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ON THE STRUCTURE OF ZERO-DIVISOR ELEMENTS IN A

NEAR-RING OF SKEW FORMAL POWER SERIES

Abdollah Alhevaz, Ebrahim Hashemi, and Fatemeh Shokuhifar

Abstract. The main purpose of this paper is to study the zero-divisor

properties of the zero-symmetric near-ring of skew formal power series
R0[[x;α]], where R is a symmetric, α-compatible and right Noetherian

ring. It is shown that if R is reduced, then the set of all zero-divisor
elements of R0[[x;α]] forms an ideal of R0[[x;α]] if and only if Z(R) is an

ideal of R. Also, if R is a non-reduced ring and annR(a− b)∩Nil(R) 6= 0

for each a, b ∈ Z(R), then Z
(
R0[[x;α]]

)
is an ideal of R0[[x;α]]. Moreover,

if R is a non-reduced right Noetherian ring and Z
(
R0[[x;α]]

)
forms an

ideal, then annR(a − b) ∩ Nil(R) 6= 0 for each a, b ∈ Z(R). Also, it

is proved that the only possible diameters of the zero-divisor graph of
R0[[x;α]] is 2 and 3.

1. Introduction and preliminary definitions

Throughout this paper R always denotes an associative ring with unity.
Recall that a ring R is said to be symmetric if abc = 0, then bac = 0 for each
a, b, c ∈ R. Also, R is called reversible if ab = 0 implies ba = 0 for each a, b ∈ R.
Moreover, R is said to be semicommutative if ab = 0 implies aRb = 0 for each
a, b ∈ R.

Recall that a ring R is said to be right (left) uniserial if its right (left) ideals
are linearly ordered by inclusion.

We denote the set of all nilpotent elements of a ring R by Nil(R). Recall
that a ring R is called reduced if Nil(R) = {0}. Also, if X ⊆ R, then 〈X〉`,
〈X〉r and 〈X〉 denote the left ideal generated by X, the right ideal generated
by X and the ideal generated by X, respectively. Moreover, for a given ring
or near-ring R, we write Z(R) = Z`(R) ∪ Zr(R), where Z`(R) and Zr(R) are
the set of all left zero-divisors of R and the set of all right zero-divisors of R,
respectively.
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Let α be an endomorphism of a ring R. Then the skew power series ring
R[[x;α]] is the ring of power series over R in the variable x, with term-wise
addition and with coefficient written on the left of x, subject to the skew-
multiplication rule xr = α(r)x for r ∈ R. Following [20], an endomorphism α
of ring R is called rigid if aα(a) = 0 implies a = 0 for a ∈ R. Also, R is called
α-rigid if there exists a rigid endomorphism α of R. In [16], authors proved
that any rigid endomorphism of a ring is a monomorphism and α-rigid rings
are reduced.

According to [13], a ring R is called α-compatible if for each a, b ∈ R, ab =
0 ⇔ aα(b) = 0. Hence α-compatible rings are a generalization of rigid rings.
In fact, R is an α-rigid ring if and only if R is reduced and α-compatible, by
[13, Lemma 2.2].

The collection of all skew power series with positive orders using the oper-
ations of addition and substitution is denoted by R0[[x;α]]. Notice that the
system (R0[[x;α]],+, ◦) is a zero-symmetric left near-ring, since the operation
“ ◦ ”, left distributes but does not right distribute over addition. For example,
let f =

∑∞
i=1 aix

i and g =
∑∞
j=1 bjx

j ∈ R0[[x;α]], then

g ◦ f = a1g + a2g
2 + a3g

3 + · · ·
= a1b1x+ [a1b2 + a2b1α(b1)

]
x2

=
[
a1b3 + a2b1α(b2) + a2b2α

2(b1) + a3b1α(b1)α2(b1)
]
x3 + · · · ,

where gi is the product of i copies of g in the ring R[[x;α]] for each i.
Recall that a graph G is connected if there is a path between any two distinct

vertices of G. Also, the diameter of G is

diam(G) = sup{d(a, b) | a, b are vertices of G},
where d(a, b) is the length of the shortest path from a to b.

In [7], Beck introduced and studied the zero-divisor graph of a commutative
ring. Since then, the concept of zero-divisor graphs has been studied exten-
sively by many authors, (cf. [3–5, 7, 18, 22]). Now, we are interested to study
the undirected zero-divisor graph of a near-ring R0[[x;α]] which is denoted by
Γ
(
R0[[x;α]]

)
and defined as follows: the set of vertices of Γ

(
R0[[x;α]]

)
is the

non-zero zero-divisor elements of R0[[x;α]] and two distinct vertices f and g
are adjacent if and only if f ◦ g = 0 or g ◦ f = 0.

In this work, we first characterize the zero-divisor elements of a near-ring
R0[[x;α]], where R is a symmetric, α-compatible and right Noetherian ring.
Then we study the zero-divisor graph of R0[[x;α]], and show that
diam

(
Γ(R0[[x;α]])

)
is 2 or 3, where R is a symmetric and α-compatible ring.

