STABLE RANKS OF MULTIPLIER ALGEBRAS OF C^* -ALGEBRAS

TAKAHIRO SUDO

ABSTRACT. We estimate the stable rank, connected stable rank and general stable rank of the multiplier algebras of C^* -algebras under some conditions and prove that the ranks of them are infinite. Moreover, we show that for any σ -unital subhomogeneous C^* -algebra, its stable rank is equal to that of its multiplier algebra.

Introduction

The stable rank of Banach or C^* -algebras was introduced by M. A. Rieffel [18] as an analogy to the covering dimension for spaces, and this rank, the connected stable rank and general stable rank play important roles in the (non-stable) K-theory of C^* -algebras. The stable rank and connected stable rank of group C^* -algebras of some Lie groups have been computed in terms of groups by [20], [29, 30] and [21-27], which partially answers to an interesting question by Rieffel [18, Question 4.14]. Also, he raised another interesting question such that on what condition the stable rank of C^* -algebras is equal to that of their multiplier algebras [18, Question 4.16]. In this paper we compute these ranks of the multipliers algebras of some C^* -algebras including some group C^* -algebras of Lie groups, and obtain that the latter question is affirmative for σ -unital, subhomogeneous C^* -algebras.

Notation. Let $C_0(X)$ be the C^* -algebra of all complex-valued, continuous functions on a locally compact Hausdorff space X vanishing

Received June 13, 2001.

²⁰⁰⁰ Mathematics Subject Classification: Primary 46L05; Secondary 46L55, $19K56,\,22D25.$

Key words and phrases: stable rank, multiplier, group C^* -algebra, subhomogeneous C^* -algebra.

at infinity, and $C^b(X)$ the C^* -algebra of all bounded continuous functions on X. When X is compact, we set $C(X) = C_0(X)$. We denote by $\dim X$ the covering dimension of a topological space X. We set $\dim_{\mathbb{C}}(X) = [\dim X/2] + 1$ where [x] means the maximum integer $\leq x$. Let βX be the Stone-Čech compactification of X. We denote by \mathbb{K} and \mathbb{B} respectively the C^* -algebra of all compact (resp. bounded) operators on a separable, infinite dimensional Hilbert space. We denote by $M(\mathfrak{A})$ the multiplier algebra of a C^* -algebra \mathfrak{A} . For a C^* -algebra \mathfrak{A} (or its unitization \mathfrak{A}^+), its stable rank, connected stable rank and general stable rank are denoted by $\mathrm{sr}(\mathfrak{A})$, $\mathrm{csr}(\mathfrak{A})$ and $\mathrm{gsr}(\mathfrak{A})$ respectively (cf. [18]). Then we have by [18, Corollary 4.10 and p. 328] that $\mathrm{gsr}(\mathfrak{A}) \leq \mathrm{csr}(\mathfrak{A}) \leq \mathrm{sr}(\mathfrak{A}) + 1$.

1. Stable ranks of multiplier algebras of C^* -algebras

We first prove the following which is a modification of [8, Proposition 1.4]:

PROPOSITION 1.1. Let \mathfrak{B} be a unital C^* -algebra having a quotient \mathfrak{D} containing n orthogonal isometries $\{S_j\}_{j=1}^n$ such that $\sum_{j=1}^n S_j S_j^* = 1$ for any $n \geq 2$. Then we have that $\operatorname{csr}(\mathfrak{B}) = \infty$ and $\operatorname{gsr}(\mathfrak{B}) = \infty$.

PROOF. We now suppose that $\operatorname{csr}(\mathfrak{B}) \leq n+1$. Let $q:\mathfrak{B} \to \mathfrak{D}$ be the quotient map. We take $L_j \in \mathfrak{B}$ such that $q(L_j) = S_j$ $(1 \leq j \leq n)$. Put $T = \sum_{j=1}^n L_j L_j^* - 1$ which is in the kernel of q. Then by definition of connected stable rank, there exists an invertible matrix (K_{ij}) of the connected component of $GL_{n+1}(\mathfrak{B})$ with the unit such that

$$(K_{ij})(-T,L_1^*,\cdots,L_n^*)^t=(1,0,\cdots,0)^t\in\mathfrak{B}^{n+1},$$

where $(\cdot)^t$ means the transpose. Hence we have that

$$(q(K_{ij}))(0, S_1^*, \dots, S_n^*)^t = (1, 0, \dots, 0)^t \in \mathfrak{D}^{n+1}$$

which implies that $q(K_{ij}) = 0$ $(2 \le i, j \le n+1)$ since $S_j^*S_i = \delta_{ij}$ $(1 \le i, j \le n)$. This is a contradiction to that $(q(K_{ij}))$ is in $GL_{n+1}(\mathfrak{D})$. Hence $\operatorname{csr}(\mathfrak{B}) = \infty$.

