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GROUPOID ALGEBRAS ASSOCIATED WITH COVERING MAPS

Inhyeop Yi

Abstract. For a compact Hausdorff space X with its p-fold covering map σ, we
construct its corresponding topological groupoid Γ, and show that there is a strong
relation between the dynamical structures of (X, σ) and the groupoid structures of
Γ.

1. Preliminary

There is a long history of interrelation between topological dynamics and theory
of C∗-algebras ([8]), and one of methods to connect these two fields is constructing
groupoid algebras from single dynamical systems ([7]). Following Renault’s argu-
ment, Deaconu constructed a class of groupoids associated with covering maps of
compact Hausdorff spaces and C∗-algebras of these groupoids ([4]). We study some
conditions for those C∗-algebras to be simple or prime, relations between covering
map and groupoids, and Pimsner-Voiculescu six term exact sequence for K-groups
of groupoid algebras.

For a compact Hausdorff space X and its p-fold covering map σ : X → X, set

(1) Γ = {(x, n, y) ∈ X × Z×X : ∃k, l ≥ 0, n = l − k, σkx = σly}.
The pair {((x, n, y), (w,m, z))} ∈ Γ2 is composable if y = w, and multiplication and
inverse are defined by

(x, n, y)(y, m, z) = (x, n + m, z) and (x, n, y)−1 = (y,−n, x).

For (x, n, y) ∈ Γ, r(x, n, y) = (x, 0, x) is the range of (x, n, y) and d(x, n, y) = (y, 0, y)
is its domain. Γ0, the unit space of Γ, is identified with X via the diagonal map,
and the isotropy group bundle is given by I = {(x, n, x) ∈ Γ}.
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For k ≥ 0, let

Rk = {(x, 0, y) ∈ Γ : σkx = σky} and R∞ =
⋃

k≥0

Rk.

It is easy to check that Rk and R∞ are subgroupoids of Γ, and their unit space is
Γ0.

Standing Assumption. Throughout this paper, X denotes a compact Hausdorff
space, σ : X → X is a p-fold covering map, Γ is the groupoid defined in the formula
(1), C∗(Γ) is the groupoid C∗-algebra of Γ, and an ideal means a closed two-sided
ideal.

Definition 1.1 ([4, 8]). Let (X, σ) be as above. For each x ∈ X, Ox =
⋃

k≥0

σ−k(σkx)

is called the orbit of x. And σ is called

(i) minimal if Ox = X for every x ∈ X,
(ii) irreducible if for any nonempty open subsets U, V of X, σnU ∩ V 6= ∅ for

some n ∈ N0,and
(iii) essentially free if {x ∈ X : σkx = σlx for some k, l ≥ 0 implies k = l} is

dense in X.

Definition 1.2 ([7]). Let G be a topological groupoid with open range map and G0

its unit space. We say that G is

(i) minimal if the only open invariant subsets of G0 are the empty set ∅ and
G0 itself,

(ii) irreducible if every invariant nonempty open subset of G0 is dense, and
(iii) essentially principal if G is locally compact and, for every closed invariant

subset F of G0, {u ∈ F : r−1(u) ∩ d−1(u) = {u}} is dense in F .

The following two theorems are basic properties of our groupoid algebras.

Theorem 1.3 ([4]). Suppose that X, σ and Γ are as in the standing assumption.
Then Γ carries a topology that makes Γ an r-discrete locally compact Hausdorff
groupoid and R∞ a principal r-discrete locally compact Hausdorff groupoid.

For any open invariant subset U of Γ0, let

Ic(U) =
{
f ∈ Cc(Γ) : f(x, n, y) = 0 if (x, n, y) /∈ d−1(U)

}

and I(U) the closure of Ic(U) in C∗(Γ). Then I(U) is an ideal of C∗(Γ) [7, II.4.5].

Theorem 1.4 ([7, II. 4.5 and 4.6]). Suppose that O(Γ) is the lattice of invariant
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open subsets of Γ0 and that I(C∗(Γ)) is the lattice of ideals of C∗(Γ). The correspon-
dence U → I(U) is a one-to-one order preserving relation from O(Γ) to I(C∗(Γ)).
Moreover, if Γ is essentially principal, then the correspondence is bijective.

2. Main Results

We show that ynamical structures of (X, σ) are strongly related to the groupoid
structures of Γ and its groupoid C∗-algebra C∗(Γ).

Proposition 2.1. Suppose that X, σ and Γ are as in the standing assumption.
Then the followings are equivalent.