Moreover, we prove that if R is an α-rigid right Noetherian ring, then
Z
(
R0[[x;α]]

)
forms an ideal of R0[[x;α]] if and only if Z(R) is an ideal of

R. Also, giving some examples, we will show that the assumption being right
Noetherian for R is not redundant. Finally, for symmetric non-reduced rings,
it is proved that (1) if annR(a − b) ∩ Nil(R) 6= 0 for each a, b ∈ Z(R), then
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Z
(
R0[[x;α]]

)
is an ideal of R0[[x;α]], and (2) if R is right Noetherian and

Z
(
R0[[x;α]]

)
forms an ideal of R0[[x;α]], then annR(a − b) ∩ Nil(R) 6= 0 for

each a, b ∈ Z(R).

2. Zero-divisor elements in a near-ring of skew formal power series

We start by summarizing some useful lemmas, which will become building
blocks of the main results. The following lemma can be found in [14].

Lemma 2.1 ([14, Lemma 2.3]). Let R be an α-compatible ring. Then we have
the following:

(1) If ab = 0, then aαn(b) = αn(a)b = 0 for any positive integer n.
(2) If αk(a)b = 0 for some positive integer k, then ab = 0.
(3) If f =

∑∞
i=0 aix

i ∈ R[[x;α]] and r ∈ R, then fr = 0 if and only if
air = 0 for each i.

(4) If f ∈ R[[x;α]] and r ∈ R, then rf = 0 if and only if rxf = 0.

Let f be an element of a ring R[[x;α]] or a near-ring R0[[x;α]]. Then we use
Cf to denote the set of all coefficients of f .

Lemma 2.2. Let R be an α-rigid ring. Then we have the following:

(1) [12, Proposition 2.3] If f and g are elements of a ring R[[x;α]], then
fg = 0 if and only if aibj = 0 for all ai ∈ Cf and all bj ∈ Cg.

(2) [10, Lemma 2.4] If f and g are elements of a near-ring R0[[x;α]], then
f ◦ g = 0 if and only if aibj = 0 for all ai ∈ Cf and all bj ∈ Cg.

As an immediate consequence of Lemma 2.2, we get the following lemma.

Lemma 2.3. Let R be an α-rigid ring. Then

Z`
(
R0[[x;α]]

)
= Zr

(
R0[[x;α]]

)
= Zr

(
R[[x;α]]

)
x = Z`

(
R[[x;α]]

)
x.

According to [17], a ring R has (right) left Property (A), if every finitely
generated ideal consisting entirely of (left) right zero-divisor has a left (right)
non-zero annihilator. Also, a ring R is said to have Property (A) if R has both
right and left Property (A).

Since every symmetric ring is semicommutative by [8], then we get the fol-
lowing result from [11, Theorem 2.6].

Lemma 2.4. Let R be a symmetric and right Noetherian ring. Then R has
left Property (A).

Motivated by [2], the authors in [14] calls a ring R with an endomorphism α
to be right α-power-serieswise McCoy, whenever power series f, g ∈ R[[x;α]] \
{0} satisfy fg = 0, then there exists a non-zero element c ∈ R such that fc = 0.
Left α-power-serieswise McCoy is defined similarly. If a ring R is both right
and left α-power-serieswise McCoy, then R is called α-power-serieswise McCoy.

Lemma 2.5 ([14, Corollary 2.7]). If R is a reversible, α-compatible and right
Noetherian ring, then R is α-power-serieswise McCoy.
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Remark 2.6. Let R be a reversible, α-compatible and right Noetherian ring.
Notice that Z

(
R[[x;α]]

)
⊆ Z(R)[[x;α]], by Lemma 2.5. Now, let Z(R) be

an ideal of R and f ∈ Z(R)[[x;α]]. Since R is right Noetherian, then Z(R)
is finitely generated as right ideal. Hence there exists 0 6= r ∈ R such that
rZ(R) = 0, by Lemma 2.4. Since Cf ⊆ Z(R), then rCf = 0. It means
that rf = 0, and thus Z(R)[[x;α]] ⊆ Z

(
R[[x;α]]

)
. Therefore Z

(
R[[x;α]]

)
=

Z(R)[[x;α]].

Combining Lemma 2.3 and Remark 2.6, we obtain the following corollary.

Corollary 2.7. Let R be an α-rigid and right Noetherian ring. If Z(R) is an
ideal of R, then Z

(
R0[[x;α]]

)
= Z

(
R[[x;α]]

)
x = Z(R)0[[x;α]].

Lemma 2.8. Let R be a symmetric and α-compatible ring. If f =
∑∞
i=1 aix

i

is a zero-divisor of R0[[x;α]], then a1 ∈ Z(R).