The proof for $gsr(\mathfrak{B}) = \infty$ is the same as above from definition of $gsr(\cdot)$.

THEOREM 1.2. Let $\mathfrak A$ be a σ -unital C^* -algebra. Suppose that $\mathfrak A$ has $\mathbb K$ as a quotient. Then $\mathrm{sr}(M(\mathfrak A))=\infty$ and $\mathrm{csr}(M(\mathfrak A))=\infty$ and $\mathrm{gsr}(M(\mathfrak A))=\infty$.

PROOF. By assumption and (noncommutative) Tietze's extension theorem (cf. [31, Theorem 2.3.9]) we see that $M(\mathfrak{A})$ has $\mathbb{B} \cong M(\mathbb{K})$ as a quotient. By [18, Theorem 4.3 and Proposition 6.5] and Proposition 1.1, we have that

$$\operatorname{sr}(M(\mathfrak{A})) \ge \operatorname{sr}(\mathbb{B}) = \infty, \quad \operatorname{csr}(M(\mathfrak{A})) = \infty, \quad \operatorname{gsr}(M(\mathfrak{A})) = \infty. \quad \Box$$

REMARK. We may take \mathfrak{A} as a C^* -algebra of continuous fields on a locally compact Hausdorff space with one of their fibers isomorphic to \mathbb{K} , which implies that Theorem 1.2 covers a large number of somewhat interesting examples since arbitrary C^* -algebra could be taken as a fiber (cf. [10]).

COROLLARY 1.3. Let \mathfrak{A} be a separable, liminal C^* -algebra having \mathbb{K} as a quotient. Then $\operatorname{sr}(M(\mathfrak{A})) = \infty$ and $\operatorname{csr}(M(\mathfrak{A})) = \infty$ and $\operatorname{gsr}(M(\mathfrak{A})) = \infty$.

REMARK. Every separable C^* -algebra is σ -unital (cf. [12, p. 108]). We may take \mathfrak{A} as the group C^* -algebra $C^*(G)$ of G either a connected nilpotent Lie group or a connected semi-simple Lie group (cf. [7]). In particular, we have that $\operatorname{sr}(C^*(G)) = 2 = \operatorname{csr}(C^*(G))$ in the case of G the real 3-dimensional Heisenberg Lie group (cf. [29], [23], [8, Corollary 1.6]). Also, this $C^*(G)$ is regarded as a C^* -algebra of continuous fields on $\mathbb R$ with its fibers $\{\mathfrak{A}_t\}_{t\in\mathbb R}$ given by $\mathfrak{A}_t = \mathbb K$ for $t\in\mathbb R\setminus\{0\}$ and $\mathfrak{A}_0 = C_0(\mathbb R^2)$ (cf. [10]).

Recall that a C^* -algebra \mathfrak{A} is stable if $\mathfrak{A} \cong \mathfrak{A} \otimes \mathbb{K}$.

THEOREM 1.4. Let $\mathfrak A$ be a σ -unital C^* -algebra. Suppose that $\mathfrak A$ has a stable quotient $\mathcal Q$. Then $\mathrm{sr}(M(\mathfrak A))=\infty$ and $\mathrm{csr}(M(\mathfrak A))=\infty$ and $\mathrm{gsr}(M(\mathfrak A))=\infty$.