(1) σ is essentially free.
(2) Γ is essentially principal.
(3) Pern(X) = {x ∈ X : σkx = σk+nx for every k ∈ N ∪ {0}} has empty

interior for every positive integer n.
(4) C(X) ∼= C∗(Γ0) is a maximal abelian subalgebra of C∗(Γ).
(5) Γ0 is the interior of I where I is the isotropy group bundle of Γ.

Proof. (1) =⇒ (3) is trivial.
(3) =⇒ (1). Let A = {x ∈ X : for any k, l ≥ 0, σkx = σlx implies k = l}. If

σ is not essentially free, then A is not dense in X, and we can find an open set
U ⊂ X such that U ∩ A = ∅, for X is compact Hausdorff space. Since X − A =⋃∞

n=1

⋃∞
k=0 σ−k(Pern(X)), we have U =

⋃∞
n=1

⋃∞
k=0 U∩σ−k(Pern(X)), and by Baire

Category theorem there exist integers n ≥ 1 and k ≥ 0 such that U ∩ σ−kPern(X)
has nonempty interior.

We remind that σ−k(Pern(X)) =
⋃pk

i=1 Pi where p is the index of the covering
map σ : X → X and Pi ' Pern(X) with Pi∩Pj = ∅ if i 6= j. Then U∩σ−k(Pern(X))
has nonempty interior implies Int{U ∩Pi} 6= ∅ for at least one i. Hence σk(U ∩Pi) ⊂
Pern(X), and σ is open map implies Int{Pern(X)} 6= ∅.

(1) ⇐⇒ (5). Let B = X − A and define Bn = {x ∈ X : (x, n, x) ∈ I} and
In = {(x, n, x) ∈ I} for every nonzero integer n. Then it is trivial that B =

⋃
Bn

and I =
⋃

In ∪ Γ0 with In = Diag{Bn × {n} × Bn}. So Int I − Γ0 =
⋃

Int In ' B,
and A is dense in X if and only if Int I − Γ0 = ∅.

(5) ⇐⇒ (4) is trivial by [7, II.4.7].
(1) ⇐⇒ (2). Let U = {u = (x, 0, x) ∈ Γ0 : {u} = r−1(u) ∩ d−1(u) ⊂ Γ}. Then

x ∈ A if and only if (x, 0, x) ∈ U . So A is dense in X if and only if U is dense in
Γ0. ¤
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We can obtain the following corollary from Theorem 1.4 and Proposition 2.1.

Corollary 2.2. If σ is essentially free, then for any nonzero ideal J of C∗(Γ),
J ∩ C∗(Γ0) and J ∩ C∗(R∞) are not {0}.
Proposition 2.3. Suppose that X, σ and Γ are as in the standing assumption.
Then the followings are equivalent.

(1) σ is minimal.
(2) C∗(R∞) is simple.
(3) R∞ is a minimal groupoid.

Proof. (1) =⇒ (2) is done in [4].
(2) =⇒ (3). Since R∞ is a principal r-discrete groupoid, this is an easy conse-

quence of Theorem 1.4.
(3) =⇒ (1). Assume that σ is not minimal. Then there exists an x0 ∈ X such

that Ox0 ( X. Let Y = X −Ox0 and Z = {(y, 0, y) : y ∈ Y }. Now we show that Z

is an invariant open subset of Γ0.
It is trivial that Z is an open subset of Γ and Z ⊂ r(d−1(Z)) where r and d are

range and domain maps of Γ. For an (a, 0, a) ∈ r(d−1(Z)), there exists a y ∈ Y such
that (a, 0, y) ∈ d−1(Z) ⊂ R∞ with σka = σky for some k ≥ 0. Since r(d−1(Z)) is
open in Γ0 ([7]), r(d−1(Z))∩ (Γ0 −Z) 6= ∅ means that r(d−1(Z))∩ Int(Γ0 −Z) 6= ∅.
So if there exists (a, 0, a) ∈ r(d−1(Z)) ∩ Int(Γ0 − Z), then we have a ∈ Ox0 and
y ∈ Ox0 as σka = σky for some k ≥ 0. This is a contradiction to the facts that
y ∈ Y and Y = X − Ox0 . Hence we obtain that r(d−1(Z)) ⊂ Z and that Z is a
nontrivial invariant open subset of Γ0. Therefore R∞ is not a minimal groupoid. ¤

By Theorem 1.4, there exists an injective relation between the set of ideals in
C∗(R∞) and that of C∗(Γ) by I∞(U) = I(U)∩C∗(R∞) where U is an open invariant
subset of Γ0. If σ is essentially free, then the relation is bijective. So the following
corollary is trivial by Proposition 2.3.

Corollary 2.4. If σ is essentially free and minimal, then C∗(Γ) is simple. Con-
versely, if C∗(Γ) is simple, then σ is minimal.

