ISSN 1226-0657

J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. http://dx.doi.org/10.7468/jksmeb.2012.19.2.199 Volume 19, Number 2 (May 2012), Pages 199–209

DYNAMICAL SYSTEMS AND GROUPOID ALGEBRAS ON HIGHER RANK GRAPHS

INHYEOP YI

ABSTRACT. For a locally compact higher rank graph Λ , we construct a two-sided path space Λ^{Δ} with shift homeomorphism σ and its corresponding path groupoid Γ . Then we find equivalent conditions of aperiodicity, cofinality and irreducibility of Λ in (Λ^{Δ}, σ), Γ , and the groupoid algebra $C^*(\Gamma)$.

1. Preliminary

Since Kumjian and Pask's ground breaking paper for higher rank graph ([3]), main interest of higher rank graph (or k-graph) algebras has been the 'one-sided' path space Λ^{Ω} of k-graph Λ and its corresponding path groupoid \mathcal{G}_{Λ} . On the other hand, as in the case of subshift of finite types and Cuntz-Krieger algebras ([1]), twosided path space Λ^{Δ} was constructed by Kumjian and Pask in [4] to study Smale space structure on k-graphs. This paper is a partial result of the author's attempt to understand Kumjian and Pask's results on \mathbb{Z}^k -actions on k-graphs ([4]).

Although one-sided path space is easier to use combinatorially, in the view point of dynamical systems, two sided path space Λ^{Δ} is more natural for shift map σ is a homeomorphism on Λ^{Δ} comparing to the fact that σ is a local homeomorphism on Λ^{Ω} . We construct a dynamical system $(\Lambda^{\Delta}, \sigma)$ and its corresponding groupoid Γ from the two-sided path space of a k-graph Λ . Then we show that some basic properties of Λ are naturally transferred to properties of $(\Lambda^{\Delta}, \sigma)$, Γ , and $C^{*}(\Gamma)$ the groupoid C^{*} -algebra of Γ .

For this purpose, we make an assumption on our higher rank graph Λ that it is locally compact with no sources to assure that Λ^{Δ} is a locally compact Hausdorff space with infinitely many elements. Under this assumption, we show that

 \bigodot 2012 Korean Soc. Math. Educ.

Received by the editors May 10, 2012. Revised May 20, 2012. Accepted May 23, 2012.

²⁰⁰⁰ Mathematics Subject Classification. 46L35, 05C20, 54H20.

Key words and phrases. higher rank graphs, path groupoid, groupoid algebra.

aperiodicity of Λ , topological freeness of $(\Lambda^{\Delta}, \sigma)$, and essential principality of Γ are equivalent to each other (Proposition 3.1).

This result may need a little explain: In k-graphs, obtaining aperiodicity with combinatorial method is not an easy task. But, in dynamical systems, topological freeness is a relatively mild restriction, e.g., every minimal system is topologically transitive, and every topologically transitive system is topologically free ([7]). And, in groupoids, essentially principal property implies that there is an order preserving bijective relation between the open invariant subsets of the unit space of a groupoid and its groupoid C^* -algebra ([5]). Because our groupoid Γ comes from the dynamical system (Λ^{Δ}, σ), invariant subsets of Γ^0 are strongly related to orbits and invariant subsets of (Λ^{Δ}, σ). So dynamical properties and groupoid properties will interdispally those of k-graphs. After we give relevant definitions of k-graphs, dynamical systems and groupoids in Section 2, we use this property to find equivalent conditions of cofinality and irreducibility of Λ on (Λ^{Δ}, σ), Γ , and $C^*(\Gamma)$ in Section 3.

2. Higher Rank Graphs

We briefly review definitions and basic properties of k-graphs, dynamical systems and groupoids. All materials in this section are taken from [3, 4, 5, 7].

Definition 2.1 ([3, 4]). A k-graph is a pair (Λ, d) where

$$\Lambda = (\mathrm{Obj}(\Lambda), \mathrm{Hom}(\Lambda), r, s)$$

is a countable small category and $d: \Lambda \to \mathbb{N}^k$ is a morphism, called the degree map, satisfying the *factorization property*: For every $\lambda \in \Lambda$ and $m, n \in \mathbb{N}^k$ with $d(\lambda) = m + n$, there exist unique elements $\mu, \nu \in \Lambda$ such that

$$d(\mu) = m, \ d(\nu) = n \text{ and } \lambda = \mu\nu.$$

Every $\lambda \in \Lambda$ is called a *path*. For every nonzero $n \in \mathbb{N}^k$, define $\Lambda^n = d^{-1}(n)$ and identify Λ^0 with $\text{Obj}(\Lambda)$. Let $r, s \colon \Lambda \to \Lambda^0$ denote the range and source maps. We abbreviate (Λ, d) to Λ when there is no confusion.

