Commun. Korean Math. Soc. **36** (2021), No. 2, pp. 197–207 https://doi.org/10.4134/CKMS.c190433 pISSN: 1225-1763 / eISSN: 2234-3024

ON THE STRUCTURE OF ZERO-DIVISOR ELEMENTS IN A NEAR-RING OF SKEW FORMAL POWER SERIES

ABDOLLAH ALHEVAZ, EBRAHIM HASHEMI, AND FATEMEH SHOKUHIFAR

ABSTRACT. The main purpose of this paper is to study the zero-divisor properties of the zero-symmetric near-ring of skew formal power series $R_0[[x;\alpha]]$, where R is a symmetric, α -compatible and right Noetherian ring. It is shown that if R is reduced, then the set of all zero-divisor elements of $R_0[[x;\alpha]]$ forms an ideal of $R_0[[x;\alpha]]$ if and only if Z(R) is an ideal of R. Also, if R is a non-reduced ring and $ann_R(a-b) \cap Nil(R) \neq 0$ for each $a, b \in Z(R)$, then $Z(R_0[[x;\alpha]])$ is an ideal of $R_0[[x;\alpha]]$. Moreover, if R is a non-reduced right Noetherian ring and $Z(R_0[[x;\alpha]])$ forms an ideal, then $ann_R(a-b) \cap Nil(R) \neq 0$ for each $a, b \in Z(R)$. Also, it is proved that the only possible diameters of the zero-divisor graph of $R_0[[x;\alpha]]$ is 2 and 3.

1. Introduction and preliminary definitions

Throughout this paper R always denotes an associative ring with unity. Recall that a ring R is said to be *symmetric* if abc = 0, then bac = 0 for each $a, b, c \in R$. Also, R is called *reversible* if ab = 0 implies ba = 0 for each $a, b \in R$. Moreover, R is said to be *semicommutative* if ab = 0 implies aRb = 0 for each $a, b \in R$.

Recall that a ring R is said to be *right* (*left*) *uniserial* if its right (left) ideals are linearly ordered by inclusion.

We denote the set of all nilpotent elements of a ring R by Nil(R). Recall that a ring R is called *reduced* if $Nil(R) = \{0\}$. Also, if $X \subseteq R$, then $\langle X \rangle_{\ell}$, $\langle X \rangle_r$ and $\langle X \rangle$ denote the left ideal generated by X, the right ideal generated by X and the ideal generated by X, respectively. Moreover, for a given ring or near-ring R, we write $Z(R) = Z_{\ell}(R) \cup Z_r(R)$, where $Z_{\ell}(R)$ and $Z_r(R)$ are the set of all left zero-divisors of R and the set of all right zero-divisors of R, respectively.

©2021 Korean Mathematical Society

Received December 15, 2019; Accepted November 3, 2020.

²⁰¹⁰ Mathematics Subject Classification. Primary 16Y30, 16U99; Secondary 05C12.

Key words and phrases. Symmetric ring, α -compatible ring, near-ring of skew formal power series, zero-divisor element.

This research was in part supported by a grant from Shahrood University of Technology.

Let α be an endomorphism of a ring R. Then the *skew power series* ring $R[[x; \alpha]]$ is the ring of power series over R in the variable x, with term-wise addition and with coefficient written on the left of x, subject to the skewmultiplication rule $xr = \alpha(r)x$ for $r \in R$. Following [20], an endomorphism α of ring R is called *rigid* if $a\alpha(a) = 0$ implies a = 0 for $a \in R$. Also, R is called α -rigid if there exists a rigid endomorphism α of R. In [16], authors proved that any rigid endomorphism of a ring is a monomorphism and α -rigid rings are reduced.

According to [13], a ring R is called α -compatible if for each $a, b \in R$, $ab = 0 \Leftrightarrow a\alpha(b) = 0$. Hence α -compatible rings are a generalization of rigid rings. In fact, R is an α -rigid ring if and only if R is reduced and α -compatible, by [13, Lemma 2.2].

The collection of all skew power series with positive orders using the operations of addition and substitution is denoted by $R_0[[x;\alpha]]$. Notice that the system $(R_0[[x;\alpha]], +, \circ)$ is a zero-symmetric left near-ring, since the operation " \circ ", left distributes but does not right distribute over addition. For example, let $f = \sum_{i=1}^{\infty} a_i x^i$ and $g = \sum_{j=1}^{\infty} b_j x^j \in R_0[[x;\alpha]]$, then

$$g \circ f = a_1 g + a_2 g^2 + a_3 g^3 + \cdots$$

= $a_1 b_1 x + [a_1 b_2 + a_2 b_1 \alpha(b_1)] x^2$
= $[a_1 b_3 + a_2 b_1 \alpha(b_2) + a_2 b_2 \alpha^2(b_1) + a_3 b_1 \alpha(b_1) \alpha^2(b_1)] x^3 + \cdots$,

where g^i is the product of *i* copies of *g* in the ring $R[[x; \alpha]]$ for each *i*.

Recall that a graph G is *connected* if there is a path between any two distinct vertices of G. Also, the *diameter* of G is

$$diam(G) = \sup\{d(a, b) \mid a, b \text{ are vertices of } G\},\$$

where d(a, b) is the length of the shortest path from a to b.

