• 제목/요약/키워드: shift of finite type

검색결과 30건 처리시간 0.032초

ON THE RETRACTS AND RECODINGS OF CONTINUING CODES

  • YOO, JISANG
    • 대한수학회보
    • /
    • 제52권4호
    • /
    • pp.1375-1382
    • /
    • 2015
  • We investigate what happens when we try to work with continuing block codes (i.e., left or right continuing factor maps) between shift spaces that may not be shifts of finite type. For example, we demonstrate that continuing block codes on strictly sofic shifts do not behave as well as those on shifts of finite type; a continuing block code on a sofic shift need not have a uniformly bounded retract, unlike one on a shift of finite type. A right eresolving code on a sofic shift can display any behavior arbitrary block codes can have. We also show that a right continuing factor of a shift of finite type is always a shift of finite type.

SPLITTING, AMALGAMATION, AND STRONG SHIFT EQUIVALENCE OF NONNEGATIVE INTEGRAL MATRICES

  • Ko, Young-Hee
    • 대한수학회지
    • /
    • 제36권4호
    • /
    • pp.773-785
    • /
    • 1999
  • Shifts of finite type are represented by nonnegative integral square matrics, and conjugacy between two shifts of finite type is determined by strong shift equivalence between the representing nonnegative intergral square matrices. But determining strong shift equivalence is usually a very difficult problem. we develop splittings and amalgamations of nonnegative integral matrices, which are analogues of those of directed graphs, and show that two nonnegative integral square matrices are strong shift equivalent if and only if one is obtained from a higher matrix of the other matrix by a series of amalgamations.

  • PDF

EQUIVALENCES OF SUBSHIFTS

  • Lee, Jung-Seob
    • 대한수학회지
    • /
    • 제33권3호
    • /
    • pp.685-692
    • /
    • 1996
  • Subshifts of finite type can be classified by various equivalence relations. The most important equivalence relation is undoubtedly strong shift equivalence, i.e., conjugacy. In [W], R. F. Williams introduced shift equivalence which is weaker than conjugacy but still sensitive.

  • PDF

EFFICIENT BIT SERIAL MULTIPLIERS OF BERLEKAMP TYPE IN ${\mathbb{F}}_2^m$

  • KWON, SOONHAK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제6권2호
    • /
    • pp.75-84
    • /
    • 2002
  • Using good properties of an optimal normal basis of type I in a finite field ${\mathbb{F}}_{2^m}$, we present a design of a bit serial multiplier of Berlekamp type, which is very effective in computing $xy^2$. It is shown that our multiplier does not need a basis conversion process and a squaring operation is a simple permutation in our basis. Therefore our multiplier provides a fast and an efficient hardware architecture for a bit serial multiplication of two elements in ${\mathbb{F}}_{2^m}$.

  • PDF

ON CLOSING CODES

  • Shaldehi, Somayyeh Jangjooye
    • 대한수학회보
    • /
    • 제55권2호
    • /
    • pp.359-366
    • /
    • 2018
  • We extend Jung's result about the relations among bi-closing, open and constant-to-one codes between general shift spaces to closing codes. We also show that any closing factor code ${\varphi}:X{\rightarrow}Y$ has a degree d, and it is proved that d is the minimal number of preimages of points in Y. Some other properties of closing codes are provided. Then, we show that any closing factor code is hyperbolic. This enables us to determine some shift spaces which preserved by closing codes.

EFFICIENT PARALLEL GAUSSIAN NORMAL BASES MULTIPLIERS OVER FINITE FIELDS

  • Kim, Young-Tae
    • 호남수학학술지
    • /
    • 제29권3호
    • /
    • pp.415-425
    • /
    • 2007
  • The normal basis has the advantage that the result of squaring an element is simply the right cyclic shift of its coordinates in hardware implementation over finite fields. In particular, the optimal normal basis is the most efficient to hardware implementation over finite fields. In this paper, we propose an efficient parallel architecture which transforms the Gaussian normal basis multiplication in GF($2^m$) into the type-I optimal normal basis multiplication in GF($2^{mk}$), which is based on the palindromic representation of polynomials.