Standing Assumption. Throughout this paper, every k-graph is locally finite and has no sources in the sense of Kumjian and Pask ([3, 4]), every groupoid is a topological groupoid, and an ideal of a C^* -algebra means a closed two-sided ideal.

 \mathbb{Z}^k -actions on k-graphs ([4]). Suppose that (Δ, d) is a k-graph defined by

$$\Delta = \{ (m, n) \mid m, n \in \mathbb{Z}^k \text{ and } m \le n \}$$

with the structure maps

 $(l,m) \cdot (m,n) = (l,n), r(m,n) = m, s(m,n) = n \text{ and } d(m,n) = m - n.$

Let Λ be a k-graph, and the corresponding two-sided infinite path space be set by

 $\Lambda^{\Delta} = \{ x \colon \Delta \to \Lambda \mid x \text{ is a } k \text{-graph homomorphism } \}$

Then Λ^{Δ} is a zero-dimensional space consisting of 'two-sided' paths on Λ . A topology is endowed on Λ^{Δ} where its basis is given by

$$Z(\lambda,n) = \{ x \in \Lambda^{\Delta} \mid x(n,n+d(\lambda)) = \lambda \}$$

with $n \in \mathbb{Z}^k$ and $\lambda \in \Lambda$. It is not difficult to check that Λ^{Δ} is compact (locally compact, respectively) if Λ^0 is finite (infinite, respectively) so that λ^{Δ} is a metrizable space. A metric ρ on Λ^{Δ} is defined as follows: For $e = (1, \ldots, 1) \in \mathbb{Z}^k$ and $j \in \mathbb{N}$, let $\theta_j \in \Delta$ be the element (-je, je). Given $x, y \in \Lambda^{\Delta}$, set

$$h(x,y) = \begin{cases} 1 & x(0) \neq y(0) \\ 1 + \sup\{j \mid x(\theta_j) = y(\theta_j)\} & \text{otherwise.} \end{cases}$$

Then, for a fixed number $r \in (0, 1)$, a metric ρ is defined by the formula

$$\rho(x,y) = r^{h(x,y)} \text{ for } x, y \in \Lambda^{\Delta}.$$

Let σ be the action of \mathbb{Z}^k on Λ^{Δ} by the homeomorphism $\sigma^p \colon \Lambda^{\Delta} \to \Lambda^{\Delta}, \ p \in \mathbb{Z}^k$, defined by

$$(\sigma^p x)(m,n) = x(m+p,n+p).$$

Definition 2.2 ([3, 4]). A k-graph Λ is called *irreducible* if, for every $u, v \in \Lambda^0$, there is $\lambda \in \Lambda$ with $d(\lambda) \neq 0$ such that $u = r(\lambda)$ and $v = s(\lambda)$. And Λ is called *two-sided cofinal* if, for every $x \in \Lambda^{\Delta}$ and $v \in \Lambda^0$, there are $\alpha, \beta \in \Lambda$ such that $s(\alpha) = x(m,m), r(\alpha) = v = s(\beta)$ and $r(\beta) = x(n,n)$ for some $m, n \in \mathbb{Z}^k$.

Note that Kumjian and Pask defined cofinality of Λ for one-sided path space as follows ([3]): For every $x \in \Lambda^{\Omega}$ and $v \in \Lambda^{0}$, there is an $\alpha \in \Lambda$ such that $v = s(\alpha)$ and $r(\alpha) = x(n, n)$ for some $n \in \mathbb{N}^{k}$. We modified their definition for two-sided case.

Remark 2.3. In our definition of two-sided cofinality, we can set $m \leq n$: If $m \neq n$, let $p \in \mathbb{Z}^k$ be such that $m \leq p$ and $n \leq p$. Then $\gamma = \beta \cdot x(n, p)$ is a path from v to x(p, p) such that $m \leq p$.

