(3) Let R be a commutative non-reduced Noetherian ring with $Z(R)^{2}=0$. Then $\operatorname{diam}(\Gamma(R[[x]]))=1$, by $\left[6\right.$, Theorem 3]. But $\operatorname{diam}\left(\Gamma\left(R_{0}[[x]]\right)\right)=2$, by Theorem 3.3.

The following interesting result gives conditions under which $Z\left(R_{0}[[x ; \alpha]]\right)$ forms an ideal of $R_{0}[[x ; \alpha]]$.
Proposition 3.6. Let R be an α-rigid and right Noetherian ring. Then $Z\left(R_{0}[[x ; \alpha]]\right)$ is an ideal of $R_{0}[[x ; \alpha]]$ if and only if $Z(R)$ is an ideal of R.

Proof. First suppose that $Z\left(R_{0}[[x ; \alpha]]\right)$ is an ideal of $R_{0}[[x ; \alpha]]$ and $a, b \in Z(R)$. Then $a x, b x \in Z\left(R_{0}[[x ; \alpha]]\right)$, and so $(a+b) x=a x+b x \in Z\left(R_{0}[[x ; \alpha]]\right)$. By Proposition 2.14, there exists $0 \neq r \in R$ such that $r(a+b) x=0$, which implies that $a+b \in Z(R)$, and thus $Z(R)$ is an ideal of R.

Conversely, let $f=\sum_{i=1}^{\infty} a_{i} x^{i}$ and $g=\sum_{j=1}^{\infty} b_{j} x^{j}$ be elements of $Z\left(R_{0}[[x ; \alpha]]\right)$. By Proposition 2.14, there exist non-zero $r, s \in R$ such that $r f=0=s g$, which implies that $a_{i}, b_{j} \in Z(R)$ for each i, j. Let $\beta=$ $\left\{a_{i}+b_{i} \mid a_{i} \in C_{f}\right.$ and $b_{i} \in C_{g}$ for each $\left.i \geq 1\right\}$. Since R is right Noetherian, then there exists a positive integer n such that $\beta R=\left\langle a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right\rangle_{r}$. Since $Z(R)$ is an ideal, then $\left\langle a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right\rangle \subseteq Z(R)$. Also, by Lemma $2.4, R$ has left Property (A), and thus $t\left\langle a_{1}+b_{1}, \ldots, a_{n}+b_{n}\right\rangle=0$ for some $0 \neq t \in R$. Thus $t\left(a_{i}+b_{i}\right)=0$ for each $1 \leq i \leq n$, which implies that $t(f+g)=0$, and so $f+g \in Z\left(R_{0}[[x ; \alpha]]\right)$, by Proposition 2.14.

Let $f=\sum_{i=1}^{\infty} a_{i} x^{i}$ and $g=\sum_{j=1}^{\infty} b_{j} x^{j}$ be elements of $R_{0}[[x ; \alpha]]$ and $z=$ $\sum_{k=1}^{\infty} c_{k} x^{k} \in Z\left(R_{0}[[x ; \alpha]]\right)$. Note that $f \circ z=\sum_{k=1}^{\infty} c_{k} f^{k}$ and

$$
\begin{aligned}
& (z+f) \circ g-f \circ g \\
= & \sum_{j=1}^{\infty} b_{j}(z+f)^{j}-\sum_{j=1}^{\infty} b_{j} f^{j} \\
= & b_{1} c_{1} x+\left[b_{1} c_{2}+b_{2} c_{1} \alpha\left(c_{1}\right)+b_{2} c_{1} \alpha\left(a_{1}\right)+b_{2} a_{1} \alpha\left(c_{1}\right)\right] x^{2}+\cdots .
\end{aligned}
$$

Since $c_{k} \in Z(R)$ for each $k \geq 1$ and $Z(R)$ is an ideal of R, then $(z+f) \circ g-f \circ g$ and $f \circ z \in Z\left(R_{0}[[x ; \alpha]]\right)$, by Corollary 2.7. Hence $Z\left(R_{0}[[x ; \alpha]]\right)$ is an ideal of $R_{0}[[x ; \alpha]]$.

The next example shows that the condition " R is right Noetherian" in Proposition 3.6 can not be dropped.

