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ON THE STRUCTURE OF ZERO-DIVISOR ELEMENTS IN A
NEAR-RING OF SKEW FORMAL POWER SERIES

ABDOLLAH ALHEVAZ, EBRAHIM HASHEMI, AND FATEMEH SHOKUHIFAR

ABSTRACT. The main purpose of this paper is to study the zero-divisor
properties of the zero-symmetric near-ring of skew formal power series
Ro[|z; o], where R is a symmetric, a-compatible and right Noetherian
ring. It is shown that if R is reduced, then the set of all zero-divisor
elements of Rg|[[z; «]] forms an ideal of Rg[[z; «]] if and only if Z(R) is an
ideal of R. Also, if R is a non-reduced ring and anng(a—b) N Nil(R) # 0
for each a,b € Z(R), then Z(Ro[[; a]]) is an ideal of Ro[[z; a]]. Moreover,
if R is a non-reduced right Noetherian ring and Z(Ro[[z;a]]) forms an
ideal, then anng(a — b) N Nil(R) # 0 for each a,b € Z(R). Also, it
is proved that the only possible diameters of the zero-divisor graph of
Rol[z; @]] is 2 and 3.

1. Introduction and preliminary definitions

Throughout this paper R always denotes an associative ring with unity.
Recall that a ring R is said to be symmetric if abc = 0, then bac = 0 for each
a,b,c € R. Also, R is called reversible if ab = 0 implies ba = 0 for each a,b € R.
Moreover, R is said to be semicommutative if ab = 0 implies aRb = 0 for each
a,b € R.

Recall that a ring R is said to be right (left) uniserial if its right (left) ideals
are linearly ordered by inclusion.

We denote the set of all nilpotent elements of a ring R by Nil(R). Recall
that a ring R is called reduced if Nil(R) = {0}. Also, if X C R, then (X),,
(X), and (X) denote the left ideal generated by X, the right ideal generated
by X and the ideal generated by X, respectively. Moreover, for a given ring
or near-ring R, we write Z(R) = Zy(R) U Z,.(R), where Z;(R) and Z,.(R) are
the set of all left zero-divisors of R and the set of all right zero-divisors of R,
respectively.
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Let a be an endomorphism of a ring R. Then the skew power series ring
R][x; a]] is the ring of power series over R in the variable z, with term-wise
addition and with coefficient written on the left of x, subject to the skew-
multiplication rule zr = a(r)z for r € R. Following [20], an endomorphism «
of ring R is called rigid if ac(a) = 0 implies a = 0 for a € R. Also, R is called
a-rigid if there exists a rigid endomorphism « of R. In [16], authors proved
that any rigid endomorphism of a ring is a monomorphism and a-rigid rings
are reduced.

According to [13], a ring R is called a-compatible if for each a,b € R, ab =
0 < aa(b) = 0. Hence a-compatible rings are a generalization of rigid rings.
In fact, R is an «-rigid ring if and only if R is reduced and a-compatible, by
[13, Lemma 2.2].

The collection of all skew power series with positive orders using the oper-
ations of addition and substitution is denoted by Rg[[x;«]]. Notice that the
system (Ro[[z; o], +,0) is a zero-symmetric left near-ring, since the operation
“o” left distributes but does not right distribute over addition. For example,
let f =322, aiz’ and g = 3272 bjx € Ro[[z; 0], then

gof=aig+ag®+azg’+---
= a1z + [a1be + agbla(bl)]x2
= [albg + a2b10l(b2) + 0@()20[2(61) + a3b1a(b1)a2(b1)] 173 —+ . B

where ¢ is the product of i copies of g in the ring R|[[z;a]] for each i.
Recall that a graph G is connected if there is a path between any two distinct
vertices of G. Also, the diameter of G is

diam(QG) = sup{d(a,b) | a, b are vertices of G},

where d(a, b) is the length of the shortest path from a to b.

In [7], Beck introduced and studied the zero-divisor graph of a commutative
ring. Since then, the concept of zero-divisor graphs has been studied exten-
sively by many authors, (cf. [3-5,7,18,22]). Now, we are interested to study
the undirected zero-divisor graph of a near-ring Rp[[x; @]] which is denoted by
I'(Ro[[z; o]]) and defined as follows: the set of vertices of I'(Ro[[z;]]) is the
non-zero zero-divisor elements of Ry[[z; @]] and two distinct vertices f and g
are adjacent if and only if fog=0or go f =0.

