• Title/Summary/Keyword: sigma algebras

Search Result 25, Processing Time 0.029 seconds

OPPOSITE SKEW COPAIRED HOPF ALGEBRAS

  • Park, Junseok;Kim, Wansoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.85-101
    • /
    • 2004
  • Let A be a Hopf algebra with a linear form ${\sigma}:k{\rightarrow}A{\otimes}A$, which is convolution invertible, such that ${\sigma}_{21}({\Delta}{\otimes}id){\tau}({\sigma}(1))={\sigma}_{32}(id{\otimes}{\Delta}){\tau}({\sigma}(1))$. We define Hopf algebras, ($A_{\sigma}$, m, u, ${\Delta}_{\sigma}$, ${\varepsilon}$, $S_{\sigma}$). If B and C are opposite skew copaired Hopf algebras and $A=B{\otimes}_kC$ then we find Hopf algebras, ($A_{[{\sigma}]}$, $m_B{\otimes}m_C$, $u_B{\otimes}u_C$, ${\Delta}_{[{\sigma}]}$, ${\varepsilon}B{\otimes}{\varepsilon}_C$, $S_{[{\sigma}]}$). Let H be a finite dimensional commutative Hopf algebra with dual basis $\{h_i\}$ and $\{h_i^*\}$, and let $A=H^{op}{\otimes}H^*$. We show that if we define ${\sigma}:k{\rightarrow}H^{op}{\otimes}H^*$ by ${\sigma}(1)={\sum}h_i{\otimes}h_i^*$ then ($A_{[{\sigma}]}$, $m_A$, $u_A$, ${\Delta}_{[{\sigma}]}$, ${\varepsilon}_A$, $S_{[{\sigma}]}$) is the dual space of Drinfeld double, $D(H)^*$, as Hopf algebra.

  • PDF

EXPANSIONS OF FILTERS IN R0-ALGEBRAS

  • DOH, MYUNG IM;JUN, YOUNG BAE;ZHANG, XIAOHONG
    • Honam Mathematical Journal
    • /
    • v.27 no.3
    • /
    • pp.343-351
    • /
    • 2005
  • The notion of expansions of filters in $R_0$-algebras is introduced. Also the notion of ${\sigma}$-primary filters in $R_0$-algebras is discussed.

  • PDF

DECOMPOSITIONS AND EXPANSIONS OF FILTERS IN TARSKI ALGEBRAS

  • Kim, Jaedeok;Kim, Youngmi;Roh, Eun Hwan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.457-463
    • /
    • 2007
  • We show that any filter of Tarski algebra can be de-composed into the union of some sets. Moreover, we introduce the notion of expansions of filters in Tarski algebras, and discuss the notion of ${\sigma}$-primary filters in Tarski algebras. Finally, we show that there is no non-trivial quadratic Tarski algebras on a field X with $|X|{\geq}3$.

  • PDF

SKEW COPAIRED BIALGEBRAS

  • Park, Jun Seok;Cho, Myung Sang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.16 no.1
    • /
    • pp.81-96
    • /
    • 2003
  • Let ${\sigma}:k{\rightarrow}A{\otimes}B$ be a skew copairing on (A, B), where A and B are Hopf algebras of the same dimension n. Skew dual bases of A and B are introduced. If ${\sigma}$ is an invertible skew copairing then we can give a 2-cocycle bilinear form [${\sigma}$] on $A{\otimes}B$ and define a new Hopf algebra.

  • PDF

STABLE RANKS OF MULTIPLIER ALGEBRAS OF C*-ALGEBRAS

  • Sudo, Takahiro
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.3
    • /
    • pp.475-485
    • /
    • 2002
  • We estimate the stable rank, connected stable rank and general stable rank of the multiplier algebras of $C^{*}$-algebras under some conditions and prove that the ranks of them are infinite. Moreover, we show that for any $\sigma$-unital subhomogeneous $C^{*}$-algebra, its stable rank is equal to that of its multiplier algebra.

𝜎-JORDAN AMENABILITY OF BANACH ALGEBRAS

  • Jun Li;Lin Chen;Mohammad Javad Mehdipour
    • Honam Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • In this paper, we introduce the notion of 𝜎-Jordan amenability of Banach algebras and some hereditary are investigated. Similar to Johnson's classic result, we give the notions of 𝜎-Jordan approximate and 𝜎-Jordan virtual diagonals, and find some relations between the existence of them and 𝜎-Jordan amenability.

ON χ ⊗ η-STRONG CONNES AMENABILITY OF CERTAIN DUAL BANACH ALGEBRAS

  • Ebrahim Tamimi;Ali Ghaffari
    • The Pure and Applied Mathematics
    • /
    • v.31 no.1
    • /
    • pp.1-19
    • /
    • 2024
  • In this paper, the notions of strong Connes amenability for certain products of Banach algebras and module extension of dual Banach algebras is investigated. We characterize χ ⊗ η-strong Connes amenability of projective tensor product ${\mathbb{K}}{\hat{\bigotimes}}{\mathbb{H}}$ via χ ⊗ η-σwc virtual diagonals, where χ ∈ 𝕂* and η ∈ ℍ* are linear functionals on dual Banach algebras 𝕂 and ℍ, respectively. Also, we present some conditions for the existence of (χ, θ)-σwc virtual diagonals in the θ-Lau product of 𝕂 ×θ ℍ. Finally, we characterize the notion of (χ, 0)-strong Connes amenability for module extension of dual Banach algebras 𝕂 ⊕ 𝕏, where 𝕏 is a normal Banach 𝕂-bimodule.

Some Nonlinear Alternatives in Banach Algebras with Applications II

  • Dhage, B.C.
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.281-292
    • /
    • 2005
  • In this paper a nonlinear alternative of Leray-Schauder type is proved in a Banach algebra involving three operators and it is further applied to a functional nonlinear integral equation of mixed type $$x(t)=k(t,x({\mu}(t)))+[f(t,x({\theta}(t)))]\(q(t)+{\int}_0{^{\sigma}^{(t)}}v(t,s)g(s,x({\eta}\(s)))ds\)$$ for proving the existence results in Banach algebras under generalized Lipschitz and $Carath{\acute{e}}odory$ conditions.

  • PDF

DYNAMICAL SYSTEMS AND GROUPOID ALGEBRAS ON HIGHER RANK GRAPHS

  • Yi, In-Hyeop
    • The Pure and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.199-209
    • /
    • 2012
  • For a locally compact higher rank graph ${\Lambda}$, we construct a two-sided path space ${\Lambda}^{\Delta}$ with shift homeomorphism ${\sigma}$ and its corresponding path groupoid ${\Gamma}$. Then we find equivalent conditions of aperiodicity, cofinality and irreducibility of ${\Lambda}$ in (${\Lambda}^{\Delta}$, ${\sigma}$), ${\Gamma}$, and the groupoid algebra $C^*({\Gamma})$.