Proof. Let a1 6= 0. Since f ∈ Z
(
R0[[x;α]]

)
, then there exists a non-zero g =∑∞

j=1 bjx
j ∈ R0[[x;α]] such that g ◦ f = 0 or f ◦ g = 0. Let k be the smallest

integer such that bk 6= 0. If g ◦ f = 0, then a1bk = 0, and so the result follows.
Now suppose that f ◦ g = 0. Then bka1α(a1) · · ·αk−1(a1) = 0, since it is the
coefficient of xk in f ◦ g. Hence bka

k
1 = 0, by Lemma 2.1. If bka1 = 0, then

a1 ∈ Z(R). Now, assume that bka1 6= 0. Then there exists 1 ≤ s ≤ k − 1 such
that bka

s
1 6= 0 but (bka

s
1)a1 = 0, as desired. �

In [1], the authors studied the skew generalized power series rings over nil
rings and provided some conditions under which the skew generalized power
series ring is nil. Following [19], a ring R is α-nil-Armendariz whenever f =∑∞
i=0 aix

i and g =
∑∞
j=0 bjx

j be elements of R[[x;α]] with fg ∈ Nil(R)[[x;α]],

then aiα
i(bj) ∈ Nil(R) for each i, j.

Recall that an ideal I of R is an α-ideal if α(I) ⊆ I. For example, if R is
an α-compatible ring and Nil(R) is an ideal of R, then it is also an α-ideal.
Therefore, by a similar way as used in the proof of [15, Proposition 1], one can
prove the following result.

Proposition 2.9. Let R be an α-compatible ring and Nil(R) be an ideal of R.
Then R is an α-nil-Armendariz ring.

We will make use of the following lemma which appears in [19, Theorem
3.14].

Proposition 2.10. Let R be an α-compatible and α-nil-Armendariz ring. If
Nil(R) is a nilpotent ideal of R, then Nil

(
R[[x;α]]

)
= Nil(R)[[x;α]].

Corollary 2.11. Let R be a symmetric, α-compatible and right Noetherian
ring. Then Nil

(
R[[x;α]]

)
= Nil(R)[[x;α]].

Proof. Since R is symmetric and right Noetherian, then Nil(R) is a nilpotent
ideal of R. Hence the assertion follows from Propositions 2.9 and 2.10. �
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Example 2.12. (1) Let D be an integral domain and R = {[ a d0 a ] | a, d ∈ D}.
Suppose that u ∈ U(D). Consider α : R −→ R by α ([ a d0 a ]) = [ a ud0 a ]. Thus R
is a commutative and α-compatible ring. Also, Nil(R) = {[ 0 a0 0 ] | a ∈ D} is a
nilpotent ideal of R. Therefore Nil

(
R[[x;α]]

)
= Nil(R)[[x;α]], by Propositions

2.9 and 2.10.
(2) Let R be a right Artinian and right uniserial ring, and S = R[y]. Then R

is right Noetherian, and so S is right Noetherian. Moreover, by [21, Proposition
3.5], S is symmetric. Hence Nil

(
R[[x]]

)
= Nil(R)[[x]], by Corollary 2.11.

Now we bring the following theorem, which has a key rule in our results.

Theorem 2.13. Let R be a symmetric, α-compatible and right Noetherian
ring. Let f =

∑∞
i=1 aix

i and g =
∑∞
j=1 bjx

j be non-zero elements of a near-

ring R0[[x;α]]. If f ◦ g = 0, then

(1) a1b1 = 0,
(2) rf = 0 for some non-zero r ∈ R,
(3) f is nilpotent or sg = 0 for some non-zero s ∈ R.

Proof. (1) It is clear, since b1a1 is the coefficient of x in f ◦ g.
(2) Since f ◦ g = 0, it follows that b1f + b2f

2 + b3f
3 + · · · = 0. Hence(

b1 + b2f + b3f
2 + · · ·

)
f = 0.

Since b1 + b2f + b3f
2 + · · · is non-zero, rf = 0 for some non-zero r ∈ R, by

Lemma 2.5.
(3) Notice that 〈Cg〉r = 〈b1, . . . , bn〉r for some n ≥ 1, since R is right Noe-

therian. Suppose that f is not nilpotent. It follows that there exists a = ai
such that a /∈ Nil(R), by Corollary 2.11. Let R = R/Nil(R). Since f ◦ g = 0,
then f ◦ g = 0 in a near-ring R0[[x;α]]. Since R is a reduced and α-compatible
ring, it follows that R is an α-rigid ring, by [13, Lemma 2.2]. Thus aibj = 0,
by Lemma 2.2. Since R is right Noetherian, then Nil(R) is nilpotent, and so
Nil(R)k = 0 for some positive integer k. Thus akbkj = 0 for each j ≥ 1. Hence

there exist integers 0 ≤ tj ≤ k such that akb
tj
j 6= 0 but akb

tj+1
j = 0 for each

j ≥ 1. Therefore there exist integers 0 ≤ sj ≤ tj such that akbs11 b
s2
2 · · · bsnn 6= 0

but akbs11 b
s2
2 · · · bsnn bj = 0 for each 1 ≤ j ≤ n. Let s = akbs11 b

s2
2 · · · bsnn . Thus

sg = 0, since 〈Cg〉r = 〈b1, . . . , bn〉r. �

Now, we determine the structure of the set of all zero-divisor elements of
R0[[x;α]], where R is α-rigid.

Proposition 2.14. Let R be an α-rigid and right Noetherian ring. Then

Z
(
R0[[x;α]]

)
=
{
f ∈ R0[[x;α]] | rf = 0 for some non-zero r ∈ R

}
.