Definition 2.4 ([3]). For $x \in \Lambda^{\Delta}$ and $p \in \mathbb{Z}^k$, p is called a *period* of x if, for every $(m,n) \in \Delta$, $\sigma^p x(m,n) = x(m,n)$. That x is called *periodic* if it has a nonzero period,

eventually periodic if $\sigma^n x$ is periodic for some $n \in \mathbb{N}^k$. Otherwise x is called to be aperiodic. A k-graph Λ is said to satisfy aperiodic condition if, for every $v \in \Lambda^0$, there is an aperiodic path $x \in \Lambda^{\Delta}$ such that x(0,0) = v.

Two-sided path groupoids ([4]). Suppose that Λ is a k-graph with its corresponding two-sided path space Λ^{Δ} . We define the 'two-sided' path groupoid of Λ by

$$\Gamma = \{ (x, n, y) \colon x, y \in \Lambda^{\Delta}, n \in \mathbb{Z}^k, \sigma^l x = \sigma^m y, n = l - m \text{ for some } l, m \in \mathbb{Z}^k \}$$

with the set of composable pairs

$$\Gamma^{(2)} = \{((x, n, y), (w, m, z)) \in \Gamma \times \Gamma : y = w\}$$

and the structure maps

$$s(x,n,y) = (x,0,x), \ r(x,n,y) = (y,0,y),$$

(x,n,y)(y,m,z) = (x,n+m,z), and (x,n,y)^{-1} = (y,-n,x).

The unit space of Γ , denoted Γ^0 , is identified with Λ^{Δ} via the diagonal map, and the isotropy group bundle is given by

$$I = \{(x, n, x) \in \Gamma\}.$$

Theorem 2.5 ([2, 3]). Suppose that Λ is a k-graph and that Γ is its two-sided path groupoid as defined above. Then there is a topology on Γ that makes Γ a second countable, r-discrete, locally compact, Hausdorff groupoid with the Haar system given by the counting measures.

Groupoids and dynamical systems.

Definition 2.6 ([5]). Let G be a topological groupoid with open range map and G^0 its unit space. A subset E of Γ^0 is said to be *invariant* if $r \circ s^{-1}(E) = E$. Then we say that G is

- (1) minimal if the only open invariant subsets of G^0 are the empty set \emptyset and G^0 itself,
- (2) *irreducible* if every nonempty open invariant subset of G^0 is dense, and
- (3) essentially principal if G is locally compact and, for every closed invariant subset F of G^0 , $\{u \in F : r^{-1}(u) \cap s^{-1}(u) = \{u\}\}$ is dense in F.

Notation 2.7. For a groupoid G, we denote $C^*(G)$ the groupoid C^* -algebra of G.

The following theorem gives a relation between gropoids and their groupoid algerba:

Theorem 2.8 ([5, II.4.5 and 4.6]). Suppose that G is a groupoid with its groupoid algebra $C^*(G)$. Let $\mathcal{O}(G)$ be the lattice of invariant open subsets of the unit space G^0 of G and $\mathcal{I}(C^*(G))$ the lattice of ideals of $C^*(G)$. Then there is a one-to-one order preserving relation from $\mathcal{O}(G)$ to $\mathcal{I}(C^*(G))$. Moreover, if G is essentially principal, then the correspondence is bijective.

Definition 2.9 ([7]). Suppose that X is a locally compact Hausdorff space and that, for every $p \in \mathbb{Z}^k$, $h^p \colon X \to X$ is a homeomorphism. Then the dynamical system (X, h) is called

- (1) minimal if every orbit is dense in X,
- (2) topologically transitive if for every pair of open sets $\{U, V\}$ there is an $n \in \mathbb{Z}^k$ such that $h^n(U) \cap V \neq \emptyset$, and
- (3) topologically free if $\operatorname{Per}^{\infty}(X)$ is dense in X.

3. Main Results

We will find equivalent conditions of aperiodicity of k-graphs in their corresponding dynamical systems and two-sided path groupoids. Then we use this property to investigate cofinality and irreducibility of k-graphs from dynamical systems, groupoids, and groupoid C^* -algebras.

Before go further, we may need to mention that similar relations between dynamical systems and groupoids are already proved in [8] under a little different conditions.