Remark 2.5 ([7, I. 4.1]). Γ is irreducible if Im Γ is dense in Γ0 × Γ0 by the map
(r, d) : Γ → Γ0 × Γ0 where r is the range map, and d is the domain map.

Lemma 2.6. Let G be a topological groupoid with open range map and G0 its unit
space. If U is an invariant subset of Γ0, then V = Γ0 − U and W = IntU are also
invariant subsets of Γ0.
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Proof. It is trivial that W ⊂ r(d−1(W )). Since r is an open map, r◦d−1W is an open
subset of U = r(d−1(U)). So we have r(d−1(W )) ⊂ IntU , and W = r(d−1(W )).

To show that V is an invariant subset of Γ0, we only need to show r(d−1(V )) ⊂ V .
If r(d−1(V )) ∩ U 6= ∅, then there exists (x, 0, x) ∈ r(d−1(V )) ∩ U . So we can choose
(v, 0, v) ∈ V such that (x, n, v) ∈ d−1(V ) ⊂ Γ and (v,−n, x) ∈ Γ. Since we assumed
(x, 0, x) ∈ U where U is an invariant subset of Γ0, we have (v,−n, x) ∈ d−1(U) and
(v, 0, v) ∈ r(d−1(U)) = U , a contradiction. Hence r(d−1(V )) is a subset of V , and
V is an invariant subset of Γ0. ¤

Remark 2.7. It is an easy consequence of Lemma 2.6 that, for any subset U of Γ0

and V = Γ0 − U , one of IntU , U , IntV and V is an invariant subset of Γ0 implies
that the remaining three subsets are also invariant subsets of Γ0.

Proposition 2.8. Suppose that X, σ and Γ are as in the standing assumption.
Then the followings are equivalent.

(1) σ is irreducible.
(2) Γ is irreducible.
(3) C∗(R∞) is a prime algebra.

Proof. (1) =⇒ (2). Let U be a nonempty open invariant subset of Γ0 ' X, and
show that U is dense in X. We remind that σnU ⊆ U . If V = X − U 6= ∅, then
there exists n ∈ N such that σnU ∩ V 6= ∅ as σ is irreducible. So U ∩ (X − U) 6= ∅,
a contradiction. Therefore we have V = ∅, and U is dense in X.

(2) =⇒ (1). If σ is not irreducible, then there exist nonempty open subsets
U, V ⊂ X such that σnU ∩ V = ∅ for every n ∈ N ∪ {0}. Note that, for any
x ∈ U and y ∈ V , (x, 0, x)× (y, 0, y) /∈ Im(r, d) because (x, 0, x)× (y, 0, y) ∈ Im(r, d)
implies that there exists an n ∈ N ∪ {0} such that (x, n, y) ∈ Γ, and we have
σkx = σk+ny ∈ σkU∩σk+nV . Hence U×V is a nonempty subset of Γ0×Γ0−Im(r, d),
and Im(r, d) is not dense in Γ0 × Γ0.

(1) =⇒ (3). As R∞ is a principal groupoid, by Theorem 1.3 and Theorem 1.4,
every ideal is of the form I(U) where U is an open invariant subset of Γ0. For any
nonzero ideals I(U) and I(V ) of C∗(R∞), we have I(U) ∩ I(V ) = I(U ∩ V ). Since
σ is irreducible, we showed in the above that U and V are dense in Γ0. So U ∩ V

is nonempty dense subset of Γ0. Hence I(U) ∩ I(V ) 6= {0}, and C∗(R∞) is a prime
algebra.

(3) =⇒ (1). If σ is not irreducible, then Γ0 has two nonempty disjoint open
invariant subsets U, V by Lemma 2.6. For for these open invariant sets, their corre-
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sponding ideals satisfy I(U) ∩ I(V ) = I(U ∩ V ) = {0}. Therefore C∗(R∞) is not a
prime algebra. ¤

We have the following corollary from Theorem 1.4 and Proposition 2.8.

Corollary 2.9. If σ is essentially free and irreducible, then C∗(Γ) is prime. Con-
versely, C∗(Γ) is prime implies that σ is irreducible.

3. K-theory of C∗(Γ)

We show that it is possible to compute K-theory of groupoid algebras from dy-
namical properties of (X,σ) using Paschke’s argument ([6]).

Definition 3.1. Let X, σ and Γ be as in the standing assumption. Define α : S1 →
Aut(C∗(Γ)) by λ 7→ αλ such that

αλ(f)(x, n, y) = λ−nf(x, n, y) for f ∈ Cc(Γ).