Proof. We have Z
(
R0[[x;α]]

)
⊆
{
f ∈ R0[[x;α]] | rf = 0 for some non-zero r ∈

R
}

, by Lemma 2.3 and Theorem 2.13. Now, suppose that f ∈ R0[[x;α]] and

rf = 0 for some non-zero r ∈ R. Thus f ◦ rx = 0, and so f ∈ Z
(
R0[[x;α]]

)
.

This completes the proof. �
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Lemma 2.15. Let R be a symmetric, α-compatible and right Noetherian ring.
Then Z`

(
R0[[x;α]]

)
=
{
f ∈ R0[[x;α]] | rf = 0 for some non-zero r ∈ R

}
, when

R is not reduced. In particular, Z`
(
R0[[x;α]]

)
⊆ Zr

(
R0[[x;α]]

)
.

Proof. Let 0 6= f ∈ R0[[x;α]]. Notice that if rf = 0 for some 0 6= r ∈ R,
then f ◦ rx = 0, and so

{
f ∈ R0[[x;α]] | rf = 0 for some non-zero r ∈ R

}
⊆

Z`
(
R0[[x;α]]

)
. Hence Z`

(
R0[[x;α]]

)
=
{
f ∈ R0[[x;α]] | rf = 0 for some non-

zero r ∈ R
}

, by Theorem 2.13.

For proving the last statement, suppose that f =
∑∞
i=1 aix

i ∈ Z`
(
R0[[x;α]]

)
.

Then rf = 0 for some 0 6= r ∈ R, and thus rai = 0 for each i, which implies
that rx ◦ f = 0. Hence f ∈ Zr

(
R0[[x;α]]

)
, as wanted. �

Next, we want to characterize the zero-divisor elements of the near-ring
R0[[x;α]], where R is not reduced.

Theorem 2.16. Let R be a symmetric, α-compatible and right Noetherian
ring which is not reduced. Then Z

(
R0[[x;α]]

)
= Z`

(
R0[[x;α]]

)
∪ B, where

B =
{∑∞

i=1 aix
i | annR(a1) ∩Nil(R) 6= 0 and ai ∈ R for each i ≥ 2

}
.

Proof. Let f =
∑∞
i=1 aix

i be a non-zero element of R0[[x;α]]. If annR(a1) ∩
Nil(R) 6= 0, then ba1 = 0 for some 0 6= b ∈ Nil(R). Hence there exists
a positive integer t such that bt = 0 but bt−1 6= 0. Therefore bt−1x ◦ f =∑∞
i=1 ai(b

t−1x)i = 0, by Lemma 2.1, which implies that f ∈ Z
(
R0[[x;α]]

)
.

Now assume that f ∈ Z
(
R0[[x;α]]

)
. Then g ◦ f = 0 for some non-zero g =∑∞

j=1 bjx
j ∈ R0[[x;α]], since Z

(
R0[[x;α]]

)
= Zr

(
R0[[x;α]]

)
, by Lemma 2.15.

If g is nilpotent, then bi ∈ Nil(R) for each i, by Corollary 2.11. Suppose that
s is the smallest integer such that bs 6= 0. Then bsa1 = 0, which implies that
annR(a1) ∩Nil(R) 6= 0. On the other hand, if g is not nilpotent, then rf = 0
for some non-zero r ∈ R, by Theorem 2.13. This shows that f ∈ Z`

(
R0[[x;α]]

)
,

by Lemma 2.15. �

3. The diameter of the zero-divisor graph Γ(R0[[x;α]])

According to [9, Theorem 2.2], we have diam
(
Γ(N)

)
≤ 3, for every zero-

symmetric near-ring N . Since R0[[x;α]] is a zero-symmetric near-ring with
respect to “◦”, then diam

(
Γ(R0[[x;α]])

)
≤ 3. In the following theorem, we

determine the lower bound of diam
(
Γ(R0[[x;α]])

)
, where R is a symmetric and

α-compatible ring.

Theorem 3.1. Let R be a symmetric and α-compatible ring with Z(R) 6= 0.
Then diam

(
Γ(R0[[x;α]])

)
≥ 2.

Proof. First suppose that R is a reduced ring and 0 6= a ∈ Z(R). Then
ax, ax2 ∈ Z

(
R0[[x;α]]

)
. Since ax ◦ ax2 6= 0 6= ax2 ◦ ax, it follows that

d(ax, ax2) ≥ 2. Now, assume that R is not reduced. It means that there
exists 0 6= c ∈ R such that c2 = 0. Thus cx ◦ x2 = cα(c)x2 = 0 and
cx ◦ x3 = cα(c)α2(c)x3 = 0, by Lemma 2.1, which implies that x2, x3 ∈
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Z
(
R0[[x;α]]

)
. Since x2 ◦ x3 6= 0 6= x3 ◦ x2, then d(x2, x3) ≥ 2. Therefore

diam
(
Γ(R0[[x;α]])

)
≥ 2. �

Proposition 3.2. Let R be a symmetric, α-compatible and right Noetherian
ring which is not reduced. If diam

(
Γ(R0[[x;α]])

)
= 2, then

Z
(
R0[[x;α]]

)
= Z(R)x+R0[[x;α]]x.

