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ABSTRACT. In this paper an asymptotic numerical method named as Initial Value Method
(IVM) is suggested to solve the singularly perturbed weakly coupled system of reaction–diffusion
type second order ordinary differential equations with negative shift (delay) terms. In this
method, the original problem of solving the second order system of equations is reduced to
solving eight first order singularly perturbed differential equations without delay and one sys-
tem of difference equations. These singularly perturbed problems are solved by the second
order hybrid finite difference scheme. An error estimate for this method is derived by using
supremum norm and it is of almost second order. Numerical results are provided to illustrate
the theoretical results.

1. INTRODUCTION

Modeling automatic engines or physiological systems often involves the idea of control
because feedback is used in order to maintain a stable state. But much of this feedback require
a finite time to sense information and react to it. A popular way to describe this process is to
formulate a Delay Differential Equations or Differential Difference Equations (DDEs) where
the evolution of a dependent variable is a function of time which depends not only current time
but also earlier time. For example, a modeling of water flows at a uniform rate from the faucet
to the shower head [1], etc.

A subclass of these equations consist of singularly perturbed ordinary differential equations
with a delay, that is an ordinary differential equation in which the highest derivative is multi-
plied by a small parameter ε and involving at least one delay (negative shift) term. These kinds
of equations arise frequently in the mathematical modeling of various practical phenomena, for
example, in the modeling of the human pupil–light reflex [2], first–exit time problem [3], the
study of bistable devices [4] and variational problems in control theory [5], etc.
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It is well known that standard discretization methods for solving singular perturbation prob-
lems for differential equations are sometimes unstable and fail to give accurate results when
the perturbation parameter ε is small. Therefore, it is important to develop suitable numerical
methods to solve these types of equations, whose accuracy does not depend on the parameter
ε, that is methods which are uniformly convergent with respect to the parameter ε. For more
details in this direction one may refer to [6, 7, 8, 9].

In [10, 11, 12] and the references therein the authors presented various numerical methods
for the following Singularly Perturbed Delay Differential Equations (SPDDEs)

εy′′ + a(x)y′(x− δ) + b(x)y′(x) + c(x)y(x− δ) + e(x)y(x) = f(x), (1.1)

y(x) = φ(x), x ∈ [−δ, 0], y(1) = γ, δ = o(ε). (1.2)

In fact, for various combinations of conditions on the coefficients a, b, c and e (for an example
a < 0, b = c = 0, e < 0 [11]) they suggested suitable numerical methods. In all these
methods first they applied Taylor’s expansion for y′(x−δ) or y(x−δ) and reduced the DDEs to
DEs. For the resulting DEs they applied standard numerical methods available in the literature.
Following this procedure some authors [13, 14] suggested numerical methods to the following
Boundary Value Problem (BVP):

εy′′ + c(x)y(x− δ) + d(x)y(x+ η) + e(x)y(x) = f(x), (1.3)

y(x) = φ(x), x ∈ [−δ, 0], y(x) = γ(x), x ∈ [1, 1 + η], (1.4)

where δ = o(ε), η = o(ε).
A few authors [15] considered the above DDE (1.1)-(1.2) with a 
= 0, b = 0, c = 0 and

suggested numerical methods without applying Taylor’s expansion, that is, reducing the DDE
to DE.

Using the Taylor’s series expansion procedure as mentioned above and Newton’s quasi lin-
earization process some authors [16, 17] solved nonlinear problems numerically.

Subburayan and Ramanujam [18, 19] suggested a numerical method namely initial value
technique for the following BVP{

−εu′′ + a(x)u′(x) + b(x)u(x) + c(x)u(x− 1) = f(x), x ∈ (0, 1) ∪ (1, 2),

u(x) = φ(x), [−1, 0], u(2) = l,
(1.5)

where a can be either continuous throughout the domain [0, 2] or continuous except at x = 1.
The motivation for the consideration of the above SPDDE (1.5) and below (2.1) has come from
the paper of Lange and Miura [20]. In the present paper, as said in the abstract, a numerical
method named as IVM is suggested to solve the following singularly perturbed weakly coupled
system of reaction–diffusion type second order ordinary differential equations with negative
shift (2.1).