In [7], Beck introduced and studied the zero-divisor graph of a commutative ring. Since then, the concept of zero-divisor graphs has been studied extensively by many authors, (cf. [3–5,7,18,22]). Now, we are interested to study the undirected zero-divisor graph of a near-ring $R_0[[x;\alpha]]$ which is denoted by $\Gamma(R_0[[x;\alpha]])$ and defined as follows: the set of vertices of $\Gamma(R_0[[x;\alpha]])$ is the non-zero zero-divisor elements of $R_0[[x;\alpha]]$ and two distinct vertices f and gare adjacent if and only if $f \circ g = 0$ or $g \circ f = 0$.

In this work, we first characterize the zero-divisor elements of a near-ring $R_0[[x; \alpha]]$, where R is a symmetric, α -compatible and right Noetherian ring. Then we study the zero-divisor graph of $R_0[[x; \alpha]]$, and show that $diam(\Gamma(R_0[[x; \alpha]]))$ is 2 or 3, where R is a symmetric and α -compatible ring. Moreover, we prove that if R is an α -rigid right Noetherian ring, then $Z(R_0[[x; \alpha]])$ forms an ideal of $R_0[[x; \alpha]]$ if and only if Z(R) is an ideal of R. Also, giving some examples, we will show that the assumption being right Noetherian for R is not redundant. Finally, for symmetric non-reduced rings, it is proved that (1) if $ann_R(a-b) \cap Nil(R) \neq 0$ for each $a, b \in Z(R)$, then

 $Z(R_0[[x;\alpha]])$ is an ideal of $R_0[[x;\alpha]]$, and (2) if R is right Noetherian and $Z(R_0[[x;\alpha]])$ forms an ideal of $R_0[[x;\alpha]]$, then $ann_R(a-b) \cap Nil(R) \neq 0$ for each $a, b \in Z(R)$.

2. Zero-divisor elements in a near-ring of skew formal power series

We start by summarizing some useful lemmas, which will become building blocks of the main results. The following lemma can be found in [14].

Lemma 2.1 ([14, Lemma 2.3]). Let R be an α -compatible ring. Then we have the following:

- (1) If ab = 0, then $a\alpha^n(b) = \alpha^n(a)b = 0$ for any positive integer n.
- (2) If $\alpha^k(a)b = 0$ for some positive integer k, then ab = 0.
- (3) If $f = \sum_{i=0}^{\infty} a_i x^i \in R[[x; \alpha]]$ and $r \in R$, then fr = 0 if and only if $a_i r = 0$ for each *i*.
- (4) If $f \in R[[x; \alpha]]$ and $r \in R$, then rf = 0 if and only if rxf = 0.

Let f be an element of a ring $R[[x; \alpha]]$ or a near-ring $R_0[[x; \alpha]]$. Then we use C_f to denote the set of all coefficients of f.

Lemma 2.2. Let R be an α -rigid ring. Then we have the following:

- (1) [12, Proposition 2.3] If f and g are elements of a ring $R[[x; \alpha]]$, then fg = 0 if and only if $a_i b_j = 0$ for all $a_i \in C_f$ and all $b_j \in C_g$.
- (2) [10, Lemma 2.4] If f and g are elements of a near-ring $R_0[[x; \alpha]]$, then $f \circ g = 0$ if and only if $a_i b_j = 0$ for all $a_i \in C_f$ and all $b_j \in C_g$.

As an immediate consequence of Lemma 2.2, we get the following lemma.

Lemma 2.3. Let R be an α -rigid ring. Then

 $Z_{\ell}(R_0[[x;\alpha]]) = Z_r(R_0[[x;\alpha]]) = Z_r(R[[x;\alpha]])x = Z_{\ell}(R[[x;\alpha]])x.$

According to [17], a ring R has (right) left Property (A), if every finitely generated ideal consisting entirely of (left) right zero-divisor has a left (right) non-zero annihilator. Also, a ring R is said to have Property (A) if R has both right and left Property (A).

Since every symmetric ring is semicommutative by [8], then we get the following result from [11, Theorem 2.6].

Lemma 2.4. Let R be a symmetric and right Noetherian ring. Then R has left Property (A).

Motivated by [2], the authors in [14] calls a ring R with an endomorphism α to be right α -power-serieswise McCoy, whenever power series $f, g \in R[[x; \alpha]] \setminus \{0\}$ satisfy fg = 0, then there exists a non-zero element $c \in R$ such that fc = 0. Left α -power-serieswise McCoy is defined similarly. If a ring R is both right and left α -power-serieswise McCoy, then R is called α -power-serieswise McCoy.

Lemma 2.5 ([14, Corollary 2.7]). If R is a reversible, α -compatible and right Noetherian ring, then R is α -power-serieswise McCoy.

Remark 2.6. Let R be a reversible, α -compatible and right Noetherian ring. Notice that $Z(R[[x;\alpha]]) \subseteq Z(R)[[x;\alpha]]$, by Lemma 2.5. Now, let Z(R) be an ideal of R and $f \in Z(R)[[x;\alpha]]$. Since R is right Noetherian, then Z(R)is finitely generated as right ideal. Hence there exists $0 \neq r \in R$ such that rZ(R) = 0, by Lemma 2.4. Since $C_f \subseteq Z(R)$, then $rC_f = 0$. It means that rf = 0, and thus $Z(R)[[x;\alpha]] \subseteq Z(R[[x;\alpha]])$. Therefore $Z(R[[x;\alpha]]) = Z(R)[[x;\alpha]]$.

Combining Lemma 2.3 and Remark 2.6, we obtain the following corollary.