PROOF. By assumption and [31, Theorem 2.3.9] we see that $M(\mathfrak{A})$ has $M(\mathbb{K} \otimes \mathcal{Q})$ as a quotient, and we have that $\mathbb{B} \otimes M(\mathcal{Q})$ is a C^* -subalgebra of $M(\mathbb{K} \otimes \mathcal{Q})$ (cf. [1]). Since $\mathbb{B} \otimes M(\mathcal{Q})$ has two orthogonal isometries, by [18] and Proposition 1.1, we have that

$$\operatorname{sr}(M(\mathfrak{A})) \geq \operatorname{sr}(M(\mathbb{K} \otimes \mathcal{Q})) = \infty,$$
 $\operatorname{csr}(M(\mathfrak{A})) = \infty,$
 $\operatorname{gsr}(M(\mathfrak{A})) = \infty.$

REMARK. For a connected locally compact group G, its group C^* -algebra $C^*(G)$ has a simple subquotient which is stable or a finite-dimensional matrix algebra (cf. [9]). Thus $C^*(G)$ for G a noncommutative, connected solvable Lie group has a closed ideal such that its multiplier algebra has the stable ranks infinity. However, we have not been successful to compute the ranks of $M(C^*(G))$ in general and even in the case of the real ax + b group.

Theorem 1.5. For any C^* -algebra \mathfrak{A} , we have $\operatorname{sr}(M(\mathfrak{A} \otimes \mathbb{K})) = \infty$ and $\operatorname{csr}(M(\mathfrak{A} \otimes \mathbb{K})) = \infty$ and $\operatorname{dsr}(M(\mathfrak{A} \otimes \mathbb{K})) = \infty$.

PROOF. Note that $M(\mathfrak{A}) \otimes \mathbb{B}$ is a C^* -subalgebra of $M(\mathfrak{A} \otimes \mathbb{K})$. Then we use the same argument as in the proof of Theorem 1.4.

REMARK. By [18, Theorems 3.6 and 6.4] we have $\operatorname{sr}(\mathfrak{A} \otimes \mathbb{K}) = \min\{2, \operatorname{sr}(\mathfrak{A})\}$ while $\operatorname{gsr}(\mathfrak{A} \otimes \mathbb{K}) \leq \operatorname{csr}(\mathfrak{A} \otimes \mathbb{K}) \leq \min\{2, \operatorname{csr}(\mathfrak{A})\}$ by [18, p. 328], [20, Theorem 3.10], [14].

EXAMPLE 1.6. Let $M_5 = \mathbb{C}^2 \rtimes_{\alpha} \mathbb{R}$ be the Mautner group where the action α is defined by $\alpha_t(z, w) = (e^{2\pi i t}z, e^{2\pi i \theta t}w)$ for $z, w \in \mathbb{C}$, $t \in \mathbb{R}$ and θ an irrational number (cf. [2]). Then we have the following isomorphism and quotient of the group C^* -algebra $C^*(M_5)$:

$$C^*(M_5) \cong C_0(\mathbb{C}^2) \rtimes_{\hat{\alpha}} \mathbb{R} \to C(\mathbb{T}^2) \rtimes_{\hat{\alpha}} \mathbb{R} \to 0,$$

where the quotient is the crossed product associated with the invariant subspace \mathbb{T}^2 of \mathbb{C}^2 under the action $\hat{\alpha}$ defined by the complex conjugate

of α , and we further have $C(\mathbb{T}^2) \rtimes_{\hat{\alpha}} \mathbb{R} \cong \mathbb{K} \otimes (C(\mathbb{T}) \rtimes \mathbb{Z})$ (cf. [5, II.8]). By Theorem 1.4, we get that

$$\operatorname{sr}(M(C^*(M_5))) = \infty,$$

$$\operatorname{csr}(M(C^*(M_5))) = \infty,$$

$$\operatorname{gsr}(M(C^*(M_5))) = \infty.$$

On the other hand, $\operatorname{sr}(C^*(M_5)) = 2 = \operatorname{csr}(C^*(M_5)) \ge \operatorname{gsr}(C^*(M_5))$ (cf. [24], [18, p. 328]). Since $C^*(M_5)^+$ is finite, $\operatorname{gsr}(C^*(M_5)) = 1$ ([19, p. 247]).