In this work, we first characterize the zero-divisor elements of a near-ring
Ro[[z; a]], where R is a symmetric, a-compatible and right Noetherian ring.
Then we study the zero-divisor graph of Ry[[z;a]], and show that
diam (T (Ro[[z; o]])) is 2 or 3, where R is a symmetric and a-compatible ring.
Moreover, we prove that if R is an «-rigid right Noetherian ring, then
Z(Ro|[[z;]]) forms an ideal of Ry[[z;c]] if and only if Z(R) is an ideal of
R. Also, giving some examples, we will show that the assumption being right
Noetherian for R is not redundant. Finally, for symmetric non-reduced rings,
it is proved that (1) if anng(a — b) N Nil(R) # 0 for each a,b € Z(R), then
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Z(Ro[[z;]]) is an ideal of Ry[[z;c]], and (2) if R is right Noetherian and
Z(Ro|[z; o]]) forms an ideal of Ry[[x;]], then anng(a — b) N Nil(R) # 0 for
each a,b € Z(R).

2. Zero-divisor elements in a near-ring of skew formal power series

We start by summarizing some useful lemmas, which will become building
blocks of the main results. The following lemma can be found in [14].

Lemma 2.1 ([14, Lemma 2.3]). Let R be an a-compatible ring. Then we have
the following:
(1) If ab =0, then aa™(b) = a™(a)b = 0 for any positive integer n.
(2) If a*(a)b = 0 for some positive integer k, then ab = 0.
(3) If f = Y i2paix’ € R[[z;a]] and r € R, then fr = 0 if and only if
a;r =0 for each i.
(4) If f € R[[z;¢]] and r € R, then rf =0 if and only if rzf = 0.

Let f be an element of a ring R[[z; o] or a near-ring Ro[[z; @]]. Then we use
C't to denote the set of all coefficients of f.

Lemma 2.2. Let R be an a-rigid ring. Then we have the following:

(1) [12, Proposition 2.3] If f and g are elements of a ring R[[z;q]], then
fg =0 if and only if a;b; = 0 for all a; € Cy and all b; € Cy.

(2) [10, Lemma 2.4] If f and g are elements of a near-ring Ro[[z; «!]], then
fog=0if and only if a;b; =0 for all a; € Cy and all b; € Cj.

As an immediate consequence of Lemma 2.2, we get the following lemma.

Lemma 2.3. Let R be an a-rigid ring. Then
Ze(Rollzs o)) = Z, (Rolla: ol]) = Zy (Rllas o) = Ze(Rfa: o]

According to [17], a ring R has (right) left Property (A), if every finitely
generated ideal consisting entirely of (left) right zero-divisor has a left (right)
non-zero annihilator. Also, a ring R is said to have Property (A) if R has both
right and left Property (A).

Since every symmetric ring is semicommutative by [8], then we get the fol-
lowing result from [11, Theorem 2.6].

Lemma 2.4. Let R be a symmetric and right Noetherian ring. Then R has
left Property (A).

Motivated by [2], the authors in [14] calls a ring R with an endomorphism «
to be right a-power-serieswise McCoy, whenever power series f, g € R[[x; o] \
{0} satisfy fg = 0, then there exists a non-zero element ¢ € R such that fc = 0.
Left a-power-serieswise McCoy is defined similarly. If a ring R is both right
and left a-power-serieswise McCoy, then R is called a-power-serieswise McCoy.

Lemma 2.5 ([14, Corollary 2.7]). If R is a reversible, a-compatible and right
Noetherian ring, then R is a-power-serieswise McCoy.
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Remark 2.6. Let R be a reversible, a-compatible and right Noetherian ring.
Notice that Z(R[[z;a]]) € Z(R)[[z;]], by Lemma 2.5. Now, let Z(R) be
an ideal of R and f € Z(R)[[z;«]]. Since R is right Noetherian, then Z(R)
is finitely generated as right ideal. Hence there exists 0 # r € R such that
rZ(R) = 0, by Lemma 2.4. Since Cy C Z(R), then rCy = 0. It means
that rf = 0, and thus Z(R)[[z;a]] € Z(R[[z;]]). Therefore Z(R[[z;a]]) =
Z(R)[fz; o).