Corollary 2.7. Let R be an α -rigid and right Noetherian ring. If Z(R) is an ideal of R, then $Z(R_0[[x; \alpha]]) = Z(R[[x; \alpha]])x = Z(R)_0[[x; \alpha]].$

Lemma 2.8. Let R be a symmetric and α -compatible ring. If $f = \sum_{i=1}^{\infty} a_i x^i$ is a zero-divisor of $R_0[[x; \alpha]]$, then $a_1 \in Z(R)$.

Proof. Let $a_1 \neq 0$. Since $f \in Z(R_0[[x; \alpha]])$, then there exists a non-zero $g = \sum_{j=1}^{\infty} b_j x^j \in R_0[[x; \alpha]]$ such that $g \circ f = 0$ or $f \circ g = 0$. Let k be the smallest integer such that $b_k \neq 0$. If $g \circ f = 0$, then $a_1 b_k = 0$, and so the result follows. Now suppose that $f \circ g = 0$. Then $b_k a_1 \alpha(a_1) \cdots \alpha^{k-1}(a_1) = 0$, since it is the coefficient of x^k in $f \circ g$. Hence $b_k a_1^k = 0$, by Lemma 2.1. If $b_k a_1 = 0$, then $a_1 \in Z(R)$. Now, assume that $b_k a_1 \neq 0$. Then there exists $1 \leq s \leq k-1$ such that $b_k a_1^s \neq 0$ but $(b_k a_1^s) a_1 = 0$, as desired.

In [1], the authors studied the skew generalized power series rings over nil rings and provided some conditions under which the skew generalized power series ring is nil. Following [19], a ring R is α -nil-Armendariz whenever $f = \sum_{i=0}^{\infty} a_i x^i$ and $g = \sum_{j=0}^{\infty} b_j x^j$ be elements of $R[[x; \alpha]]$ with $fg \in Nil(R)[[x; \alpha]]$, then $a_i \alpha^i(b_i) \in Nil(R)$ for each i, j.

Recall that an ideal I of R is an α -ideal if $\alpha(I) \subseteq I$. For example, if R is an α -compatible ring and Nil(R) is an ideal of R, then it is also an α -ideal. Therefore, by a similar way as used in the proof of [15, Proposition 1], one can prove the following result.

Proposition 2.9. Let R be an α -compatible ring and Nil(R) be an ideal of R. Then R is an α -nil-Armendariz ring.

We will make use of the following lemma which appears in [19, Theorem 3.14].

Proposition 2.10. Let R be an α -compatible and α -nil-Armendariz ring. If Nil(R) is a nilpotent ideal of R, then $Nil(R[[x; \alpha]]) = Nil(R)[[x; \alpha]]$.

Corollary 2.11. Let R be a symmetric, α -compatible and right Noetherian ring. Then $Nil(R[[x; \alpha]]) = Nil(R)[[x; \alpha]]$.

Proof. Since R is symmetric and right Noetherian, then Nil(R) is a nilpotent ideal of R. Hence the assertion follows from Propositions 2.9 and 2.10.

Example 2.12. (1) Let D be an integral domain and $R = \{\begin{bmatrix} a & d \\ a & a \end{bmatrix} | a, d \in D\}$. Suppose that $u \in U(D)$. Consider $\alpha : R \longrightarrow R$ by $\alpha \left(\begin{bmatrix} a & d \\ 0 & a \end{bmatrix} \right) = \begin{bmatrix} a & ud \\ 0 & a \end{bmatrix}$. Thus R is a commutative and α -compatible ring. Also, $Nil(R) = \{\begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix} | a \in D\}$ is a nilpotent ideal of R. Therefore $Nil(R[[x; \alpha]]) = Nil(R)[[x; \alpha]]$, by Propositions 2.9 and 2.10.

(2) Let R be a right Artinian and right uniserial ring, and S = R[y]. Then R is right Noetherian, and so S is right Noetherian. Moreover, by [21, Proposition 3.5], S is symmetric. Hence Nil(R[[x]]) = Nil(R)[[x]], by Corollary 2.11.

Now we bring the following theorem, which has a key rule in our results.

Theorem 2.13. Let R be a symmetric, α -compatible and right Noetherian ring. Let $f = \sum_{i=1}^{\infty} a_i x^i$ and $g = \sum_{j=1}^{\infty} b_j x^j$ be non-zero elements of a nearring $R_0[[x; \alpha]]$. If $f \circ g = 0$, then

- (1) $a_1b_1 = 0$,
- (2) rf = 0 for some non-zero $r \in R$,

(3) f is nilpotent or sg = 0 for some non-zero $s \in R$.

Proof. (1) It is clear, since b_1a_1 is the coefficient of x in $f \circ g$.

(2) Since $f \circ g = 0$, it follows that $b_1 f + b_2 f^2 + b_3 f^3 + \cdots = 0$. Hence

$$(b_1 + b_2 f + b_3 f^2 + \cdots) f = 0.$$

Since $b_1 + b_2 f + b_3 f^2 + \cdots$ is non-zero, rf = 0 for some non-zero $r \in R$, by Lemma 2.5.