Proposition 3.1. For a k-graph Λ , the following are equivalent:

- (1) Λ satisfies the aperiodic condition.
- (2) $(\Lambda^{\Delta}, \sigma)$ is topologically free.
- (3) Γ is essentially principal.

Proof. (1) \iff (2). If Λ satisfies the aperiodic condition, then, for every $\lambda \in \Lambda$ with $d(\lambda) = n$, there are aperiodic paths $x, y \in \Lambda^{\Delta}$ such that $x(0,0) = r(\lambda)$ and $y(0,0) = s(\lambda)$. Then $z = \sigma^n y \cdot \lambda \cdot x$ defined by

$$z(p,q) = \begin{cases} y(p+n,0) & q = -d(\lambda) \\ \lambda & p = n = -d(\lambda) \text{ and } q = 0 \\ x(0,q) & p = 0 \end{cases}$$

is an aperiodic path, and, for $Z(\lambda, m)$ with $m \in \mathbb{Z}^k$, we have $\sigma^{-n-m}z(m, m+n) = s(-n, 0) = \lambda$. So the aperiodic points are dense in Λ^{Δ} , and $(\Lambda^{\Delta}, \sigma)$ is a topologically free system.

If aperiodic points are dense in Λ^{Δ} , then, for $v \in \Lambda^{0}$ and $\lambda \in \Lambda$ such that $s(\lambda) = v$, there is an aperiodic path $x \in Z(\lambda, 0)$. Then we have $x(0, d(\lambda)) = \lambda$ and $x(0, 0) = s(\lambda) = v$. Therefore Λ satisfies the aperiodic condition.

(2) \iff (3). Let $A = \{x \in \Lambda^{\Delta} : \sigma^k(x) = \sigma^l(x) \text{ implies } k = l\}$, the set of aperiodic points in Λ^{Δ} , and $B = \{b = (x, 0, x) \in \Gamma^0 : \{b\} = r^{-1}(b) \cap s^{-1}(b) \subset \Gamma\}$, the set of elements in Γ^0 with trivial isotopy. Then it is trivial that $x \in A$ if and only if $(x, 0, x) \in B$. Hence A is dense in Λ^{Δ} if and only if B is dense in Γ^0 .

For a closed invariant subset F of Γ^0 , we note $\{u \in F : r^{-1}(u) \cap s^{-1}(u) = \{u\}\} = F \cap B$. Thus B is dense in Γ^0 implies that, for every closed invariant subset F of $\Gamma^0, F \cap B$ is dense in F. Conversely, density of $F \cap B$ in F implies B is dense in Γ^0 when we set $F = \Gamma^0$.

Proposition 3.2. For a k-graph Λ , the followings are equivalent:

- (1) Λ is a two-sided cofinal graph.
- (2) $(\Lambda^{\Delta}, \sigma)$ is a minimal system.
- (3) Γ is a minimal groupoid.
- (4) $C^*(\Gamma)$ is a simple algebra.

Proof. (1) \Longrightarrow (2). Suppose that Λ is a two-sided cofinal graph and $\lambda \in \Lambda$. Then for $s(\lambda)$ and $r(\lambda)$, there are $\alpha, \beta \in \Lambda$ and $m, n \in \mathbb{Z}^k$ such that $s(\alpha) = x(m, m)$, $r(\alpha) = s(\lambda), r(\lambda) = s(\beta)$, and $r(\beta) = x(n, n)$. As in the case of Remark 2.3, we may set $m \leq n$. Then $y \in Z(\lambda, 0)$ defined by

$$y(p,q) = \begin{cases} x(m+p+d(\alpha),m) & q = -d(\alpha) \\ \alpha & p = -d(\alpha), q = 0 \\ \lambda & p = 0, q = d(\lambda) \\ \beta & p = d(\lambda), q = d(\lambda) + d(\beta) \\ x(n,n+q-d(\lambda)-d(\beta)) & p = d(\lambda) + d(\beta) \end{cases}$$

has the same orbit as that of x, and $\sigma^{-l}(y) \in Z(\lambda, l)$ for every $l \in \mathbb{Z}^k$. Hence $(\Lambda^{\Delta}, \sigma)$ is a minimal system.