EXAMPLE 1.7. Let $D_7 = \mathbb{C}^2 \rtimes_{\beta} H_3$ be the Dixmier group where $\beta_g(z,w) = (e^{ia}z,e^{ib}w)$ for $z,w \in \mathbb{C},\ g = (c,b,a) \in H_3$, and H_3 is the real 3-dimensional Heisenberg group with (c,0,0) in its center (cf. [6,7]). Then we have the following quotient:

$$C^*(D_7) \cong C_0(\mathbb{C}^2) \rtimes_{\hat{a}} H_3 \to C(\mathbb{T}^2) \rtimes_{\hat{a}} H_3 \to 0,$$

which is associated with the invariant subspace \mathbb{T}^2 of \mathbb{C}^2 under the action $\hat{\beta}$ defined by the complex conjugate of β , and we have $C(\mathbb{T}^2) \rtimes_{\hat{\beta}} H_3 \cong \mathbb{K} \otimes C^*((H_3)_{1_2})$ by [9, Corollary 2.10] since $\hat{\beta}$ is transitive on \mathbb{T}^2 , where $(H_3)_{1_2}$ means the stabilizer of $1_2 = (1,1) \in \mathbb{T}^2$ under $\hat{\beta}$. By Theorem 1.4, we get that

$$\operatorname{sr}(M(C^*(D_7))) = \infty, \quad \operatorname{csr}(M(C^*(D_7))) = \infty, \quad \operatorname{gsr}(M(C^*(D_7))) = \infty.$$

On the other hand, $\operatorname{sr}(C^*(D_7)) = 2 = \operatorname{csr}(C^*(D_7)) > \operatorname{gsr}(C^*(D_7)) = 1$ (cf. [25, 26]).

REMARK. The groups M_5 and D_7 are typical and important examples in the unitary representation theory of connected solvable Lie groups of non type I. The above method for computing the ranks of $M(C^*(G))$ for G as more general examples is applicable through the structure of $C^*(G)$.

EXAMPLE 1.8. Let X be a σ -compact, locally compact Hausdorff space. Then $\dim X = \dim \beta X$ since X is normal (cf. [13, Theorem 9-5]), and $M(C_0(X)) = C(\beta X)$. Hence

$$\operatorname{sr}(M(C_0(X))) = \dim_{\mathbb{C}} \beta X = \dim_{\mathbb{C}} X = \operatorname{sr}(C_0(X)),$$

while there exists a locally compact Hausdorff space X with dim X=1 and dim $\beta X=0$ (cf. [16, 4.6 Remarks, p. 234]). On the other hand, we let $X=[0,1]^n\setminus\{(0,\cdots,0)\}$. Then by [14] and [8],

$$\begin{cases} \operatorname{csr}(C_0(X)) = \operatorname{csr}(C([0,1]^n)) = 1, \\ \operatorname{csr}(M(C_0(X))) \le [(\dim \beta X + 1)/2] + 1 = [(n+1)/2] + 1. \end{cases}$$

For X a contractible compact space, we get csr(C(X)) = 1. Hence gsr(C(X)) = 1.

EXAMPLE 1.9. If $\mathfrak{A} = \mathbb{K} \oplus \mathbb{B}$, then $M(\mathfrak{A}) = \mathbb{B} \oplus \mathbb{B}$. Hence we have that

$$\operatorname{sr}(\mathfrak{A}) = \infty = \operatorname{sr}(M(\mathfrak{A})),$$

 $\operatorname{csr}(\mathfrak{A}) = \infty = \operatorname{csr}(M(\mathfrak{A})),$
 $\operatorname{gsr}(\mathfrak{A}) = \infty = \operatorname{gsr}(M(\mathfrak{A})).$

If $\mathfrak A$ is a σ -unital, simple C^* -algebra with real rank zero and $M(\mathfrak A)/\mathfrak A$ is simple (cf. [33, Corollary 1.6], [4]), then we have $\operatorname{sr}(M(\mathfrak A)) = \infty$ and $\operatorname{csr}(M(\mathfrak A)) = \infty$ and $\operatorname{gsr}(M(\mathfrak A)) = \infty$.

2. Stable rank of multiplier algebras of subhomogeneous C^* -algebras

Recall that a C^* -algebra $\mathfrak A$ is subhomogeneous (in a general sense) if any irreducible representation of $\mathfrak A$ is finite dimensional. Denote by $\hat{\mathfrak A}_n$ the space of all n-dimensional irreducible representations of $\mathfrak A$ up to unitary equivalence (cf. [7, Chapter 3]).