Generation of Finite Inductive, Pseudo Random, Binary Sequences

  • Fisher, Paul;Aljohani, Nawaf;Baek, Jinsuk
    • Journal of Information Processing Systems
    • /
    • 제13권6호
    • /
    • pp.1554-1574
    • /
    • 2017
  • This paper introduces a new type of determining factor for Pseudo Random Strings (PRS). This classification depends upon a mathematical property called Finite Induction (FI). FI is similar to a Markov Model in that it presents a model of the sequence under consideration and determines the generating rules for this sequence. If these rules obey certain criteria, then we call the sequence generating these rules FI a PRS. We also consider the relationship of these kinds of PRS's to Good/deBruijn graphs and Linear Feedback Shift Registers (LFSR). We show that binary sequences from these special graphs have the FI property. We also show how such FI PRS's can be generated without consideration of the Hamiltonian cycles of the Good/deBruijn graphs. The FI PRS's also have maximum Shannon entropy, while sequences from LFSR's do not, nor are such sequences FI random.

유한체 GF($2^m$)상의 승산기 설계에 관한 연구 (A Design of Circuit for Computing Multiplication in Finite Fields GF($2^m$))

  • 김창규;이만영
    • 한국통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.235-239
    • /
    • 1989
  • 유한체 GF($2^m$)상에서 임의의 두 원소를 곱하는 승산기를 제시하였으며 동작과정을 단계별로 설명하였다. 본 논문에서 제시된 회로는 기준의 선형궤한 치환 레지스터를 이용한 회로가 변형된 형태로서 m단 궤환치환 레지스터, m-1개의 플립플롭, m개의 AND게이트, 그리고 m-입력 XOR 게이트로 구성되며 회로가 간단하다. GF($2^m$)의 두 원소를 곱할 때, 기존의 치환 레시스터 승산기는 m번 치환하면 곱셈의 결과가 레지스터에 축적되므로 m클럭시간 만큼 지연되는 반면 제안된 승산기는 입력되고부터 직렬출력을 얻을 때까지 m-1 클럭시간이 소요되며 cellular-array 승산기에 비해 매우 간단하고 systolic 승산기에 비해서는 지연시간도 단축된다.

  • PDF

AN INITIAL VALUE METHOD FOR SINGULARLY PERTURBED SYSTEM OF REACTION-DIFFUSION TYPE DELAY DIFFERENTIAL EQUATIONS

  • Subburayan, V.;Ramanujam, N.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제17권4호
    • /
    • pp.221-237
    • /
    • 2013
  • In this paper an asymptotic numerical method named as Initial Value Method (IVM) is suggested to solve the singularly perturbed weakly coupled system of reaction-diffusion type second order ordinary differential equations with negative shift (delay) terms. In this method, the original problem of solving the second order system of equations is reduced to solving eight first order singularly perturbed differential equations without delay and one system of difference equations. These singularly perturbed problems are solved by the second order hybrid finite difference scheme. An error estimate for this method is derived by using supremum norm and it is of almost second order. Numerical results are provided to illustrate the theoretical results.

ON THE UNIQUENESS OF CERTAIN TYPE OF SHIFT POLYNOMIALS SHARING A SMALL FUNCTION

  • Saha, Biswajit
    • Korean Journal of Mathematics
    • /
    • 제28권4호
    • /
    • pp.889-906
    • /
    • 2020
  • In this article, we consider the uniqueness problem of the shift polynomials $f^n(z)(f^m(z)-1){\prod\limits_{j=1}^{s}}f(z+c_j)^{{\mu}_j}$ and $f^n(z)(f(z)-1)^m{\prod\limits_{j=1}^{s}}f(z+c_j)^{{\mu}_j}$, where f(z) is a transcendental entire function of finite order, cj (j = 1, 2, …, s) are distinct finite complex numbers and n(≥ 1), m(≥ 1), s and µj (j = 1, 2, …, s) are integers. With the concept of weakly weighted sharing and relaxed weighted sharing we obtain some results which extend and generalize some results due to P. Sahoo [Commun. Math. Stat. 3 (2015), 227-238].