(2) \implies (1). Suppose that $(\Lambda^{\Delta}, \sigma)$ is a minimal system. For every $x \in \Lambda^{\Delta}$ and $v \in \Lambda^0$, let α and β be paths such that $r(\alpha) = v = s(\beta)$. Since the orbit of x is dense in Λ^{Δ} , there is an $n \in \mathbb{Z}^k$ such that $\sigma^n x \in Z(\alpha\beta, 0)$. Then we have $x(n, n + d(\alpha)) = \alpha$ and $x(n + d(\alpha), n + d(\alpha) + d(\beta)) = \beta$ such that $s(\alpha) = x(n, n)$ and $r(\beta) = x(n + d(\alpha) + d(\beta), n + d(\alpha) + d(\beta))$ Thus Λ is a two-sided cofinal graph.

(2) \implies (3). Remark that for a subset E of Γ^0 , $(y, 0, y) \in r \circ s^{-1}(E)$ if and only if $y = \sigma^n(x)$ for some $(x, 0, x) \in E$ and $n \in \mathbb{Z}^k$, i.e., $r \circ s^{-1}(E)$ is identified

as $\bigcup_{(x,0,x)\in E} \operatorname{Orb}(x)$. So minimality of $(\Lambda^{\Delta}, \sigma)$ implies that the only open invariant subsets of Γ^0 are empty set and Γ^0 .

(3) \implies (2). Assume that $(\Lambda^{\Delta}, \sigma)$ is not a minimal system. Then there is an $x \in \Lambda^{\Delta}$ such that $\overline{\operatorname{Orb}(x)} \subsetneq \Lambda^{\Delta}$. Let $Y = \Lambda^{\Delta} - \overline{\operatorname{Orb}(x)}$ and $E = \{(y, 0, y) : y \in Y\}$. We show that E is an invariant open subset of Γ^0 .

First we remark that E is an open subset of Γ^0 ([5]) and $E \subset r \circ s^{-1}(E)$. We also note that, for $(a, 0, a) \in r \circ s^{-1}(E)$, there are $y \in Y$ and $n \in \mathbb{Z}^k$ such that $\sigma^n(y) = a$.

Assume that E is not an invariant open subset of Γ^0 , and obtain a contradiction. Then we have, as $E \subset r \circ s^{-1}(E)$ and $r \circ s^{-1}(E)$ is open in Γ^0 , $r \circ s^{-1}(E) \cap (\Gamma^0 - E) \neq \emptyset$ and $r \circ s^{-1}(E) \cap \operatorname{Int}(\Gamma^0 - E) \neq \emptyset$. Thus there exists an

$$(a, 0, a) \in r \circ s^{-1}(E) \cap \operatorname{Int}(\Gamma^0 - E)$$

such that $a \in \operatorname{Orb}(x)$ and $a \in \operatorname{Orb}(y)$ for some $y \in E$. So there are $n, m \in \mathbb{Z}^k$ such that $\sigma^n(y) = a$ and $\sigma^m(x) = a$. But this is a contradiction to the fact that $y \in Y = \Lambda^{\Delta} - \overline{\operatorname{Orb}(x)}$. Therefore we have a nontrivial invariant open subset of Γ^0 , and Γ is not a minimal groupoid.

 $(3) \Longrightarrow (4)$. We recall that every minimal system is topologically free ([7]). Thus Γ is essentially principal by Proposition 3.1, and there is a bijective relation between the lattice of invariant open subsets of the unit space of Γ and the lattice of closed two-sided ideal of $C^*(\Gamma)$. Then $C^*(\Gamma)$ is a simple algebra as Γ is a minimal groupoid.

(4) \implies (3) If $C^*(\Gamma)$ is simple, then $C^*(\Gamma)$ does not have a nontrivial ideal, and Γ cannot have any nontrivial open invariant subset by Theorem 2.8. Thence Γ is a minimal groupoid.

Remark 3.3. In the above proposition, we need aperiodicty of Λ only for (3) \Longrightarrow (4). Even in one-sided case ([3, Proposition 4.8]), because of Renault's theorem (Theorem 2.8), simplicity of $C^*(\Lambda)$ implies cofinality of Λ does not require the aperiodic condition of Λ .

As an application of our dynamical approach to k-graphs, it may be noteworthy to mention simplicity of $C^*(\Lambda)$, the C^* -algebra of a k-graph Λ obtained from one-sided path space Λ^{Ω} ([3]).