(3) Notice that $\langle C_g \rangle_r = \langle b_1, \ldots, b_n \rangle_r$ for some $n \geq 1$, since R is right Noetherian. Suppose that f is not nilpotent. It follows that there exists $a = a_i$ such that $a \notin Nil(R)$, by Corollary 2.11. Let $\overline{R} = R/Nil(R)$. Since $f \circ g = 0$, then $\overline{f} \circ \overline{g} = \overline{0}$ in a near-ring $\overline{R}_0[[x;\overline{\alpha}]]$. Since \overline{R} is a reduced and $\overline{\alpha}$ -compatible ring, it follows that \overline{R} is an $\overline{\alpha}$ -rigid ring, by [13, Lemma 2.2]. Thus $\overline{a}_i \overline{b}_j = \overline{0}$, by Lemma 2.2. Since R is right Noetherian, then Nil(R) is nilpotent, and so $Nil(R)^k = 0$ for some positive integer k. Thus $a^k b^k_j = 0$ for each $j \geq 1$. Hence there exist integers $0 \leq t_j \leq k$ such that $a^k b^{t_j}_j \neq 0$ but $a^k b^{t_j+1}_1 = 0$ for each $j \geq 1$. Therefore there exist integers $0 \leq s_j \leq t_j$ such that $a^k b^{s_1}_1 b^{s_2}_2 \cdots b^{s_n}_n \neq 0$ but $a^k b^{s_1}_1 b^{s_2}_2 \cdots b^{s_n}_n \neq 0$ for each $1 \leq j \leq n$. Let $s = a^k b^{s_1}_1 b^{s_2}_2 \cdots b^{s_n}_n$. Thus sg = 0, since $\langle C_g \rangle_r = \langle b_1, \ldots, b_n \rangle_r$.

Now, we determine the structure of the set of all zero-divisor elements of $R_0[[x; \alpha]]$, where R is α -rigid.

Proposition 2.14. Let R be an α -rigid and right Noetherian ring. Then $Z(R_0[[x;\alpha]]) = \{f \in R_0[[x;\alpha]] | rf = 0 \text{ for some non-zero } r \in R\}.$

Proof. We have $Z(R_0[[x;\alpha]]) \subseteq \{f \in R_0[[x;\alpha]] | rf = 0 \text{ for some non-zero } r \in R\}$, by Lemma 2.3 and Theorem 2.13. Now, suppose that $f \in R_0[[x;\alpha]]$ and rf = 0 for some non-zero $r \in R$. Thus $f \circ rx = 0$, and so $f \in Z(R_0[[x;\alpha]])$. This completes the proof.

Lemma 2.15. Let R be a symmetric, α -compatible and right Noetherian ring. Then $Z_{\ell}(R_0[[x; \alpha]]) = \{f \in R_0[[x; \alpha]] | rf = 0 \text{ for some non-zero } r \in R\}$, when R is not reduced. In particular, $Z_{\ell}(R_0[[x; \alpha]]) \subseteq Z_r(R_0[[x; \alpha]])$.

Proof. Let $0 \neq f \in R_0[[x;\alpha]]$. Notice that if rf = 0 for some $0 \neq r \in R$, then $f \circ rx = 0$, and so $\{f \in R_0[[x;\alpha]] | rf = 0$ for some non-zero $r \in R\} \subseteq Z_\ell(R_0[[x;\alpha]])$. Hence $Z_\ell(R_0[[x;\alpha]]) = \{f \in R_0[[x;\alpha]] | rf = 0$ for some non-zero $r \in R\}$, by Theorem 2.13.

For proving the last statement, suppose that $f = \sum_{i=1}^{\infty} a_i x^i \in Z_{\ell}(R_0[[x;\alpha]])$. Then rf = 0 for some $0 \neq r \in R$, and thus $ra_i = 0$ for each i, which implies that $rx \circ f = 0$. Hence $f \in Z_r(R_0[[x;\alpha]])$, as wanted.

Next, we want to characterize the zero-divisor elements of the near-ring $R_0[[x; \alpha]]$, where R is not reduced.

Theorem 2.16. Let R be a symmetric, α -compatible and right Noetherian ring which is not reduced. Then $Z(R_0[[x;\alpha]]) = Z_\ell(R_0[[x;\alpha]]) \cup B$, where $B = \{\sum_{i=1}^{\infty} a_i x^i | ann_R(a_1) \cap Nil(R) \neq 0 \text{ and } a_i \in R \text{ for each } i \geq 2\}.$

Proof. Let $f = \sum_{i=1}^{\infty} a_i x^i$ be a non-zero element of $R_0[[x; \alpha]]$. If $ann_R(a_1) \cap Nil(R) \neq 0$, then $ba_1 = 0$ for some $0 \neq b \in Nil(R)$. Hence there exists a positive integer t such that $b^t = 0$ but $b^{t-1} \neq 0$. Therefore $b^{t-1}x \circ f = \sum_{i=1}^{\infty} a_i (b^{t-1}x)^i = 0$, by Lemma 2.1, which implies that $f \in Z(R_0[[x; \alpha]])$.

Now assume that $f \in Z(R_0[[x;\alpha]])$. Then $g \circ f = 0$ for some non-zero $g = \sum_{j=1}^{\infty} b_j x^j \in R_0[[x;\alpha]]$, since $Z(R_0[[x;\alpha]]) = Z_r(R_0[[x;\alpha]])$, by Lemma 2.15. If g is nilpotent, then $b_i \in Nil(R)$ for each i, by Corollary 2.11. Suppose that s is the smallest integer such that $b_s \neq 0$. Then $b_s a_1 = 0$, which implies that $ann_R(a_1) \cap Nil(R) \neq 0$. On the other hand, if g is not nilpotent, then rf = 0 for some non-zero $r \in R$, by Theorem 2.13. This shows that $f \in Z_\ell(R_0[[x;\alpha]])$, by Lemma 2.15.