Example 3.7. Let R be the commutative ring introduced in [18, Example 5.3] and α be the identity endomorphism on R. Thus R is an α-rigid ring which is not Noetherian. Lucas proved that $Z(R)$ is an ideal of R and there exist a countably generated ideal $A=\left\langle a_{1}, a_{2}, \ldots\right\rangle$ and an element $b \in R$ such that the ideal $A+b R$ is a countably generated ideal contained in $Z(R)$ that has no non-zero annihilator, but both A and $b R$ have non-zero annihilators. Consider $f=a_{1} x^{2}+a_{2} x^{3}+\cdots$ and $g=b x$. Thus $f, g \in Z\left(R_{0}[[x ; \alpha]]\right)$. If $f+g \in$ $Z\left(R_{0}[[x ; \alpha]]\right)$, then $h \circ(f+g)=0$ for some $0 \neq h=\sum_{j=1}^{\infty} c_{j} x^{j} \in R_{0}[[x ; \alpha]]$. Let k be the smallest integer such that $c_{k} \neq 0$. Thus $c_{k} a_{i}=0=c_{k} b$ for each $i \geq 1$, by Lemma 2.2. It means that $0 \neq c_{k} \in \operatorname{ann} n_{R}(A+b R)$, which is a contradiction. This shows that $Z\left(R_{0}[[x ; \alpha]]\right)$ is not an ideal of $R_{0}[[x ; \alpha]]$.

Proposition 3.8. Let R be a symmetric and α-compatible ring which is not reduced. Then we have the following:
(1) If ann $n_{R}(a-b) \cap \operatorname{Nil}(R) \neq 0$ for each $a, b \in Z(R)$, then $Z\left(R_{0}[[x ; \alpha]]\right)$ forms an ideal of $R_{0}[[x ; \alpha]]$.
(2) If R is right Noetherian ring and $Z\left(R_{0}[[x ; \alpha]]\right)$ forms an ideal of $R_{0}[[x ; \alpha]]$, then ann $_{R}(a-b) \cap \operatorname{Nil}(R) \neq 0$ for each $a, b \in Z(R)$.
Proof. (1) Let $f=\sum_{i=1}^{\infty} a_{i} x^{i}$ and $g=\sum_{j=1}^{\infty} b_{j} x^{j}$ be non-zero elements of $Z\left(R_{0}[[x ; \alpha]]\right)$. Then $a_{1}, b_{1} \in Z(R)$, by Lemma 2.8. Also, by hypothesis, we have $c\left(a_{1}-b_{1}\right)=0$ for some $0 \neq c \in \operatorname{Nil}(R)$. Hence there exists a positive integer k such that $c^{k}=0$ but $c^{k-1} \neq 0$. Thus $c^{k-1} x \circ(f-g)=0$, by Lemma 2.1. Therefore $f-g \in Z\left(R_{0}[[x ; \alpha]]\right)$. Now, assume that $h=\sum_{i=1}^{\infty} c_{i} x^{i}$ and $k=\sum_{j=1}^{\infty} d_{j} x^{j} \in R_{0}[[x ; \alpha]]$. Hence $c_{1} a_{1}$ and $d_{1} a_{1}$ are the coefficients of x respectively in $h \circ f$ and $(f+h) \circ k-h \circ k$. Since $\operatorname{ann}_{R}\left(a_{1}\right) \cap \operatorname{Nil}(R) \neq 0$, then by a similar argument as used above, we have $h \circ f$ and $(f+h) \circ k-h \circ k \in$ $Z\left(R_{0}[[x ; \alpha]]\right)$. Therefore $Z\left(R_{0}[[x ; \alpha]]\right)$ forms an ideal of $R_{0}[[x ; \alpha]]$.
(2) Suppose that $a, b \in Z(R)$. Then $a x, b x, x^{2} \in Z\left(R_{0}[[x ; \alpha]]\right)$, which implies that $(a-b) x+x^{2} \in Z\left(R_{0}[[x ; \alpha]]\right)$, since $Z\left(R_{0}[[x ; \alpha]]\right)$ is an ideal of $R_{0}[[x ; \alpha]]$. By Theorem 2.13, there exists a nilpotent element $f=\sum_{i=1}^{\infty} c_{i} x^{i}$ such that $f \circ(a-b) x+x^{2}=0$. Thus $c_{i} \in \operatorname{Nil}(R)$ for each $i \geq 1$, by Corollary 2.11. Let k be the smallest integer such that $c_{k} \neq 0$. Then $(a-b) c_{k}=0$, and so $a n n_{R}(a-b) \cap \operatorname{Nil}(R) \neq 0$.