Corollary 3.4. If a k-graph Λ is two-sided cofinal, then $C^*(\Lambda)$ is a simple algebra.

Proof. By [3, Proposition 4.8], if Λ is a cofinal graph and satisfies the aperiodic condition, then $C^*(\Lambda)$ is simple. It is trivial that two-sided cofinality implies (one-sided) cofinality, and we just need to obtain aperiodic condition from two-sided

cofinality: By Proposition 3.2, $(\Lambda^{\Delta}, \sigma)$ is a minimal system, and every minimal system is topologically free ([7]). Hence $(\Lambda^{\Delta}, \sigma)$ is a topologically free system, and Λ satisfies the aperiodic condition by Proposition 3.1. Therefore $C^*(\Lambda)$ is a simple algebra.

Corollary 3.5. If a k-graph Λ is an irreducible graph, then $(\Lambda^{\Delta}, \sigma)$ is a minimal system.

Since every irreducible graph is two-sided cofinal by definition, the above Corollary is trivial. And there is a little more to say about irreducible graphs.

Definition 3.6 ([6]). A point x in a dynamical system (X, h) is called a *nonwan*dering point if for every open neighborhood U of x, there is an $n \in \mathbb{Z}^k \setminus \{0\}$ such that $h^n(U) \cap U \neq \emptyset$.

Proposition 3.7. Suppose that Λ is a k-graph. Then Λ is an irreducible graph if and only if the corresponding dynamical system $(\Lambda^{\Delta}, \sigma)$ is a topologically transitive system and every point in Λ^{Δ} is a nonwandering point.

Proof. (\implies) It suffices to show this for cylinder sets $U = Z(\lambda, l)$ and $V = Z(\nu, n)$. Since Λ is irreducible, for $s(\nu), r(\lambda) \in \Lambda^0$, there is a $\mu \in \Lambda$ such that $r(\mu) = s(\nu)$ and $s(\mu) = r(\lambda)$. Then, for every $x \in Z(\lambda \mu \nu, l)$,

$$\begin{aligned} x(l, l+d(\lambda\mu\nu)) &= x(l, l+d\lambda+d\mu+d\nu) \\ &= x(l, l+d\lambda) \cdot x(l+d\lambda, l+d\lambda+d\mu) \\ &\quad \cdot x(l+d\lambda+d\mu, l+d\lambda+d\mu+d\nu) \\ &= \lambda\mu\nu \end{aligned}$$

and the factorization property imply that

 $x \in Z(\lambda, l) \cap Z(\nu, l + d\lambda + d\mu).$

Since $\sigma^q(Z(\nu, n)) = Z(\nu, n - q)$ for every $q \in \mathbb{Z}^k$, we have

$$Z(\nu, l + d\lambda + d\mu) = Z(\nu, n - (n - l - d\lambda - d\mu)) = \sigma^{n - l - d\lambda - d\mu} Z(\nu, n).$$

Therefore we have

$$Z(\lambda\mu\nu, l) \subset Z(\lambda, l) \cap \sigma^{n-l-d\lambda-d\mu}Z(\nu, n),$$

and (Λ, σ) is a topologically transitive system.

To show that every point is nonwandering, let x be a point in Λ^{Δ} and $U = Z(\lambda, l)$ an open neighborhood of x. Then the irreducible condition implies that there is a path μ such that $s(\mu) = r(\lambda), r(\mu) = s(\lambda)$ and $d(\mu) \neq 0$. It is not difficult to check

$$Z(\lambda\mu\lambda, l) \subset Z(\lambda, l) \cap \sigma^{-d\lambda - d\mu} Z(\lambda, l)$$

and that every point in Λ^{Δ} is a nonwandering point.

(\Leftarrow) For every $u, v \in \Lambda^0$, we need to show that there is a $\lambda \in \Lambda$ such that $s(\lambda) = u, r(\lambda) = v$ and $d(\lambda) \neq 0$. Since $(\Lambda^{\Delta}, \sigma)$ is transitive, there is $n \in \mathbb{Z}^k$ such that

$$\sigma^n \left(Z(u,0) \right) \cap Z(v,0) \neq \emptyset.$$

Then there exists a k-graph morphism $x: \Delta \to \Lambda$ such that

$$x \in Z(u, -n) \cap Z(v, 0) \implies x(-n, -n) = u \text{ and } x(0, 0) = v$$

Let ℓ be a finite path in Δ between (-n, -n) and (0, 0) with $d(\ell) \neq 0$. Then $x(\ell)$ is a path in Λ with $d(x(\ell)) \neq 0$ such that either $s(x(\ell)) = u$ and $r(x(\ell)) = v$ or $s(x(\ell)) = v$ and $r(x(\ell)) = u$.