Proof. Let 0 6= f =
∑∞
i=1 aix

i ∈ R0[[x;α]]. If f ∈ Z
(
R0[[x;α]]

)
, then a1 ∈

Z(R), by Lemma 2.8. Hence Z
(
R0[[x;α]]

)
⊆ Z(R)x + R0[[x;α]]x. For the

reverse inclusion, if a1 ∈ Nil(R), then we are done, by Theorem 2.16. Hence
suppose that a1 ∈ Z(R) \ Nil(R). Since R is not reduced, it follows that
a1x, x

2 are zero-divisor elements of R0[[x;α]] with a1x ◦ x2 6= 0 6= x2 ◦ a1x.
Since diam

(
Γ(R0[[x;α]])

)
= 2, there exists a non-zero nilpotent element g =∑∞

j=1 bjx
j such that a1x − g − x2 is a path. Thus bj ∈ Nil(R) for each

j, by Corollary 2.11. Let s be the smallest integer such that bs 6= 0. If
g ◦ (a1x) = 0, then a1bs = 0. It means that annR(a1) ∩ Nil(R) 6= 0, and so
f ∈ Z

(
R0[[x;α]]

)
, by Theorem 2.16. Now assume that (a1x) ◦ g = 0. Thus∑∞

j=s bj(a1x)j = 0, which implies that bsa1α(a1)α2(a1) · · ·αs−1(a1) = 0, since
it is the coefficient of xs in this equation. Hence bsa

s
1 = 0, by Lemma 2.1. If

bsa1 = 0, then we are done. Now suppose that bsa1 6= 0. Then there exists a
positive integer 1 ≤ k ≤ s− 1 such that bsa

k
1 6= 0 but (bsa

k
1)a1 = 0. Therefore

bsa
k
1 ∈ annR(a1) ∩Nil(R), and so the result follows from Theorem 2.16. �

Theorem 3.3. Let R be a symmetric, α-compatible ring which is not reduced.
Then we have the following:

(1) If annR
(
{a, b}

)
∩Nil(R) 6= 0 for each a, b ∈ Z(R), then

diam
(
Γ(R0[[x;α]])

)
= 2.

(2) If R is right Noetherian and diam
(
Γ(R0[[x;α]])

)
= 2, then for each

a, b ∈ Z(R), annR
(
{a, b}

)
∩Nil(R) 6= 0.

Proof. (1) Assume that f =
∑∞
i=1 aix

i and g =
∑∞
j=1 bjx

j are non-zero zero-

divisor elements of R0[[x;α]]. By Lemma 2.8, a1, b1 ∈ Z(R), which implies that
there exists c ∈ Nil(R) such that ca1 = 0 = cb1. Hence there exists a positive
integer k such that ck = 0 but ck−1 6= 0. It follows that f − ck−1x − g is a
path, by Lemma 2.1. This shows that d(f, g) ≤ 2, and so the result follows
from Theorem 3.1.

(2) Let a, b ∈ Z(R). Then by Proposition 3.2,

{ax+ x2, bx+ x2} ∈ Z
(
R0[[x;α]]

)
.

Since diam
(
Γ(R0[[x;α]])

)
= 2, there exists a non-zero nilpotent f such that

f ◦ (ax+ x2) = 0 and f ◦ (bx+ x2) = 0, by Theorem 2.13. Let f =
∑∞
i=k cix

i

and ck 6= 0. Thus ack = 0 = bck. Also, by Corollary 2.11, we have ck ∈ Nil(R).
Hence annR

(
{a, b}

)
∩Nil(R) 6= 0. �
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In [14, Theorems 2.21 and 2.23], the authors characterized the diameter of
the zero-divisor graph Γ

(
R[[x;α]]

)
, where R is a reversible and α-compatible

ring with Z(R) 6= 0. They proved that diam
(
Γ(R[[x;α]])

)
= 1 if and only

if R is a non-reduced ring with Z(R)2 = 0. Also, if R is right Noetherian,
then (1) diam

(
Γ(R[[x;α]])

)
= 2 if and only if |Z(R)| > 3 and either (i) R is

a reduced ring with exactly two minimal primes, or (ii) Z(R) is an ideal of R
with Z(R)2 6= 0. (2) diam

(
Γ(R[[x;α]])

)
= 3 if and only if R is not a reduced

ring with exactly two minimal primes and Z(R) is not an ideal of R.
Applying Lemma 2.2, one can get the next interesting result.

Proposition 3.4. Let R be an α-rigid ring. Then

(1) diam
(
Γ(R[[x;α]])

)
= 2 if and only if diam

(
Γ(R0[[x;α]])

)
= 2.

(2) diam
(
Γ(R[[x;α]])

)
= 3 if and only if diam

(
Γ(R0[[x;α]])

)
= 3.

The next example shows that the assumption “R is α-rigid” in Proposition
3.4 is not superfluous.