THEOREM 2.1. Let $\mathfrak A$ be a subhomogeneous C^* -algebra and $M(\mathfrak A)$ its multiplier algebra. Then we have that

$$\operatorname{sr}(M(\mathfrak{A})) \leq N \equiv \sup_{1 \leq n < \infty} \operatorname{sr}(C^b(\hat{\mathfrak{A}}_n) \otimes M_n(\mathbb{C})).$$

PROOF. Following the idea of [27] we construct a C^* -subalgebra \mathfrak{B} of the direct product $P_{\mathfrak{A}} \equiv \Pi_{1 \leq n < \infty} \ \Pi_{\pi \in \hat{\mathfrak{A}}_n} C_0(\hat{\mathfrak{A}}_n, \pi(\mathfrak{A}))$, consisting of all elements $(f_{n,\pi}) \in P_{\mathfrak{A}}$ such that for some $a \in \mathfrak{A}$, $f_{n,\pi}(\pi) = \pi(a)$ for all $1 \leq n < \infty$, $\pi \in \hat{\mathfrak{A}}_n$. Then \mathfrak{A} is a quotient of \mathfrak{B} by the identification of a with $(\pi(a))_{1 \leq n < \infty, \pi \in \hat{\mathfrak{A}}_n}$.

Note that $M(\bar{\mathfrak{B}})$ is a C^* -subalgebra of

$$Q_{\mathfrak{A}} \equiv \Pi_{1 \leq n < \infty} \Pi_{\pi \in \hat{\mathfrak{A}}_n} C^b(\hat{\mathfrak{A}}_n, \pi(\mathfrak{A}))$$

by definition of multiplier algebras (cf. [31, Definition 2.2.2]), since we have $M(C_0(\hat{\mathfrak{A}}_n, \pi(\mathfrak{A}))) = C^b(\hat{\mathfrak{A}}_n, \pi(\mathfrak{A}))$ (cf. [1]). Moreover we have that

$$M(C_0(\hat{\mathfrak{A}}_n, \pi(\mathfrak{A}))) = M(C_0(\hat{\mathfrak{A}}_n) \otimes M_n(\mathbb{C})) \cong C^b(\hat{\mathfrak{A}}_n) \otimes M_n(\mathbb{C})$$

(cf. [31, 2.R, p. 50]). Also, there exists a homomorphism φ from $M(\mathfrak{B})$ to $M(\mathfrak{A})$ (cf. [31, Proposition 2.2.16]). Furthermore, we check that φ is onto. In fact, any element of $M(\mathfrak{A})$ is represented as $(l_{n,\pi})_{1\leq n<\infty,\pi\in\hat{\mathfrak{A}}_n}$ with $l_{n,\pi}\in M(\pi(\mathfrak{A}))=\pi(\mathfrak{A})$ since any element of \mathfrak{A} is represented as $(\pi(a))_{1\leq n<\infty,\pi\in\hat{\mathfrak{A}}_n}$ on the direct sum of Hilbert spaces indexed by $1\leq n<\infty,\pi\in\hat{\mathfrak{A}}_n$. For any $(l_{n,\pi})\in M(\mathfrak{A})$, we have $(1_{\hat{\mathfrak{A}}_n}\otimes l_{n,\pi})\in M(\mathfrak{B})$ where $1_{\hat{\mathfrak{A}}_n}$ is the unit of $C^b(\hat{\mathfrak{A}}_n)$. Then by [18, Theorem 4.3] we have that $\operatorname{sr}(M(\mathfrak{A}))\leq \operatorname{sr}(M(\mathfrak{B}))$.