Combining Lemma 2.3 and Remark 2.6, we obtain the following corollary.

Corollary 2.7. Let R be an a-rigid and right Noetherian ring. If Z(R) is an
ideal of R, then Z(Ro[[z;]]) = Z(R[[z;a]])z = Z(R)o[[x; o).

Lemma 2.8. Let R be a symmetric and a-compatible ring. If f =Y o, a;a’
is a zero-dwisor of Rol[x;a]], then a1 € Z(R).

Proof. Let a; # 0. Since f € Z(RO[[:E;a]]), then there exists a non-zero g =
Z;il bjzl € Ro[[r;a]] such that go f =0 or fog=0. Let k be the smallest
integer such that by # 0. If go f = 0, then a1b; = 0, and so the result follows.
Now suppose that fog = 0. Then braja(a;)---a*~!(a;) = 0, since it is the
coefficient of z* in f o g. Hence bka’f = 0, by Lemma 2.1. If bya; = 0, then
a1 € Z(R). Now, assume that bia; # 0. Then there exists 1 < s < k — 1 such
that bra$ # 0 but (braf)a; = 0, as desired. O

In [1], the authors studied the skew generalized power series rings over nil
rings and provided some conditions under which the skew generalized power
series ring is nil. Following [19], a ring R is a-nil-Armendariz whenever f =
Yoicgair’ and g = 3772 bz be elements of R[[z; a]] with fg € Nil(R)[[z; o],
then a;a’(bj) € Nil(R) for each i, j.

Recall that an ideal I of R is an a-ideal if a(I) C I. For example, if R is
an a-compatible ring and Nil(R) is an ideal of R, then it is also an «-ideal.
Therefore, by a similar way as used in the proof of [15, Proposition 1], one can
prove the following result.

Proposition 2.9. Let R be an a-compatible ring and Nil(R) be an ideal of R.
Then R is an a-nil-Armendariz ring.

We will make use of the following lemma which appears in [19, Theorem
3.14].

Proposition 2.10. Let R be an a-compatible and a-nil-Armendariz ring. If
Nil(R) is a nilpotent ideal of R, then Nil(R|[[z;]]) = Nil(R)|[[z; o).

Corollary 2.11. Let R be a symmetric, a-compatible and right Noetherian
ring. Then Nil(R[[z;o]]) = Nil(R)|[x; o).

Proof. Since R is symmetric and right Noetherian, then Nil(R) is a nilpotent
ideal of R. Hence the assertion follows from Propositions 2.9 and 2.10. (|
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Example 2.12. (1) Let D be an integral domain and R = {[& ¢] |a,d € D}.
Suppose that u € U(D). Consider a : R — R by o ([¢ ¢]) = [& “]. Thus R
is a commutative and a-compatible ring. Also, Nil(R) = {[}&] |a € D} is a
nilpotent ideal of R. Therefore Nil(R[[z; o]]) = Nil(R)[[z; o]], by Propositions

2.9 and 2.10.

(2) Let R be a right Artinian and right uniserial ring, and S = R[y]. Then R
is right Noetherian, and so S is right Noetherian. Moreover, by [21, Proposition
3.5], S is symmetric. Hence Nil(R[[z]]) = Nil(R)[[z]], by Corollary 2.11.

Now we bring the following theorem, which has a key rule in our results.

Theorem 2.13. Let R be a symmetric, a-compatible and right Noetherian
ring. Let f =32, a;x’ and g = Z;’;l bjxj be non-zero elements of a near-
ring Rol[z;a]]. If fog=0, then

(1) a1b1 = O,

(2) rf =0 for some non-zeror € R,

(3) f is nilpotent or sg = 0 for some non-zero s € R.

Proof. (1) It is clear, since bya; is the coefficient of z in f o g.

(2) Since f o g =0, it follows that by f + baf? + b3 f3 +--- = 0. Hence
(bl+bzf+bgf2+"')f=0.
Since by + baf + b3f? + --- is non-zero, rf = 0 for some non-zero r € R, by
Lemma 2.5.