Example 3.5. (1) Let p be a prime integer number and S = Z(+)Z(p∞) be the
idealization of Z(p∞). Clearly, S is neither reduced nor Noetherian. Consider
α : S → S by α(n,m) = (n,−m) for each n ∈ Z and m ∈ Z(p∞). Clearly, S is

an α-compatible ring. Let g = (0, (1/p))+(0, (1/p2))x+(0, (1/p3))x2 + · · · and
f = (p, 0) + (1, 0)x. Then fg = 0, and so f ∈ Z

(
S[[x;α]]

)
. Now, let h = (p, 0).

Obviously, h ∈ Z
(
S[[x;α]]

)
but hf 6= 0 6= fh. Notice that annS[[x;α]](h) ={∑∞

i=0(0, ai)x
i | ai ∈ {0, (1/p)} for each i ≥ 0

}
. This shows that f and h

have no common non-zero annihilator, and hence diam
(
Γ(S[[x;α]])

)
= 3, by

[22, Theorem 3.2]. On the other hand, we have Z(S) = pZ(+)Z(p∞), by

[18, Example 5.6]. Since (0, (1/p))Z(S) = 0 and (0, (1/p)) ∈ Nil(S), then
diam

(
Γ(S0[[x;α]])

)
= 2, by Theorem 3.3.

(2) Let K be a field and D = K[w, y, z]M , where w, y and z are algebraically
independent indeterminates and M = 〈w, y, z〉K[w, y, z]. Clearly, D is a do-
main. Let P denote the height two primes of D and Q be the maximal ideal
of D. Also, let B =

∑
Fγ where Fγ = qf(D/Pγ) for each Pγ ∈ P. Let

R = D(+)B be the idealization of B over D. Clearly, R is neither reduced nor
Noetherian. Lucas [18, Example 5.2] showed that diam

(
Γ(R[[x]])

)
= 3 and R

is a local ring with maximal ideal Q(+)B = Z(R). He also proved that each
two elements of Z(R) has a non-zero nilpotent annihilator. This shows that
diam

(
Γ(R0[[x]])

)
= 2, by Theorem 3.3.

(3) Let R be a commutative non-reduced Noetherian ring with Z(R)2 = 0.
Then diam

(
Γ(R[[x]])

)
= 1, by [6, Theorem 3]. But diam

(
Γ(R0[[x]])

)
= 2, by

Theorem 3.3.

The following interesting result gives conditions under which Z
(
R0[[x;α]]

)
forms an ideal of R0[[x;α]].

Proposition 3.6. Let R be an α-rigid and right Noetherian ring. Then
Z
(
R0[[x;α]]

)
is an ideal of R0[[x;α]] if and only if Z(R) is an ideal of R.



ON ZERO-DIVISOR ELEMENTS IN NEAR-RING 205

Proof. First suppose that Z
(
R0[[x;α]]

)
is an ideal of R0[[x;α]] and a, b ∈ Z(R).

Then ax, bx ∈ Z
(
R0[[x;α]]

)
, and so (a + b)x = ax + bx ∈ Z

(
R0[[x;α]]

)
. By

Proposition 2.14, there exists 0 6= r ∈ R such that r(a+ b)x = 0, which implies
that a+ b ∈ Z(R), and thus Z(R) is an ideal of R.

Conversely, let f =
∑∞
i=1 aix

i and g =
∑∞
j=1 bjx

j be elements of

Z
(
R0[[x;α]]

)
. By Proposition 2.14, there exist non-zero r, s ∈ R such that

rf = 0 = sg, which implies that ai, bj ∈ Z(R) for each i, j. Let β =
{ai+bi | ai ∈ Cf and bi ∈ Cg for each i ≥ 1}. Since R is right Noetherian, then
there exists a positive integer n such that βR = 〈a1 + b1, . . . , an + bn〉r. Since
Z(R) is an ideal, then 〈a1 + b1, . . . , an + bn〉 ⊆ Z(R). Also, by Lemma 2.4, R
has left Property (A), and thus t〈a1 + b1, . . . , an + bn〉 = 0 for some 0 6= t ∈ R.
Thus t(ai + bi) = 0 for each 1 ≤ i ≤ n, which implies that t(f + g) = 0, and so
f + g ∈ Z

(
R0[[x;α]]

)
, by Proposition 2.14.

Let f =
∑∞
i=1 aix

i and g =
∑∞
j=1 bjx

j be elements of R0[[x;α]] and z =∑∞
k=1 ckx

k ∈ Z
(
R0[[x;α]]

)
. Note that f ◦ z =

∑∞
k=1 ckf

k and

(z + f) ◦ g − f ◦ g

=

∞∑
j=1

bj(z + f)j −
∞∑
j=1

bjf
j

= b1c1x+ [b1c2 + b2c1α(c1) + b2c1α(a1) + b2a1α(c1)]x2 + · · · .

Since ck ∈ Z(R) for each k ≥ 1 and Z(R) is an ideal of R, then (z+f)◦g−f ◦g
and f ◦ z ∈ Z

(
R0[[x;α]]

)
, by Corollary 2.7. Hence Z

(
R0[[x;α]]

)
is an ideal of

R0[[x;α]]. �

The next example shows that the condition “R is right Noetherian” in Propo-
sition 3.6 can not be dropped.