3. The diameter of the zero-divisor graph $\Gamma(R_0[[x; \alpha]])$

According to [9, Theorem 2.2], we have $diam(\Gamma(N)) \leq 3$, for every zerosymmetric near-ring N. Since $R_0[[x;\alpha]]$ is a zero-symmetric near-ring with respect to "o", then $diam(\Gamma(R_0[[x;\alpha]])) \leq 3$. In the following theorem, we determine the lower bound of $diam(\Gamma(R_0[[x;\alpha]]))$, where R is a symmetric and α -compatible ring.

Theorem 3.1. Let R be a symmetric and α -compatible ring with $Z(R) \neq 0$. Then diam($\Gamma(R_0[[x; \alpha]])$) ≥ 2 .

Proof. First suppose that R is a reduced ring and $0 \neq a \in Z(R)$. Then $ax, ax^2 \in Z(R_0[[x; \alpha]])$. Since $ax \circ ax^2 \neq 0 \neq ax^2 \circ ax$, it follows that $d(ax, ax^2) \geq 2$. Now, assume that R is not reduced. It means that there exists $0 \neq c \in R$ such that $c^2 = 0$. Thus $cx \circ x^2 = c\alpha(c)x^2 = 0$ and $cx \circ x^3 = c\alpha(c)\alpha^2(c)x^3 = 0$, by Lemma 2.1, which implies that $x^2, x^3 \in C$.

 $Z(R_0[[x;\alpha]])$. Since $x^2 \circ x^3 \neq 0 \neq x^3 \circ x^2$, then $d(x^2, x^3) \geq 2$. Therefore $diam(\Gamma(R_0[[x;\alpha]])) \geq 2$.

Proposition 3.2. Let R be a symmetric, α -compatible and right Noetherian ring which is not reduced. If diam $(\Gamma(R_0[[x; \alpha]])) = 2$, then

$$Z(R_0[[x;\alpha]]) = Z(R)x + R_0[[x;\alpha]]x.$$

Proof. Let $0 \neq f = \sum_{i=1}^{\infty} a_i x^i \in R_0[[x;\alpha]]$. If $f \in Z(R_0[[x;\alpha]])$, then $a_1 \in C_0[[x;\alpha]]$ Z(R), by Lemma 2.8. Hence $Z(R_0[[x;\alpha]]) \subseteq Z(R)x + R_0[[x;\alpha]]x$. For the reverse inclusion, if $a_1 \in Nil(R)$, then we are done, by Theorem 2.16. Hence suppose that $a_1 \in Z(R) \setminus Nil(R)$. Since R is not reduced, it follows that a_1x, x^2 are zero-divisor elements of $R_0[[x; \alpha]]$ with $a_1x \circ x^2 \neq 0 \neq x^2 \circ a_1x$. Since $diam(\Gamma(R_0[[x; \alpha]])) = 2$, there exists a non-zero nilpotent element g = $\sum_{j=1}^{\infty} b_j x^j$ such that $a_1 x - g - x^2$ is a path. Thus $b_j \in Nil(R)$ for each j, by Corollary 2.11. Let s be the smallest integer such that $b_s \neq 0$. If $g \circ (a_1 x) = 0$, then $a_1 b_s = 0$. It means that $ann_R(a_1) \cap Nil(R) \neq 0$, and so $f \in Z(R_0[[x;\alpha]])$, by Theorem 2.16. Now assume that $(a_1x) \circ g = 0$. Thus $\sum_{j=s}^{\infty} b_j(a_1x)^j = 0$, which implies that $b_s a_1 \alpha(a_1) \alpha^2(a_1) \cdots \alpha^{s-1}(a_1) = 0$, since it is the coefficient of x^s in this equation. Hence $b_s a_1^s = 0$, by Lemma 2.1. If $b_s a_1 = 0$, then we are done. Now suppose that $b_s a_1 \neq 0$. Then there exists a positive integer $1 \le k \le s-1$ such that $b_s a_1^k \ne 0$ but $(b_s a_1^k) a_1 = 0$. Therefore $b_s a_1^k \in ann_R(a_1) \cap Nil(R)$, and so the result follows from Theorem 2.16.

Theorem 3.3. Let R be a symmetric, α -compatible ring which is not reduced. Then we have the following:

(1) If $ann_R(\{a, b\}) \cap Nil(R) \neq 0$ for each $a, b \in Z(R)$, then

$$diam(\Gamma(R_0[[x;\alpha]])) = 2.$$

(2) If R is right Noetherian and diam $(\Gamma(R_0[[x; \alpha]])) = 2$, then for each $a, b \in Z(R)$, $ann_R(\{a, b\}) \cap Nil(R) \neq 0$.

Proof. (1) Assume that $f = \sum_{i=1}^{\infty} a_i x^i$ and $g = \sum_{j=1}^{\infty} b_j x^j$ are non-zero zerodivisor elements of $R_0[[x; \alpha]]$. By Lemma 2.8, $a_1, b_1 \in Z(R)$, which implies that there exists $c \in Nil(R)$ such that $ca_1 = 0 = cb_1$. Hence there exists a positive integer k such that $c^k = 0$ but $c^{k-1} \neq 0$. It follows that $f - c^{k-1}x - g$ is a path, by Lemma 2.1. This shows that $d(f,g) \leq 2$, and so the result follows from Theorem 3.1.

(2) Let $a, b \in Z(R)$. Then by Proposition 3.2,

$$\{ax + x^2, bx + x^2\} \in Z(R_0[[x; \alpha]]).$$

Since $diam(\Gamma(R_0[[x;\alpha]])) = 2$, there exists a non-zero nilpotent f such that $f \circ (ax + x^2) = 0$ and $f \circ (bx + x^2) = 0$, by Theorem 2.13. Let $f = \sum_{i=k}^{\infty} c_i x^i$ and $c_k \neq 0$. Thus $ac_k = 0 = bc_k$. Also, by Corollary 2.11, we have $c_k \in Nil(R)$. Hence $ann_R(\{a, b\}) \cap Nil(R) \neq 0$.