(3) Notice that (Cy), = (b1,...,by), for some n > 1, since R is right Noe-
therian. Suppose that f is not nilpotent. It follows that there exists a = a;
such that a ¢ Nil(R), by Corollary 2.11. Let R = R/Nil(R). Since fog =0,
then fog =0 in a near-ring Ro[[x;@]]. Since R is a reduced and @-compatible
ring, it follows that R is an @-rigid ring, by [13, Lemma 2.2]. Thus @;b; = 0,
by Lemma 2.2. Since R is right Noetherian, then Nil(R) is nilpotent, and so
Nil(R)¥ = 0 for some positive integer k. Thus akbé? = 0 for each j > 1. Hence
there exist integers 0 < t; < k such that akbéj % 0 but akb;.j+1 = 0 for each
j > 1. Therefore there exist integers 0 < s; < t; such that akbirbs? b £ 0
but a®bjby? - birb; = 0 for each 1 < j < n. Let s = a®bj'b3* -+ - b3, Thus
sg =0, since (Cg)r = (b1,...,bn)r. O

Now, we determine the structure of the set of all zero-divisor elements of
Ro[[z; a]], where R is a-rigid.
Proposition 2.14. Let R be an a-rigid and right Noetherian ring. Then
Z(Ro|[z;o]]) = {f € Ro[[z;a]]|rf =0 for some non-zero r € R}.

Proof. We have Z(Ry[[z;a]]) € {f € Ro[[z;a]]|rf = 0 for some non-zero r €
R}, by Lemma 2.3 and Theorem 2.13. Now, suppose that f € Ry[[z;]] and
rf = 0 for some non-zero r € R. Thus forz =0, and so f € Z(Ro[[z;q]]).
This completes the proof. (I
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Lemma 2.15. Let R be a symmetric, a-compatible and right Noetherian ring.
Then Zy(Ro[[z; o]]) = {f € Rol[z;o]] | rf = 0 for some non-zeror € R}, when
R is not reduced. In particular, Z;(Ro[[z;a]]) € Z, (Ro[[z; o]).

Proof. Let 0 # f € Ry[|z;a]]. Notice that if rf = 0 for some 0 # r € R,
then forz =0, and so {f € Ro[[z;a]]|rf = 0 for some non-zero r € R} C
Zi(Ro[lz; o]]). Hence Z;(Ro[[z;a]]) = {f € Ro[[z;a]]|rf = 0 for some non-
Z€ro 1 € R}, by Theorem 2.13.

For proving the last statement, suppose that f = >":2, a;a’ € Zy(Rol[z; a]]).
Then rf = 0 for some 0 # r € R, and thus ra; = 0 for each i, which implies
that 7z o f = 0. Hence f € Z,(Ro[[z;]]), as wanted. O

Next, we want to characterize the zero-divisor elements of the near-ring
Ro[[z; «]], where R is not reduced.

Theorem 2.16. Let R be a symmetric, a-compatible and right Noetherian
ring which is not reduced. Then Z(Rol[z;a]]) = Zi(Rol[z;a]]) U B, where
B ={>:",a;z'|anng(a1) N Nil(R) # 0 and a; € R for each i > 2}.

Proof. Let f = Y72, a;z' be a non-zero element of Ry[[x;a]]. If anng(ai) N
Nil(R) # 0, then ba; = 0 for some 0 # b € Nil(R). Hence there exists
a positive integer ¢ such that b = 0 but b*~! # 0. Therefore b*~'zo f =
Y2 ai(b"tz)t = 0, by Lemma 2.1, which implies that f € Z(Ro[[z; o).
Now assume that f € Z(RO[[:v; a]]). Then g o f = 0 for some non-zero g =
Zj’;l bjzd € Rol[z; o], since Z(Ro[[x;¢]]) = Z,(Ro[[x;]]), by Lemma 2.15.
If ¢ is nilpotent, then b; € Nil(R) for each 4, by Corollary 2.11. Suppose that
s is the smallest integer such that bs # 0. Then bsa; = 0, which implies that
anng(a1) N Nil(R) # 0. On the other hand, if g is not nilpotent, then rf =0
for some non-zero r € R, by Theorem 2.13. This shows that f € Z;(Ro[[z;a]]),
by Lemma 2.15. O

3. The diameter of the zero-divisor graph I'(Ro[[z; ]])

According to [9, Theorem 2.2], we have diam(T'(N)) < 3, for every zero-
symmetric near-ring N. Since Ry[[z;a]] is a zero-symmetric near-ring with
respect to “o”, then diam(T'(Ro[[z;]])) < 3. In the following theorem, we
determine the lower bound of diam (I'(Ro[[z; a]])), where R is a symmetric and
a-compatible ring.