Suppose $s(x(\ell)) = v$ and $r(x(\ell)) = u$. Since every point in Λ^{Δ} is nonwandering, for an open neighborhood $Z(x(\ell), 0)$ of $x(\ell)$, there is an $m \in \mathbb{Z}^k$ such that

$$\sigma^m Z\left(x(\ell), 0\right) \cap Z\left(x(\ell), 0\right) = Z\left(x(\ell), -m\right) \cap Z\left(x(\ell), 0\right) \neq \emptyset.$$

Then, for every $y \in Z(x(\ell), -m) \cap Z(x(\ell), 0)$, $y(-m + d(\ell), 0)$ is a path whose source is u and range is v. Therefore the graph Λ is an irreducible graph. \Box

Remark 3.8. We need the nonwandering condition for a graph to be irreducible. Consider the following 1-graph Λ . Then the corresponding dynamical system is

topologically transitive, but Λ is not irreducible.

To connect topologically transitive systems, irreducible groupoids and prime C^* algebras, we need a few technical lemmas. Recall that a C^* -algebra is called a *prime* C^* -algebra if intersection of any two nonzero ideals is nonzero.

Lemma 3.9 ([5, I.4.1]). Suppose that G is a groupoid and that $(s, r) : G \to G^0 \times G^0$ is given by the source map s and range map r of G. Then G is an irreducible groupoid if and only if Im(G) under (s, r) is dense in $G^0 \times G^0$.

Lemma 3.10 ([8]). Let G be a topological groupoid with open range map and G^0 its unit space. If U is an invariant subset of Γ^0 , then $V = \Gamma^0 - U$ and W = IntU are also invariant subsets of Γ^0 .

For a groupoid G and its groupoid algebra $C^*(G)$, the ideals of $C^*(G)$ related to open invariant subsets of G^0 mentioned in Theorem 2.8 are given as follow: For any open invariant subset U of G^0 , let

$$I_c(U) = \{ f \in C_c(G) : f(x, n, y) = 0 \text{ if } (x, n, y) \notin s^{-1}(U) \}$$

and I(U) the closure of $I_c(U)$ in $C^*(G)$. Then I(U) is an ideal of $C^*(G)$ [5, II.4.5].

Next property is certainly a well-known fact to experts, but we were unable to find any reference.

Lemma 3.11. Suppose that G is a groupoid and that U and V are open invariant subsets of G^0 . Then $I(U) \cap I(V) = I(U \cap V)$.

Proof. We just need to check $I_c(U) \cap I_c(V) = I_c(U \cap V)$:

$$f \in I_c(U) \cap I_c(V) \iff f(x, n, y) = 0 \text{ for } (x, 0, x) \in U^c \cup V^c = (U \cap V)^c$$
$$\iff f \in I_c(U \cap V).$$

Proposition 3.12. Suppose that Λ is a k-graph. Then the followings are equivalent:

- (1) $(\Lambda^{\Delta}, \sigma)$ is a topologically transitive system.
- (2) Γ is an irreducible groupoid.
- (3) $C^*(\Gamma)$ is a prime C^* -algebra.

Proof. (1) \implies (2). Suppose that $(\Lambda^{\Delta}, \sigma)$ is a topologically transitive system and that U is a nontrivial open invariant subset of Γ^0 . As in the proof of Proposition 3.2, U is an invariant subset of Γ^0 implies

$$U = r \circ s^{-1}(U) = \{ (\sigma^n(x), 0, \sigma^n(x)) \colon (x, 0, x) \in U \text{ and } n \in \mathbb{Z}^k \}.$$

So, when $\pi \colon \Gamma^0 \to \Lambda^\Delta$ given by $(y, 0, y) \to y$ is the identification map of Γ^0 , U is an invariant subset of Γ^0 means that $\sigma^n(\pi(U)) \subset U$ for every $n \in \mathbb{Z}^k$.