By definition of multiplier algebras, $M(\mathfrak{B})$ contains all the elements $(g_{n,\pi}) \in Q_{\mathfrak{A}}$ such that $(g_{n,\pi}(\pi)) = (l_{n,\pi})$ for $(l_{n,\pi}) \in M(\mathfrak{A})$. Therefore, the same methods for the stable rank bound in [27, 28] are applicable to $M(\mathfrak{B})$. In fact, we suppose that the number N defined above is finite. Then we show that $\mathrm{sr}(M(\mathfrak{B})) \leq N$ by checking the definition of stable rank precisely, and using the perturbation along the diagonal elements $(g_{n,\pi}(\pi))$ for $\pi \in \hat{\mathfrak{A}}_n$. In fact, for any $(g_{n,\pi}^j)_{j=1}^N \in M(\mathfrak{B})^N$ and $\varepsilon > 0$, we take $(h_{n,\pi}^j)_{j=1}^N \in M(\mathfrak{B})^N$ such that $\|g_{n,\pi}^j - h_{n,\pi}^j\| < \varepsilon(n,\pi,j) < \varepsilon$ and $h'(n,\pi) \equiv \sum_{j=1}^N (h_{n,\pi}^j)^* h_{n,\pi}^j$ is invertible in $C^b(\hat{\mathfrak{A}}_n,\pi(\mathfrak{A}))$. Note that the restriction of $g_{n,\pi}^j$ to $\hat{\mathfrak{A}}_n$ belongs to the C^* -algebra \mathfrak{A}_n of continuous fields on $\hat{\mathfrak{A}}_n$ with its fibers $\pi(\mathfrak{A})$. In particular, the map $\pi \mapsto \|g_{n,\pi}^j\|$ is continuous on $\hat{\mathfrak{A}}_n$. Thus, for any $\pi \in \hat{\mathfrak{A}}_n$ there is an open neighborhood U of π , and an element $h_{n,\pi}^j|_U$ of the restriction $\mathfrak{A}_n|_U$ of \mathfrak{A}_n to U such that $g_{n,\pi}^j|_U$ is approximated by $h_{n,\pi}^j|_U$ and $\sum_{j=1}^N (h_{n,\pi}^j|_U)^* (h_{n,\pi}^j|_U)$ is invertible in $\mathfrak{A}_n|_U$, which is deduced from a direct computation by using the norm continuity on fibers to show that if $\sum_{j=1}^N (h_{n,\pi}^j|_U)^* (h_{n,\pi}^j|_U)(\pi)$

is invertible, then $\sum_{j=1}^{N} (h_{n,\pi}^{j}|_{U})^{*}(h_{n,\pi}^{j}|_{U})(\rho)$ for $\rho \in U$ is invertible. Therefore, our remaining task will be to use this process inductively for a suitable open covering of $\hat{\mathfrak{A}}_{n}$.

Moreover, if necessary, taking $\varepsilon(n,\pi,j)$ small enough and replacing $h_{n,\pi}^j$ with its suitable perturbation, we can assume that $h'(n,\pi)$ is bounded away from zero. In fact, in general, for a C^* -algebra \mathcal{A} we have a continuous map Φ from $L_n(\mathcal{A}) = \{(a_j) \in \mathcal{A}^n \mid \sum_{j=1}^n a_j^* a_j \in \mathcal{A}^{-1}\}$ to the positive part \mathcal{A}_+ of \mathcal{A} by $(a_j) \mapsto \sum_{j=1}^n a_j^* a_j$. Let $\mathcal{S} = \{b \in \mathcal{A}_+ \mid \|\sum_{j=1}^n a_j^* a_j - b\| < \eta$, and $b > \sum_{j=1}^n a_j^* a_j + \eta' 1\}$ for some $\eta, \eta' > 0$. Then \mathcal{S} is open in \mathcal{A}_+ since for $b' \in \mathcal{A}_+$ with $\|b-b'\|$ small, we can make the distance of their spectrums small. Taking η, η' suitably, we make the distance between $\sum_{j=1}^n a_j^* a_j$ and \mathcal{S} small enough. Then we can find a small open neighborhood of (a_j) such that its image under Φ has the nonzero intersection with \mathcal{S} .

REMARK. We have proved implicitly in [27] by the similar way as above that for any subhomogeneous C^* -algebra \mathfrak{A} ,

$$\operatorname{sr}(\mathfrak{A}) = N' \equiv \sup_{1 \leq n < \infty} \operatorname{sr}(C_0(\hat{\mathfrak{A}}_n) \otimes M_n(\mathbb{C})).$$

However, we do not know whether $M(\mathfrak{A})$ is subhomogeneous or not in general. In fact, we have that for $\mathfrak{A} = \bigoplus_{n \in \mathbb{N}} M_n(\mathbb{C})$ the direct sum of $M_n(\mathbb{C})$ for $n \in \mathbb{N}$,

$$M(\mathfrak{A}) \cong \Pi_{n \in \mathbb{N}} M(M_n(\mathbb{C})) \cong \Pi_{n \in \mathbb{N}} M_n(\mathbb{C})$$

(cf. [11, Proposition 7.1.9]). Then $M(\mathfrak{A})/\mathfrak{A}$ may have an infinite dimensional irreducible representation, and $\operatorname{sr}(\mathfrak{A}) = 1 = \operatorname{sr}(M(\mathfrak{A}))$ (cf. [28]).