Theorem 3.1. Let R be a symmetric and a-compatible ring with Z(R) # 0.
Then diam (T (Ro[[z; o]])) > 2.

Proof. First suppose that R is a reduced ring and 0 # a € Z(R). Then
az,az® € Z(Ro[[z;c]]). Since az o az® # 0 # aaz? o az, it follows that
d(azx,az?) > 2. Now, assume that R is not reduced. It means that there
exists 0 # ¢ € R such that ¢2 = 0. Thus cx o 22 = ca(c)z? = 0 and

cr o 2® = calc)a®(c)z® = 0, by Lemma 2.1, which implies that z2, 2% €
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Z(Ro[[z;]]). Since 2% o x® # 0 # ® o 22, then d(2? 2) > 2. Therefore
diam (T (Ro[[z; o]])) > 2. O

Proposition 3.2. Let R be a symmetric, a-compatible and right Noetherian
ring which is not reduced. If diam (T (Ro|[z; o]])) = 2, then

Z(Ro|[z;o]]) = Z(R)x + Ro[[z; o]z

Proof. Let 0 # f = Y2 a;x’ € Ro[[z;0]]. If f € Z(Ro[[z;q]]), then a; €
Z(R), by Lemma 2.8. Hence Z(Ro[[z;qa]]) € Z(R)x + Ro[[z;a]]lz. For the
reverse inclusion, if a; € Nil(R), then we are done, by Theorem 2.16. Hence
suppose that a; € Z(R) \ Nil(R). Since R is not reduced, it follows that
arz,x? are zero-divisor elements of Rg[[z;a]] with ajz 0 2? # 0 # 22 0 ayx.
Since diam(I'(Ro[[z;]])) = 2, there exists a non-zero nilpotent element g =
Z;’;l bjzl such that a;z — g — 2% is a path. Thus b; € Nil(R) for each
j, by Corollary 2.11. Let s be the smallest integer such that by # 0. If
go(aix) = 0, then a1bs = 0. It means that anng(ay) N Nil(R) # 0, and so
f € Z(Ro[[x;0]]), by Theorem 2.16. Now assume that (a1z) o g = 0. Thus
Z;’;S b;j(a1z)? = 0, which implies that bsa;a(ai)a?(ar) -+ a*~(a1) = 0, since
it is the coeflicient of #° in this equation. Hence bsaf = 0, by Lemma 2.1. If
bsa; = 0, then we are done. Now suppose that bsa; # 0. Then there exists a
positive integer 1 < k < s — 1 such that bsa¥ # 0 but (bsa¥)a; = 0. Therefore
bsa¥ € anng(ar) N Nil(R), and so the result follows from Theorem 2.16. [

Theorem 3.3. Let R be a symmetric, a-compatible ring which is not reduced.
Then we have the following:

(1) If anng({a,b}) N Nil(R) # 0 for each a,b € Z(R), then
diam (T (Ro[[z; o]])) = 2.

(2) If R is right Noetherian and diam(I'(Ro[[z; a]])) = 2, then for each
a,b € Z(R), anng({a,b}) N Nil(R) # 0.

Proof. (1) Assume that f = >27°, a;z* and g = 3777 b;a/ are non-zero zero-
divisor elements of Ry[[x; @]]. By Lemma 2.8, a;,b; € Z(R), which implies that
there exists ¢ € Nil(R) such that ca; = 0 = cb;. Hence there exists a positive
integer k such that ¢¥ = 0 but ¢*=! # 0. It follows that f — "~z —gis a
path, by Lemma 2.1. This shows that d(f,g) < 2, and so the result follows
from Theorem 3.1.

(2) Let a,b € Z(R). Then by Proposition 3.2,

{az + 2% bz + 2*} € Z(Ro[[z; a]).