In [14, Theorems 2.21 and 2.23], the authors characterized the diameter of the zero-divisor graph $\Gamma(R[[x;\alpha]])$, where R is a reversible and α -compatible ring with $Z(R) \neq 0$. They proved that $diam(\Gamma(R[[x;\alpha]])) = 1$ if and only if R is a non-reduced ring with $Z(R)^2 = 0$. Also, if R is right Noetherian, then (1) $diam(\Gamma(R[[x;\alpha]])) = 2$ if and only if |Z(R)| > 3 and either (i) R is a reduced ring with exactly two minimal primes, or (ii) Z(R) is an ideal of R with $Z(R)^2 \neq 0$. (2) $diam(\Gamma(R[[x;\alpha]])) = 3$ if and only if R is not a reduced ring with exactly two minimal primes and Z(R) is not an ideal of R.

Applying Lemma 2.2, one can get the next interesting result.

Proposition 3.4. Let R be an α -rigid ring. Then

- (1) $diam(\Gamma(R[[x; \alpha]])) = 2$ if and only if $diam(\Gamma(R_0[[x; \alpha]])) = 2$.
- (2) $diam(\Gamma(R[[x;\alpha]])) = 3$ if and only if $diam(\Gamma(R_0[[x;\alpha]])) = 3$.

The next example shows that the assumption "R is α -rigid" in Proposition 3.4 is not superfluous.

Example 3.5. (1) Let p be a prime integer number and $S = \mathbb{Z}(+)\mathbb{Z}(p^{\infty})$ be the idealization of $\mathbb{Z}(p^{\infty})$. Clearly, S is neither reduced nor Noetherian. Consider $\alpha : S \to S$ by $\alpha(n,\overline{m}) = (n,-\overline{m})$ for each $n \in \mathbb{Z}$ and $\overline{m} \in \mathbb{Z}(p^{\infty})$. Clearly, S is an α -compatible ring. Let $g = (0,(\overline{1/p})) + (0,(\overline{1/p^2}))x + (0,(\overline{1/p^3}))x^2 + \cdots$ and f = (p,0) + (1,0)x. Then fg = 0, and so $f \in Z(S[[x;\alpha]])$. Now, let h = (p,0). Obviously, $h \in Z(S[[x;\alpha]])$ but $hf \neq 0 \neq fh$. Notice that $ann_{S[[x;\alpha]]}(h) = \{\sum_{i=0}^{\infty} (0,a_i)x^i \mid a_i \in \{0,(\overline{1/p})\}$ for each $i \geq 0\}$. This shows that f and h have no common non-zero annihilator, and hence $diam(\Gamma(S[[x;\alpha]])) = 3$, by [22, Theorem 3.2]. On the other hand, we have $Z(S) = p\mathbb{Z}(+)\mathbb{Z}(p^{\infty})$, by [18, Example 5.6]. Since $(0,(\overline{1/p}))Z(S) = 0$ and $(0,(\overline{1/p})) \in Nil(S)$, then $diam(\Gamma(S_0[[x;\alpha]])) = 2$, by Theorem 3.3.

(2) Let K be a field and $D = K[w, y, z]_M$, where w, y and z are algebraically independent indeterminates and $M = \langle w, y, z \rangle K[w, y, z]$. Clearly, D is a domain. Let \mathcal{P} denote the height two primes of D and Q be the maximal ideal of D. Also, let $B = \sum F_{\gamma}$ where $F_{\gamma} = qf(D/P_{\gamma})$ for each $P_{\gamma} \in \mathcal{P}$. Let R = D(+)B be the idealization of B over D. Clearly, R is neither reduced nor Noetherian. Lucas [18, Example 5.2] showed that $diam(\Gamma(R[[x]])) = 3$ and R is a local ring with maximal ideal Q(+)B = Z(R). He also proved that each two elements of Z(R) has a non-zero nilpotent annihilator. This shows that $diam(\Gamma(R_0[[x]])) = 2$, by Theorem 3.3.

(3) Let R be a commutative non-reduced Noetherian ring with $Z(R)^2 = 0$. Then $diam(\Gamma(R[[x]])) = 1$, by [6, Theorem 3]. But $diam(\Gamma(R_0[[x]])) = 2$, by Theorem 3.3.

The following interesting result gives conditions under which $Z(R_0[[x; \alpha]])$ forms an ideal of $R_0[[x; \alpha]]$.

Proposition 3.6. Let R be an α -rigid and right Noetherian ring. Then $Z(R_0[[x; \alpha]])$ is an ideal of $R_0[[x; \alpha]]$ if and only if Z(R) is an ideal of R.