THEOREM 2.2. Let $\mathfrak A$ be a σ -unital subhomogeneous C^* -algebra and $M(\mathfrak A)$ its multiplier algebra. Then we have that

$$\operatorname{sr}(\mathfrak{A}) = \sup_{1 \leq n < \infty} (\{([\dim \hat{\mathfrak{A}}_n^+/2])/n\} + 1) = \operatorname{sr}(M(\mathfrak{A})),$$

where $\hat{\mathfrak{A}}_n^+$ is the one-point compactification of $\hat{\mathfrak{A}}_n$, and $\{x\}$ is the least integer $\geq x$.

PROOF. For X any σ -compact, locally compact Hausdorff space, we have $\dim X = \dim \beta X$ since X is normal (cf. [13, Theorem 9-5]). Hence $\dim \hat{\mathfrak{A}}_n = \dim \beta \hat{\mathfrak{A}}_n$, and $C^b(\hat{\mathfrak{A}}_n) \cong C(\beta \hat{\mathfrak{A}}_n)$. Then for N in Theorem 2.1 and N' in the above remark, we have

$$\begin{split} N' &= \operatorname{sr}(\mathfrak{A}) \le \operatorname{sr}(M(\mathfrak{A})) \le N, \\ N' &= \sup_{1 \le n < \infty} \left(\left\{ \left(\left[\dim \hat{\mathfrak{A}}_n^+ / 2 \right] \right) / n \right\} + 1 \right) = N \end{split}$$

by [18, Proposition 1.7 and Theorem 6.1].

EXAMPLE 2.3. Let $\mathfrak{A} = C_0([0,1)) \otimes M_n(\mathbb{C})$. Then we have that

$$M(C_0([0,1)) \otimes M_n(\mathbb{C})) \cong M(C_0([0,1))) \otimes M_n(\mathbb{C}) \cong C^b([0,1)) \otimes M_n(\mathbb{C}),$$

where the first isomorphism is deduced from definition of multiplier algebras (cf. [1, Corollary 3.4]). Moreover, we have that $C^b([0,1)) \cong C(\beta[0,1))$. Then

$$\begin{cases} \operatorname{sr}(\mathfrak{A}) = 1 = \operatorname{sr}(M(\mathfrak{A})), \\ \operatorname{csr}(C_0([0,1])) = \operatorname{csr}(C([0,1])) = 1, \\ \operatorname{csr}(M(\mathfrak{A})) \leq \{(\operatorname{csr}(C(\beta[0,1))) - 1)/n\} + 1 \\ \leq \{\operatorname{sr}(C(\beta[0,1)))/n\} + 1 \leq 2 \end{cases}$$

by using [18, Proposition 1.7, Corollary 4.10 and Theorem 6.1], [19, Theorem 4.7] and [8, Corollary 2.12] (or [14]), where $\{x\}$ means the least integer $\geq x$. Therefore, since $M(\mathfrak{A})$ is finite we obtain that (cf. [19, Propositions 5.2 and 5.3])

$$\operatorname{sr}(\mathfrak{A}) = \operatorname{sr}(M(\mathfrak{A})) = 1,$$

 $\operatorname{csr}(\mathfrak{A}) = 1 \le \operatorname{csr}(M(\mathfrak{A})) \le 2,$
 $\operatorname{gsr}(\mathfrak{A}) = \operatorname{gsr}(M(\mathfrak{A})) = 1.$

If $\beta[0,1)$ is contractible, we have $csr(\mathfrak{A}) = csr(M(\mathfrak{A}))$.

ACKNOWLEDGMENT. The author would like to thank the referee for some critical comments for revision.

.