If U is not dense in Γ^0 , then $\Gamma^0 - \overline{U} \neq \emptyset$ and $(\Lambda^{\Delta}, \sigma)$ is topologically transitive imply that there is $n \in \mathbb{Z}^k$ such that $\sigma^n(\pi(U)) \cap \pi(\Gamma^0 - \overline{U}) \neq \emptyset$. Hence we have $U \cap (\Gamma^0 - \overline{U}) \neq \emptyset$, which is a contradiction. Thus V is an empty set, and a nontrivial open invariant subset U of Γ^0 is dense in Γ^0 .

(2) \Longrightarrow (1). Suppose that $(\Lambda^{\Delta}, \sigma)$ is not topologically transitive. then there exist open subsets $U, V \subset \Lambda^{\Delta}$ such that $\sigma^n U \cap V = \emptyset$ for every $n \in \mathbb{Z}^k$. So, for any $x \in U, y \in V$ and $n \in \mathbb{Z}^k$, we have $(x, n, y) \notin \Gamma$ and $(x, 0, x) \times (y, 0, y) \notin \text{Im}(\Gamma)$. Thus $\{(x, 0, x) \times (y, 0, y) : x \in U, y \in V\}$ is a nonempty open subset $\Gamma^0 \times \Gamma^0$ that is disjoint to Im (Γ) , and Γ is not irreducible by Lemma 3.9.

(3) \Longrightarrow (2). First we remind that, by Lemma 3.11, $I(E \cap F) = I(E) \cap I(F)$ when E and F are open invariant subsets of Γ^0 . Let U be a nonempty open invariant subset of Γ^0 , and $V = \text{Int}(\Gamma^0 - U)$. Then V is also an open invariant subset of Γ^0 by Lemma 3.10.

If U is not dense in Γ^0 , then V is also a nonempty open invariant subset, and we have two nonzero ideals I(U) and I(V). So we have from prime property of $C^*(\Gamma)$ that $I(U) \cap I(V) = I(U \cap V)$ is a nonzero ideal, which is a contradiction to the fact that $U \cap V$ is an empty set. Therefore every nonempty open invariant subset of Γ^0 is dense in Γ^0 , and Γ is an irreducible groupoid.

 $(2) \Longrightarrow (3)$. Since every topologically transitive system is topologically free, Γ is an essentially principal groupoid, and there is a bijective relation between the set of open invariant subsets of Γ^0 and that of ideals in $C^*(\Gamma)$ by Theorem 2.8.

Suppose that I and J are nonzero ideals in $C^*(\Gamma)$. Then there are nonempty open invariant subsets U(I) and U(J) of Γ^0 . As Γ is irreducible, $U(I) \cap U(J) \neq \emptyset$ whose corresponding ideal in $C^*(\Gamma)$ is $I \cap J$ by Lemma 3.11. Thus $C^*(\Gamma)$ is a prime algebra.

References

- J. Cuntz & W. Krieger: A class of C*-algebras and topological Markov chains Invent. Math. 56 (1980), 251-268.
- V. Deaconu: Groupoids associated with endomorphisms. Trans. Amer. Math. Soc. 347 (1995) 1779-1786.
- A. Kumjian & D. Pask: Higher rank graph C*-algebras. New York J. Math. 6 (2001), 1-20.
- 4. _____: Actions of \mathbb{Z}^k associated to higher rank graphs. Ergod. Th. and Dynam. Sys. **23** (2003), 1153-1172.
- J. Renault: A groupoid approach to C^{*}-algebras. Lecture Notes in Math. 793 (1980), Springer-Verlag.
- C. Robinson: Dynamical system: Stability, Symbolic dynamics and Chaos. CRC Press, 1995.
- J. Tomiyama: The interplay between topological dynamics and theory of C^{*}-algberas. Lecture Notes Series 2, Res. Inst. Math. and GARC, Seoul Nat'l Univ., 1992.
- I. Yi: Groupoid algebras associated with covering maps. J. Korean Soc. Math. Educ. Ser. B: Pure and Appl. Math. 18 (2011), 261-268.

DEPARTMENT OF MATHEMATICS EDUCATION, EWHA WOMANS UNIVERSITY, SEOUL 120-750, KOREA

Email address: yih@ewha.ac.kr