Proof. First suppose that $Z(R_0[[x;\alpha]])$ is an ideal of $R_0[[x;\alpha]]$ and $a, b \in Z(R)$. Then $ax, bx \in Z(R_0[[x;\alpha]])$, and so $(a + b)x = ax + bx \in Z(R_0[[x;\alpha]])$. By Proposition 2.14, there exists $0 \neq r \in R$ such that r(a+b)x = 0, which implies that $a + b \in Z(R)$, and thus Z(R) is an ideal of R.

that $a + b \in Z(R)$, and thus Z(R) is an ideal of R. Conversely, let $f = \sum_{i=1}^{\infty} a_i x^i$ and $g = \sum_{j=1}^{\infty} b_j x^j$ be elements of $Z(R_0[[x; \alpha]])$. By Proposition 2.14, there exist non-zero $r, s \in R$ such that rf = 0 = sg, which implies that $a_i, b_j \in Z(R)$ for each i, j. Let $\beta = \{a_i + b_i \mid a_i \in C_f \text{ and } b_i \in C_g \text{ for each } i \geq 1\}$. Since R is right Noetherian, then there exists a positive integer n such that $\beta R = \langle a_1 + b_1, \ldots, a_n + b_n \rangle_r$. Since Z(R) is an ideal, then $\langle a_1 + b_1, \ldots, a_n + b_n \rangle \subseteq Z(R)$. Also, by Lemma 2.4, R has left Property (A), and thus $t\langle a_1 + b_1, \ldots, a_n + b_n \rangle = 0$ for some $0 \neq t \in R$. Thus $t(a_i + b_i) = 0$ for each $1 \leq i \leq n$, which implies that t(f + g) = 0, and so $f + g \in Z(R_0[[x; \alpha]])$, by Proposition 2.14.

Let $f = \sum_{i=1}^{\infty} a_i x^i$ and $g = \sum_{j=1}^{\infty} b_j x^j$ be elements of $R_0[[x; \alpha]]$ and $z = \sum_{k=1}^{\infty} c_k x^k \in Z(R_0[[x; \alpha]])$. Note that $f \circ z = \sum_{k=1}^{\infty} c_k f^k$ and

$$(z+f) \circ g - f \circ g$$

= $\sum_{j=1}^{\infty} b_j (z+f)^j - \sum_{j=1}^{\infty} b_j f^j$
= $b_1 c_1 x + [b_1 c_2 + b_2 c_1 \alpha(c_1) + b_2 c_1 \alpha(a_1) + b_2 a_1 \alpha(c_1)] x^2 + \cdots$

Since $c_k \in Z(R)$ for each $k \ge 1$ and Z(R) is an ideal of R, then $(z+f) \circ g - f \circ g$ and $f \circ z \in Z(R_0[[x;\alpha]])$, by Corollary 2.7. Hence $Z(R_0[[x;\alpha]])$ is an ideal of $R_0[[x;\alpha]]$.

The next example shows that the condition "R is right Noetherian" in Proposition 3.6 can not be dropped.

Example 3.7. Let R be the commutative ring introduced in [18, Example 5.3] and α be the identity endomorphism on R. Thus R is an α -rigid ring which is not Noetherian. Lucas proved that Z(R) is an ideal of R and there exist a countably generated ideal $A = \langle a_1, a_2, \ldots \rangle$ and an element $b \in R$ such that the ideal A + bR is a countably generated ideal contained in Z(R) that has no non-zero annihilator, but both A and bR have non-zero annihilators. Consider $f = a_1x^2 + a_2x^3 + \cdots$ and g = bx. Thus $f, g \in Z(R_0[[x; \alpha]])$. If $f + g \in$ $Z(R_0[[x; \alpha]])$, then $h \circ (f + g) = 0$ for some $0 \neq h = \sum_{j=1}^{\infty} c_j x^j \in R_0[[x; \alpha]]$. Let k be the smallest integer such that $c_k \neq 0$. Thus $c_k a_i = 0 = c_k b$ for each $i \geq 1$, by Lemma 2.2. It means that $0 \neq c_k \in ann_R(A + bR)$, which is a contradiction. This shows that $Z(R_0[[x; \alpha]])$ is not an ideal of $R_0[[x; \alpha]]$.

Proposition 3.8. Let R be a symmetric and α -compatible ring which is not reduced. Then we have the following:

(1) If $ann_R(a-b) \cap Nil(R) \neq 0$ for each $a, b \in Z(R)$, then $Z(R_0[[x; \alpha]])$ forms an ideal of $R_0[[x; \alpha]]$.

(2) If R is right Noetherian ring and $Z(R_0[[x;\alpha]])$ forms an ideal of $R_0[[x;\alpha]]$, then $ann_R(a-b) \cap Nil(R) \neq 0$ for each $a, b \in Z(R)$.

Proof. (1) Let $f = \sum_{i=1}^{\infty} a_i x^i$ and $g = \sum_{j=1}^{\infty} b_j x^j$ be non-zero elements of $Z(R_0[[x;\alpha]])$. Then $a_1, b_1 \in Z(R)$, by Lemma 2.8. Also, by hypothesis, we have $c(a_1 - b_1) = 0$ for some $0 \neq c \in Nil(R)$. Hence there exists a positive integer k such that $c^k = 0$ but $c^{k-1} \neq 0$. Thus $c^{k-1}x \circ (f-g) = 0$, by Lemma 2.1. Therefore $f - g \in Z(R_0[[x;\alpha]])$. Now, assume that $h = \sum_{i=1}^{\infty} c_i x^i$ and $k = \sum_{j=1}^{\infty} d_j x^j \in R_0[[x;\alpha]]$. Hence c_1a_1 and d_1a_1 are the coefficients of x respectively in $h \circ f$ and $(f+h) \circ k - h \circ k$. Since $ann_R(a_1) \cap Nil(R) \neq 0$, then by a similar argument as used above, we have $h \circ f$ and $(f+h) \circ k - h \circ k \in Z(R_0[[x;\alpha]])$. Therefore $Z(R_0[[x;\alpha]])$ forms an ideal of $R_0[[x;\alpha]]$.