References

- [1] C. A. Akemann, G. K. Pedersen and J. Tomiyama, Multipliers of C*-algebras, J. Funct. Anal. 13 (1973), 277–301.
- [2] L. Baggett, Representations of the Mautner group, I, Pacific J. Math. 77 (1978),
 7-22
- [3] B. Blackadar, K-Theory for Operator algebras, Second Edition, Cambridge, 1998.
- [4] L. G. Brown and G. K. Pedersen, C^* -algebras of real rank zero, J. Funct. Anal. **99** (1991), 131–149.
- [5] A. Connes, Noncommutative Geometry, Academic Press, 1994.
- [6] J. Dixmier, Sur le revêtement universel d'un groupe de Lie de type I, C. R. Acad. Sci. Paris 252 (1961), 2805–2806.
- [7] _____, C^* -algebras, North-Holland, 1962.
- [8] N. Elhage Hassan, Rangs stables de certaines extensions, J. London Math. Soc. 52 (1995), 605–624.
- [9] P. Green, The structure of imprimitivity algebras, J. Funct. Anal. 36 (1980), 88–104.
- [10] R. Lee, On the C^* -algebras of operator fields, Indiana Univ. Math. J. **25** (1976), 303–314.
- [11] T. A. Loring, Lifting Solutions to Perturbing Problems in C*-Algebras, Fields Institute Monographs 8, AMS, 1997.
- [12] G. J. Murphy, C*-algebras and operator theory, Academic Press, 1990.
- [13] K. Nagami, Dimension Theory, Academic Press, New York-London, 1970.
- [14] V. Nistor, Stable range for tensor products of extensions of K by C(X), J. Operator Theory **16** (1986), 387–396.
- [15] ______, Stable rank for a certain class of type I C*-algebras, J. Operator Theory 17 (1987), 365–373.
- [16] A. R. Pears, Dimension theory of general spaces, Cambridge University Press, 1975.
- [17] G. K. Pedersen, C*-Algebras and their Automorphism Groups, Academic Press, London-New York-San Francisco, 1979.
- [18] M. A. Rieffel, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc. 46 (1983), 301–333.
- [19] _____, The homotopy groups of the unitary groups of non-commutative tori, J. Operator Theory 17 (1987), 237–254.
- [20] A. J-L. Sheu, A cancellation theorem for projective modules over the group C*-algebras of certain nilpotent Lie groups, Canad. J. Math. 39 (1987), 365–427.
- [21] T. Sudo, Stable rank of the reduced C*-algebras of non-amenable Lie groups of type I, Proc. Amer. Math. Soc. 125 (1997), 3647-3654.
- [22] _____, Stable rank of the C*-algebras of amenable Lie groups of type I, Math. Scand. 84 (1999), 231–242.
- [23] _____, Dimension theory of group C*-algebras of connected Lie groups of type I, J. Math. Soc. Japan **52** (2000), 583-590.
- [24] _____, Structure of group C^* -algebras of Lie semi-direct products $\mathbb{C}^n \rtimes \mathbb{R}$, J. Operator Theory 46 (2001), 25–38.

- [25] _____, Structure of group C^* -algebras of the generalized Dixmier groups, Preprint.
- [26] ____ $__$, Structure of group C^* -algebras of the generalized disconnected Dixmier groups, Sci. Math. Japon. 54 (2001), 449-454, :e4, 861-866.
- [27] _____, Ranks and embeddings of C*-algebras of continuous fields, Preprint. [28] ____, Ranks of direct products of C*-algebras, To appear.
- [29] T. Sudo and H. Takai, Stable rank of the C*-algebras of nilpotent Lie groups, Internat. J. Math. 6 (1995), 439-446.
- _____, Stable rank of the C^* -algebras of solvable Lie groups of type I, J. Op-[30] _ erator Theory 38 (1997), 67-86.
- [31] N. E. Wegge-Olsen, K-Theory and C*-Algebras, Oxford Univ. Press, 1993.
- [32] Yifeng Xue, The general stable rank in nonstable K-theory, Rocky Mountain J. Math. 30 (2000), 761-775.
- [33] Shuang Zhang, On the structure of projections and ideals of corona algebras, Canad. J. Math. XLI (1989), 721-742.

Department of Mathematical Sciences Faculty of Science University of the Ryukyus Nishihara-cho, Okinawa 903-0213, Japan E-mail: sudo@math.u-ryukyu.ac.jp