Example 3.7. Let R be the commutative ring introduced in [18, Example 5.3]
and α be the identity endomorphism on R. Thus R is an α-rigid ring which
is not Noetherian. Lucas proved that Z(R) is an ideal of R and there exist
a countably generated ideal A = 〈a1, a2, . . .〉 and an element b ∈ R such that
the ideal A+ bR is a countably generated ideal contained in Z(R) that has no
non-zero annihilator, but both A and bR have non-zero annihilators. Consider
f = a1x

2 + a2x
3 + · · · and g = bx. Thus f, g ∈ Z

(
R0[[x;α]]

)
. If f + g ∈

Z
(
R0[[x;α]]

)
, then h ◦ (f + g) = 0 for some 0 6= h =

∑∞
j=1 cjx

j ∈ R0[[x;α]].
Let k be the smallest integer such that ck 6= 0. Thus ckai = 0 = ckb for each
i ≥ 1, by Lemma 2.2. It means that 0 6= ck ∈ annR(A + bR), which is a
contradiction. This shows that Z

(
R0[[x;α]]

)
is not an ideal of R0[[x;α]].

Proposition 3.8. Let R be a symmetric and α-compatible ring which is not
reduced. Then we have the following:

(1) If annR(a − b) ∩ Nil(R) 6= 0 for each a, b ∈ Z(R), then Z
(
R0[[x;α]]

)
forms an ideal of R0[[x;α]].
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(2) If R is right Noetherian ring and Z
(
R0[[x;α]]

)
forms an ideal of

R0[[x;α]], then annR(a− b) ∩Nil(R) 6= 0 for each a, b ∈ Z(R).

Proof. (1) Let f =
∑∞
i=1 aix

i and g =
∑∞
j=1 bjx

j be non-zero elements of

Z
(
R0[[x;α]]

)
. Then a1, b1 ∈ Z(R), by Lemma 2.8. Also, by hypothesis, we

have c(a1 − b1) = 0 for some 0 6= c ∈ Nil(R). Hence there exists a positive
integer k such that ck = 0 but ck−1 6= 0. Thus ck−1x ◦ (f − g) = 0, by Lemma
2.1. Therefore f − g ∈ Z

(
R0[[x;α]]

)
. Now, assume that h =

∑∞
i=1 cix

i and

k =
∑∞
j=1 djx

j ∈ R0[[x;α]]. Hence c1a1 and d1a1 are the coefficients of x

respectively in h ◦ f and (f +h) ◦ k−h ◦ k. Since annR(a1)∩Nil(R) 6= 0, then
by a similar argument as used above, we have h ◦ f and (f + h) ◦ k − h ◦ k ∈
Z
(
R0[[x;α]]

)
. Therefore Z

(
R0[[x;α]]

)
forms an ideal of R0[[x;α]].

(2) Suppose that a, b ∈ Z(R). Then ax, bx, x2 ∈ Z
(
R0[[x;α]]

)
, which implies

that (a− b)x+ x2 ∈ Z
(
R0[[x;α]]

)
, since Z

(
R0[[x;α]]

)
is an ideal of R0[[x;α]].

By Theorem 2.13, there exists a nilpotent element f =
∑∞
i=1 cix

i such that
f ◦ (a − b)x + x2 = 0. Thus ci ∈ Nil(R) for each i ≥ 1, by Corollary 2.11.
Let k be the smallest integer such that ck 6= 0. Then (a − b)ck = 0, and so
annR(a− b) ∩Nil(R) 6= 0. �

References

[1] A. Alhevaz and E. Hashemi, An alternative perspective on skew generalized power se-
ries rings, Mediterr. J. Math. 13 (2016), no. 6, 4723–4744. https://doi.org/10.1007/

s00009-016-0772-y

[2] A. Alhevaz and D. Kiani, McCoy property of skew Laurent polynomials and power series
rings, J. Algebra Appl. 13 (2014), no. 2, 1350083, 23 pp. https://doi.org/10.1142/

S0219498813500837

[3] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J.
Algebra 217 (1999), no. 2, 434–447. https://doi.org/10.1006/jabr.1998.7840

[4] D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph,

J. Pure Appl. Algebra 210 (2007), no. 2, 543–550. https://doi.org/10.1016/j.jpaa.
2006.10.007

[5] D. D. Anderson and M. Naseer, Beck’s coloring of a commutative ring, J. Algebra 159

(1993), no. 2, 500–514. https://doi.org/10.1006/jabr.1993.1171
[6] M. Axtell, J. Coykendall, and J. Stickles, Zero-divisor graphs of polynomials and power

series over commutative rings, Comm. Algebra 33 (2005), no. 6, 2043–2050. https:

//doi.org/10.1081/AGB-200063357

[7] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208–226. https:

//doi.org/10.1016/0021-8693(88)90202-5

[8] V. Camillo and P. P. Nielsen, McCoy rings and zero-divisors, J. Pure Appl. Algebra

212 (2008), no. 3, 599–615. https://doi.org/10.1016/j.jpaa.2007.06.010

[9] G. A. Cannon, K. M. Neuerburg, and S. P. Redmond, Zero-divisor graphs of nearrings
and semigroups, in Nearrings and nearfields, 189–200, Springer, Dordrecht, 2005. https:
//doi.org/10.1007/1-4020-3391-5_8

[10] E. Hashemi, Rickart-type annihilator conditions on formal power series, Turkish J.
Math. 32 (2008), no. 4, 363–372.