References

[1] A. Alhevaz and E. Hashemi, An alternative perspective on skew generalized power series rings, Mediterr. J. Math. 13 (2016), no. 6, 4723-4744. https://doi.org/10.1007/ s00009-016-0772-y
[2] A. Alhevaz and D. Kiani, McCoy property of skew Laurent polynomials and power series rings, J. Algebra Appl. 13 (2014), no. 2, 1350083, 23 pp. https://doi.org/10.1142/ S0219498813500837
[3] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447. https://doi.org/10.1006/jabr. 1998.7840
[4] D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210 (2007), no. 2, 543-550. https://doi.org/10.1016/j.jpaa. 2006.10.007
[5] D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159 (1993), no. 2, 500-514. https://doi.org/10.1006/jabr. 1993.1171
[6] M. Axtell, J. Coykendall, and J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, Comm. Algebra 33 (2005), no. 6, 2043-2050. https: //doi.org/10.1081/AGB-200063357
[7] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226. https: //doi.org/10.1016/0021-8693(88)90202-5
[8] V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra 212 (2008), no. 3, 599-615. https://doi.org/10.1016/j.jpaa.2007.06.010
[9] G. A. Cannon, K. M. Neuerburg, and S. P. Redmond, Zero-divisor graphs of nearrings and semigroups, in Nearrings and nearfields, 189-200, Springer, Dordrecht, 2005. https: //doi.org/10.1007/1-4020-3391-5_8
[10] E. Hashemi, Rickart-type annihilator conditions on formal power series, Turkish J. Math. 32 (2008), no. 4, 363-372.
[11] E. Hashemi, A. As. Estaji, and M. Ziembowski, Answers to some questions concerning rings with property (A), Proc. Edinb. Math. Soc. (2) 60 (2017), no. 3, 651-664. https: //doi.org/10.1017/S0013091516000407
[12] E. Hashemi and A. Moussavi, Skew power series extensions of α-rigid p.p.-rings, Bull. Korean Math. Soc. 41 (2004), no. 4, 657-664. https://doi.org/10.4134/BKMS. 2004. 41.4 .657
[13] _, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005), no. 3, 207-224. https://doi.org/10.1007/s10474-005-0191-1
[14] E. Hashemi, M. Yazdanfar, and A. Alhevaz, Directed zero-divisor graph and skew power series rings, Trans. Comb. 7 (2018), no. 4, 43-57. https://doi.org/10.22108/toc. 2018.109048.1543
[15] S. Hizem, A note on nil power serieswise Armendariz rings, Rend. Circ. Mat. Palermo (2) 59 (2010), no. 1, 87-99. https://doi.org/10.1007/s12215-010-0005-3
[16] C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), no. 3, 215-226. https://doi.org/10.1016/S00224049 (99) 00020-1
[17] C. Y. Hong, N. K. Kim, Y. Lee, and S. J. Ryu, Rings with Property (A) and their extensions, J. Algebra 315 (2007), no. 2, 612-628. https://doi.org/10.1016/j.jalgebra. 2007.01.042
[18] T. G. Lucas, The diameter of a zero divisor graph, J. Algebra 301 (2006), no. 1, 174-193. https://doi.org/10.1016/j.jalgebra.2006.01.019
[19] K. Paykan and A. Moussavi, Nilpotent elements and nil-Armendariz property of skew generalized power series rings, Asian-Eur. J. Math. 10 (2017), no. 2, 1750034, 28 pp. https://doi.org/10.1142/S1793557117500346
[20] J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289-300.
[21] G. Marks, A taxonomy of 2-primal rings, J. Algebra 266 (2003), no. 2, 494-520. https: //doi.org/10.1016/S0021-8693(03)00301-6
[22] S. P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J. Commut. Rings 1 (2002), 203-211.

Abdollah Alhevaz
Faculty of Mathematical Sciences
Shahrood University of Technology
Shahrood P.O. Box: 316-3619995161, Iran
Email address: a.alhevaz@gmail.com or a.alhevaz@shahroodut.ac.ir
Ebrahim Hashemi
Faculty of Mathematical Sciences
Shahrood University of Technology
Shahrood P.O. Box: 316-3619995161, Iran
Email address: eb_hashemi@yahoo.com or eb_hashemi@shahroodut.ac.ir
Fatemeh Shokuhifar
Faculty of Mathematical Sciences
Shahrood University of Technology
Shahrood P.O. Box: 316-3619995161, Iran
Email address: shokuhi.135@gmail.com

[^0]: Received December 15, 2019; Accepted November 3, 2020.
 2010 Mathematics Subject Classification. Primary 16Y30, 16U99; Secondary 05C12.
 Key words and phrases. Symmetric ring, α-compatible ring, near-ring of skew formal power series, zero-divisor element.

 This research was in part supported by a grant from Shahrood University of Technology.