Remark 3.2. (C∗(Γ), S1, α) is a C∗-dynamical system by [7, II.5.1]. The fixed
point algebra of α is C∗(R∞), which is an inductive limit of C∗(Rn), n ≥ 0 ([4]).

Definition 3.3 ([6]). Let β be a continuous action of a compact abelian group G on
a C∗-algebra A, and B its fixed point algebra. For a character χ in the dual group
Ĝ, set

Eχ = {a ∈ A : βs(a) = χ(s)a for every s ∈ G}.
We say that β has large spectral subspaces if E∗

χEχ = B for each χ ∈ Ĝ.

Proposition 3.4. The action α on C∗(Γ) has large spectral subspaces.

Proof. It suffices to show that E∗
1E1 = C∗(R∞) = E1E∗

1 (see [6] for details). As E1

is generated by continuous functions supported on {(x,−1, y) ∈ Γ}, it is not difficult
to obtain E∗

1E1 ⊆ C∗(R∞) and E1E∗
1 ⊆ C∗(R∞).

For any f ∈ Cc(Rn), we define g̃, h̃ ∈ Cc(Γ0) by

g̃(x, 0, x) = f(x, 0, y)|f(x, 0, y)|− 1
2 and h̃(y, 0, y) = |f(x, 0, y)| 12

so that we have f(x, 0, y) = g̃(x, 0, x)h̃(y, 0, y) ([5]). Denote g = p
n
2 g̃ and h = p

n
2 h̃

where p is the index of the covering map σ. Then, for v ∈ E1 defined by

v(x, n, y) =

{
1/
√

p if n = −1 and y = σx,

0 otherwise,
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we have

f = g̃h̃ = gvnv∗nh

= (gvnv∗n−1)(v∗h) ∈E1E
∗
1

= (gvnv∗n+1)(vh) ∈E∗
1E1.

Hence C∗(Rn) ⊆ E1E∗
1 and C∗(Rn) ⊆ E∗

1E1, for C∗(Rn) is the norm closure of
Cc(Rn). Since C∗(R∞) is an inductive limit of C∗(Rn) by Remark 3.2, we have
C∗(R∞) ⊆ E∗

1E1 and C∗(R∞) ⊆ E1E∗
1 , and this completes the proof. ¤

Corollary 3.5. (1) C∗(R∞) is a full-corner of C∗(Γ)×α S1.
(2) C∗(R∞)⊗K ∼= (C∗(Γ)×α S1)⊗K, and
(3) C∗(Γ)⊗K ∼= (C∗(R∞)⊗K)×α̂ Z.

Proof. (1) is trivial by Proposition 3.4 and [6, 2.1]. (2) comes from statement (1)
and [1, 2.6], and (3) is a consequence of [6, 2.3]. ¤

Proposition 3.6. We have the following six-term exact sequence.

K0(C∗(R∞)) σ∗−id−−−−→ K0(C∗(R∞)) i∗−−−−→ K0(C∗(Γ))x
y

K1(C∗(Γ)) i∗←−−−− K1(C∗(R∞)) σ∗−id←−−−− K1(C∗(R∞)).

Proof. By Proposition 3.4, the action α has large spectral subspaces, and the fixed
point algebra C∗(R∞) is a unital algebra. So we can obtain the six term exact
sequence by applying Theorem 3.1 of [6]. ¤

Example 3.7 ([2, 3, 4]). Let X be the infinite product space
∏

i≥0 Xi where Xi =
{1, 2, . . . , p} for each i, and σ : X → X be the unilateral shift given by (σ(x))i =
xi+1, i ≥ 0. Let A = A(i, j) be a p× p matrix with {0, 1}-entries, define

XA = {x = (xi) : A(xi, xi+1) = 1},
and denote σ|XA

by σ. As in Example 2 of [4], we assume
∑

i

A(i, j) = q ∀j for some q ≥ 2.

Then σ is a q-fold covering, and we have C∗(Γ0) = DA, C∗(R∞) = FA, and C∗(Γ) =
OA, the Cuntz-Krieger algebra of A ([3, 4]).

If A satisfies the Cuntz-Krieger condition (I), then DA is a maximal abelian
subalgebra of OA by Remark 2.18 of [3]. So σ is essentially free by Proposition 2.1.
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If A is irreducible, then σ is minimal. Therefore we obtain by Corollary 2.4 that if
A satisfies (I) and A is irreducible, then OA is simple [3, 2.14].

Since FA is an AF -algebra, we can apply the exact sequence in Proposition 3.6
to compute the K-theory of OA, (see [2]), that

K0(OA) ∼= Zp/(1−At)Zp,

K1(OA) ∼= ker(1−At : Zp → Zp).
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