[11] E. Hashemi, A. As. Estaji, and M. Ziembowski, Answers to some questions concerning

rings with property (A), Proc. Edinb. Math. Soc. (2) 60 (2017), no. 3, 651–664. https:
//doi.org/10.1017/S0013091516000407

https://doi.org/10.1007/s00009-016-0772-y
https://doi.org/10.1007/s00009-016-0772-y
https://doi.org/10.1142/S0219498813500837
https://doi.org/10.1142/S0219498813500837
https://doi.org/10.1006/jabr.1998.7840
https://doi.org/10.1016/j.jpaa.2006.10.007
https://doi.org/10.1016/j.jpaa.2006.10.007
https://doi.org/10.1006/jabr.1993.1171
https://doi.org/10.1081/AGB-200063357
https://doi.org/10.1081/AGB-200063357
https://doi.org/10.1016/0021-8693(88)90202-5
https://doi.org/10.1016/0021-8693(88)90202-5
https://doi.org/10.1016/j.jpaa.2007.06.010
https://doi.org/10.1007/1-4020-3391-5_8
https://doi.org/10.1007/1-4020-3391-5_8
https://doi.org/10.1017/S0013091516000407
https://doi.org/10.1017/S0013091516000407


ON ZERO-DIVISOR ELEMENTS IN NEAR-RING 207

[12] E. Hashemi and A. Moussavi, Skew power series extensions of α-rigid p.p.-rings, Bull.

Korean Math. Soc. 41 (2004), no. 4, 657–664. https://doi.org/10.4134/BKMS.2004.

41.4.657

[13] , Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005),

no. 3, 207–224. https://doi.org/10.1007/s10474-005-0191-1
[14] E. Hashemi, M. Yazdanfar, and A. Alhevaz, Directed zero-divisor graph and skew power

series rings, Trans. Comb. 7 (2018), no. 4, 43–57. https://doi.org/10.22108/toc.

2018.109048.1543

[15] S. Hizem, A note on nil power serieswise Armendariz rings, Rend. Circ. Mat. Palermo

(2) 59 (2010), no. 1, 87–99. https://doi.org/10.1007/s12215-010-0005-3

[16] C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings,
J. Pure Appl. Algebra 151 (2000), no. 3, 215–226. https://doi.org/10.1016/S0022-

4049(99)00020-1

[17] C. Y. Hong, N. K. Kim, Y. Lee, and S. J. Ryu, Rings with Property (A) and their exten-
sions, J. Algebra 315 (2007), no. 2, 612–628. https://doi.org/10.1016/j.jalgebra.

2007.01.042

[18] T. G. Lucas, The diameter of a zero divisor graph, J. Algebra 301 (2006), no. 1, 174–193.
https://doi.org/10.1016/j.jalgebra.2006.01.019

[19] K. Paykan and A. Moussavi, Nilpotent elements and nil-Armendariz property of skew
generalized power series rings, Asian-Eur. J. Math. 10 (2017), no. 2, 1750034, 28 pp.

https://doi.org/10.1142/S1793557117500346

[20] J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289–300.
[21] G. Marks, A taxonomy of 2-primal rings, J. Algebra 266 (2003), no. 2, 494–520. https:

//doi.org/10.1016/S0021-8693(03)00301-6

[22] S. P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J. Commut.
Rings 1 (2002), 203–211.

Abdollah Alhevaz

Faculty of Mathematical Sciences
Shahrood University of Technology

Shahrood P.O. Box: 316-3619995161, Iran

Email address: a.alhevaz@gmail.com or a.alhevaz@shahroodut.ac.ir

Ebrahim Hashemi

Faculty of Mathematical Sciences

Shahrood University of Technology
Shahrood P.O. Box: 316-3619995161, Iran

Email address: eb−hashemi@yahoo.com or eb−hashemi@shahroodut.ac.ir

Fatemeh Shokuhifar

Faculty of Mathematical Sciences

Shahrood University of Technology
Shahrood P.O. Box: 316-3619995161, Iran

Email address: shokuhi.135@gmail.com

https://doi.org/10.4134/BKMS.2004.41.4.657
https://doi.org/10.4134/BKMS.2004.41.4.657
https://doi.org/10.1007/s10474-005-0191-1
https://doi.org/10.22108/toc.2018.109048.1543
https://doi.org/10.22108/toc.2018.109048.1543
https://doi.org/10.1007/s12215-010-0005-3
https://doi.org/10.1016/S0022-4049(99)00020-1
https://doi.org/10.1016/S0022-4049(99)00020-1
https://doi.org/10.1016/j.jalgebra.2007.01.042
https://doi.org/10.1016/j.jalgebra.2007.01.042
https://doi.org/10.1016/j.jalgebra.2006.01.019
https://doi.org/10.1142/S1793557117500346
https://doi.org/10.1016/S0021-8693(03)00301-6
https://doi.org/10.1016/S0021-8693(03)00301-6