Since diam (T'(Ro[[x;]])) = 2, there exists a non-zero nilpotent f such that
fo(ax+2%)=0and fo(bx+2?) =0, by Theorem 2.13. Let f =2, ¢;a’
and ¢ # 0. Thus acy, = 0 = beg. Also, by Corollary 2.11, we have ¢ € Nil(R).
Hence anng({a,b}) N Nil(R) # 0. O
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In [14, Theorems 2.21 and 2.23], the authors characterized the diameter of
the zero-divisor graph I'(R[[z; o]]), where R is a reversible and a-compatible
ring with Z(R) # 0. They proved that diam(I'(R[[z;q]])) = 1 if and only
if R is a non-reduced ring with Z(R)? = 0. Also, if R is right Noetherian,
then (1) diam(I'(R[[z;a]])) = 2 if and only if |Z(R)| > 3 and either (i) R is
a reduced ring with exactly two minimal primes, or (ii) Z(R) is an ideal of R
with Z(R)? # 0. (2) diam(T'(R[[z;a]])) = 3 if and only if R is not a reduced
ring with exactly two minimal primes and Z(R) is not an ideal of R.

Applying Lemma 2.2, one can get the next interesting result.

Proposition 3.4. Let R be an a-rigid ring. Then
(1) diam(T(R[[z;]])) = 2 if and only if diam(T'(Ro[[z; o)) = 2.
(2) diam(T(R[[z;]])) = 3 if and only if diam(T'(Ry[[z; o]])) = 3.

The next example shows that the assumption “R is a-rigid” in Proposition
3.4 is not superfluous.

Example 3.5. (1) Let p be a prime integer number and S = Z(+)Z(p) be the
idealization of Z(p). Clearly, S is neither reduced nor Noetherian. Consider
a: S — S by a(n,m) = (n,—m) for each n € Z and m € Z(p). Clearly, S is
an a-compatible ring. Let g = (0, (1/p))+ (0, (1/p®))z+(0, (1/p3))x>+--- and
f=(p,0)+(1,0)z. Then fg =0, and so f € Z(S[[z;a]]). Now, let h = (p,0).
Obviously, h € Z(S[[m;a]}) but hf # 0 # fh. Notice that anng;qay(h) =
{3°725(0,a;)x% |a; € {0,(1/p)} for each i+ > 0}. This shows that f and h
have no common non-zero annihilator, and hence diam(I'(S[[z;o]])) = 3, by
[22, Theorem 3.2]. On the other hand, we have Z(S) = pZ(+)Z(p*), by
[18, Example 5.6]. Since (0, (1/p))Z(S) = 0 and (0,(1/p)) € Nil(S), then
diam (T (So[[z; a]])) = 2, by Theorem 3.3.

(2) Let K be a field and D = Kw, y, z] o, where w, y and z are algebraically
independent indeterminates and M = (w,y, z) K|w,y, z]. Clearly, D is a do-
main. Let P denote the height two primes of D and @ be the maximal ideal
of D. Also, let B = ) F, where F, = qf(D/P,) for each P, € P. Let
R = D(+)B be the idealization of B over D. Clearly, R is neither reduced nor
Noetherian. Lucas [18, Example 5.2] showed that diam(I'(R[[z]])) = 3 and R
is a local ring with maximal ideal Q(+)B = Z(R). He also proved that each
two elements of Z(R) has a non-zero nilpotent annihilator. This shows that
diam (T (Ro[[z]])) = 2, by Theorem 3.3.

(3) Let R be a commutative non-reduced Noetherian ring with Z(R)? = 0.
Then diam(I'(R[[z]])) = 1, by [6, Theorem 3]. But diam(I'(Ro[[z]])) = 2, by
Theorem 3.3.

The following interesting result gives conditions under which Z(Ry[[z;a]])
forms an ideal of Ry[[x; o).

Proposition 3.6. Let R be an «-rigid and right Noetherian ring. Then
Z(RO[[:E; oz]]) is an ideal of Ry[[x; ] if and only if Z(R) is an ideal of R.
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Proof. First suppose that Z(Ro[[z; o]]) is an ideal of Ro[[z; a]] and a,b € Z(R).
Then az,bx € Z(Ro[[z;a]]), and so (a + b)z = ax + bx € Z(Ro[[z;a]]). By
Proposition 2.14, there exists 0 # r € R such that r(a + b)x = 0, which implies
that a + b € Z(R), and thus Z(R) is an ideal of R.