(2) Suppose that $a, b \in Z(R)$. Then $ax, bx, x^2 \in Z(R_0[[x; \alpha]])$, which implies that $(a - b)x + x^2 \in Z(R_0[[x; \alpha]])$, since $Z(R_0[[x; \alpha]])$ is an ideal of $R_0[[x; \alpha]]$. By Theorem 2.13, there exists a nilpotent element $f = \sum_{i=1}^{\infty} c_i x^i$ such that $f \circ (a - b)x + x^2 = 0$. Thus $c_i \in Nil(R)$ for each $i \ge 1$, by Corollary 2.11. Let k be the smallest integer such that $c_k \ne 0$. Then $(a - b)c_k = 0$, and so $ann_R(a - b) \cap Nil(R) \ne 0$.

References

- A. Alhevaz and E. Hashemi, An alternative perspective on skew generalized power series rings, Mediterr. J. Math. 13 (2016), no. 6, 4723-4744. https://doi.org/10.1007/ s00009-016-0772-y
- [2] A. Alhevaz and D. Kiani, McCoy property of skew Laurent polynomials and power series rings, J. Algebra Appl. 13 (2014), no. 2, 1350083, 23 pp. https://doi.org/10.1142/ S0219498813500837
- [3] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447. https://doi.org/10.1006/jabr.1998.7840
- [4] D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210 (2007), no. 2, 543-550. https://doi.org/10.1016/j.jpaa. 2006.10.007
- [5] D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra 159 (1993), no. 2, 500-514. https://doi.org/10.1006/jabr.1993.1171
- [6] M. Axtell, J. Coykendall, and J. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, Comm. Algebra 33 (2005), no. 6, 2043–2050. https: //doi.org/10.1081/AGB-200063357
- [7] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226. https: //doi.org/10.1016/0021-8693(88)90202-5
- [8] V. Camillo and P. P. Nielsen, *McCoy rings and zero-divisors*, J. Pure Appl. Algebra 212 (2008), no. 3, 599–615. https://doi.org/10.1016/j.jpaa.2007.06.010
- G. A. Cannon, K. M. Neuerburg, and S. P. Redmond, Zero-divisor graphs of nearrings and semigroups, in Nearrings and nearfields, 189–200, Springer, Dordrecht, 2005. https: //doi.org/10.1007/1-4020-3391-5_8
- [10] E. Hashemi, Rickart-type annihilator conditions on formal power series, Turkish J. Math. 32 (2008), no. 4, 363–372.
- [11] E. Hashemi, A. As. Estaji, and M. Ziembowski, Answers to some questions concerning rings with property (A), Proc. Edinb. Math. Soc. (2) 60 (2017), no. 3, 651–664. https: //doi.org/10.1017/S0013091516000407

- [12] E. Hashemi and A. Moussavi, Skew power series extensions of α -rigid p.p.-rings, Bull. Korean Math. Soc. **41** (2004), no. 4, 657–664. https://doi.org/10.4134/BKMS.2004. 41.4.657
- [13] _____, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (2005), no. 3, 207–224. https://doi.org/10.1007/s10474-005-0191-1
- [14] E. Hashemi, M. Yazdanfar, and A. Alhevaz, Directed zero-divisor graph and skew power series rings, Trans. Comb. 7 (2018), no. 4, 43–57. https://doi.org/10.22108/toc. 2018.109048.1543
- [15] S. Hizem, A note on nil power serieswise Armendariz rings, Rend. Circ. Mat. Palermo
 (2) 59 (2010), no. 1, 87–99. https://doi.org/10.1007/s12215-010-0005-3
- [16] C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), no. 3, 215–226. https://doi.org/10.1016/S0022-4049(99)00020-1
- [17] C. Y. Hong, N. K. Kim, Y. Lee, and S. J. Ryu, Rings with Property (A) and their extensions, J. Algebra **315** (2007), no. 2, 612–628. https://doi.org/10.1016/j.jalgebra. 2007.01.042
- [18] T. G. Lucas, The diameter of a zero divisor graph, J. Algebra 301 (2006), no. 1, 174–193. https://doi.org/10.1016/j.jalgebra.2006.01.019
- [19] K. Paykan and A. Moussavi, Nilpotent elements and nil-Armendariz property of skew generalized power series rings, Asian-Eur. J. Math. 10 (2017), no. 2, 1750034, 28 pp. https://doi.org/10.1142/S1793557117500346
- [20] J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289–300.
- G. Marks, A taxonomy of 2-primal rings, J. Algebra 266 (2003), no. 2, 494–520. https: //doi.org/10.1016/S0021-8693(03)00301-6
- [22] S. P. Redmond, The zero-divisor graph of a non-commutative ring, Int. J. Commut. Rings 1 (2002), 203–211.

Abdollah Alhevaz Faculty of Mathematical Sciences Shahrood University of Technology Shahrood P.O. Box: 316-3619995161, Iran *Email address*: a.alhevaz@gmail.com or a.alhevaz@shahroodut.ac.ir

EBRAHIM HASHEMI FACULTY OF MATHEMATICAL SCIENCES SHAHROOD UNIVERSITY OF TECHNOLOGY SHAHROOD P.O. BOX: 316-3619995161, IRAN *Email address*: eb_hashemi@yahoo.com or eb_hashemi@shahroodut.ac.ir

FATEMEH SHOKUHIFAR FACULTY OF MATHEMATICAL SCIENCES SHAHROOD UNIVERSITY OF TECHNOLOGY SHAHROOD P.O. BOX: 316-3619995161, IRAN *Email address*: shokuhi.135@gmail.com