Conversely, let f = Y2 az' and g = PRy bjz? be elements of
Z(Ro|[[z;]]). By Proposition 2.14, there exist non-zero r,s € R such that
rf = 0 = sg, which implies that a;,b; € Z(R) for each i,j. Let § =
{a;+b;|a; € Cy and b; € C, for each ¢ > 1}. Since R is right Noetherian, then
there exists a positive integer n such that SR = (a1 + b1,...,an + by),. Since
Z(R) is an ideal, then (a; + b1,...,a, + by) C Z(R). Also, by Lemma 2.4, R
has left Property (A), and thus t(a; + b1,...,a, + b,) = 0 for some 0 # ¢ € R.
Thus ¢(a; + b;) = 0 for each 1 < i < n, which implies that ¢(f + g) = 0, and so
[+ 9 € Z(Ro[[z; o]]), by Proposition 2.14.

Let f =372 a;x’ and g = 3777 bja’ be elements of Ro[[z;a]] and » =
Sre i ckx® € Z(Ro[[z; o]). Note that foz =377, ccf" and

(z+f)og—fog
= > bi(z+ ) =D bif?
j=1 j=1

= bicr1z + [bica + bacra(er) + bacra(ar) + beara(er)]z? + - - .

Since ¢, € Z(R) for each k > 1 and Z(R) is an ideal of R, then (z+ f)og— fog
and f oz € Z(Ry[[z;a]]), by Corollary 2.7. Hence Z(Ro[[z;]]) is an ideal of
Ro[z; o). O

The next example shows that the condition “R is right Noetherian” in Propo-
sition 3.6 can not be dropped.

Example 3.7. Let R be the commutative ring introduced in [18, Example 5.3]
and « be the identity endomorphism on R. Thus R is an a-rigid ring which
is not Noetherian. Lucas proved that Z(R) is an ideal of R and there exist
a countably generated ideal A = (a1, as,...) and an element b € R such that
the ideal A+ bR is a countably generated ideal contained in Z(R) that has no
non-zero annihilator, but both A and bR have non-zero annihilators. Consider
f=a1z® +ax®+ - and g = bx. Thus f,g € Z(Ro[[z;a]]). If f+g €
Z(Ro|[x;]]), then ho (f + g) = 0 for some 0 # h = Py cjzd € Ryl[x; o).
Let k be the smallest integer such that ¢y # 0. Thus cga; = 0 = ¢ib for each
i > 1, by Lemma 2.2. It means that 0 # ¢, € anng(A 4 bR), which is a
contradiction. This shows that Z(Ro[[z; a]]) is not an ideal of Ry[[z;]].

Proposition 3.8. Let R be a symmetric and a-compatible ring which is not

reduced. Then we have the following:

(1) If anngr(a — b) N Nil(R) # 0 for each a,b € Z(R), then Z(Ro[[z;q]])
forms an ideal of Ro[[z; o]
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(2) If R is right Noetherian ring and Z(Ro[[z;al]) forms an ideal of
Ro[[z; «]], then anng(a —b) N Nil(R) # 0 for each a,b € Z(R).
Proof. (1) Let f = Y%, aja’ and g = 3777, bja’ be non-zero elements of
Z(RO[[x;a]]). Then ay,b; € Z(R), by Lemma 2.8. Also, by hypothesis, we
have c¢(a; — b1) = 0 for some 0 # ¢ € Nil(R). Hence there exists a positive
integer k such that ¢® = 0 but ¢*=1 # 0. Thus ¢*~'z o (f — g) = 0, by Lemma
2.1. Therefore f — g € Z(Ro[[z;a]]). Now, assume that h = 3.7, ¢;z* and
k = Z]Oil djz? € Ryl[x;a]]. Hence cia; and dja; are the coefficients of x
respectively in ho f and (f +h)ok —hok. Since anng(a1) N Nil(R) # 0, then
by a similar argument as used above, we have ho f and (f +h)ok —hok €
Z(Ro[[z; o]]). Therefore Z(Ro[[z;a]]) forms an ideal of Ro[[z;a]].
(2) Suppose that a,b € Z(R). Then az, bz, 2? € Z(Ry|[z; o]]), which implies
that (a — b)z + 2? € Z(Ro[[z;q]]), since Z(Ro[[z;a]]) is an ideal of Ro[[z;a]].

o0

By Theorem 2.13, there exists a nilpotent element f = > .7, c;z? such that
fo(a—>b)xr+ 2% =0. Thus ¢; € Nil(R) for each i > 1, by Corollary 2.11.
Let k be the smallest integer such that ¢ # 0. Then (¢ — b)cr, = 0, and so
anng(a —b) N Nil(R) # 0. O
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