The present paper is organized as follows. In Section 2, the problem under study with con-
tinuous source term is stated. A maximum principle for the differential–difference operators
Pi, i = 1, 2 defined in Section 2 is established in Section 3. Further a stability result is derived.
An asymptotic expansion approximation for the solution of the current problem is derived in
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Section 4. The present numerical method namely the Initial Value Method (IVM) is described
in Section 5 and an error estimate is derived in Section 6. Section 7 is devoted for discontinuous
source term. Section 8 presents numerical results. The paper is concluded with a discussion
(Section 9).

2. STATEMENT OF THE PROBLEM

Throughout the paper, we assume that
√
ε ≤ CN−1 and C and C1 denote generic positive

constants independent of the singular perturbation parameter ε and the discretization parameter
N of the discrete problem. This condition is used to prove the Theorem 5.1 of this paper. The
supremum norm is used for studying the convergence of the numerical solution to the exact
solution of a singular perturbation problem: ‖φ‖D = sup

x∈D
| φ(x) |.

Motivated by the work of [20], we consider the following Boundary Value Problem (BVP)
for SPDDE.
Find u = (u1, u2), u1, u2 ∈ Y = C0(Ω) ∩ C1(Ω) ∩ C2(Ω∗) such that⎧⎪⎪⎪⎨⎪⎪⎪⎩

−εu′′1(x) + a1(x)u1(x) +
∑2

k=1 b1k(x)uk(x− 1) = f1(x), x ∈ Ω∗,
−εu′′2(x) + a2(x)u2(x) +

∑2
k=1 b2k(x)uk(x− 1) = f2(x), x ∈ Ω∗,

u1(x) = φ1(x), x ∈ [−1, 0], u1(2) = l1,

u2(x) = φ2(x), x ∈ [−1, 0], u2(2) = l2,

(2.1)

where 0 < ε � 1, ai(x) ≥ αi > α > 0, bij(x) ≤ 0, i = 1, 2, j = 1, 2, 0 ≥ bi1(x)+ bi2(x) ≥
βi, i = 1, 2, αi + βi ≥ α > 0, and ai, bij , fi i = 1, 2, j = 1, 2 are sufficiently smooth
functions on Ω, Ω = (0, 2), Ω = [0, 2], Ω∗ = Ω− ∪ Ω+, Ω− = (0, 1), Ω+ = (1, 2) and
φi, i = 1, 2 are smooth on [−1, 0].

The above problem is equivalent to

P1u(x) : =

{
−εu′′1(x) + a1(x)u1(x) = f1(x)−

∑2
k=1 b1k(x)φk(x− 1), x ∈ Ω−,

−εu′′1(x) + a1(x)u1(x) +
∑2

k=1 b1k(x)uk(x− 1) = f1(x), x ∈ Ω+,

P2u(x) : =

{
−εu′′2(x) + a2(x)u2(x) = f2(x)−

∑2
k=1 b2k(x)φk(x− 1), x ∈ Ω−,

−εu′′2(x) + a2(x)u2(x) +
∑2

k=1 b2k(x)uk(x− 1) = f2(x), x ∈ Ω+,

{
u1(0) = φ1(0), u1(1−) = u1(1+), u′1(1−) = u′1(1+), u1(2) = l1,

u2(0) = φ2(0), u2(1−) = u2(1+), u′2(1−) = u′2(1+), u2(2) = l2,

where u1(1−) and u1(1+) denote the left and right limits of u1 at x = 1 and the similar
expressions are true for other functions.
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3. STABILITY RESULT

The differential-difference operators Pi, i = 1, 2 defined in the above section satisfy the
following maximum principle.

Theorem 3.1. (Maximum principle) Let w = (w1, w2), w1, w2 ∈ C0(Ω) ∩ C2(Ω∗) be any
function satisfying wi(0) ≥ 0, wi(2) ≥ 0, Piw(x) ≥ 0, ∀x ∈ Ω∗ and w′i(1+) − w′i(1−)

= [w′i](1) ≤ 0, i = 1, 2. Then wi(x) ≥ 0, ∀x ∈ Ω, i = 1, 2.

Proof. Define s = (s1, s2), where

s1(x) = s2(x) =

{
1
8 + x

2 , x ∈ [0, 1],
3
8 + x

4 , x ∈ [1, 2].

Note that si(x) > 0, ∀x ∈ Ω, Pis(x) > 0, ∀x ∈ Ω∗ and [s′i](1) < 0, i = 1, 2. Let

μ = max
{
max
x∈Ω

{−w1(x)

s1(x)
}, max

x∈Ω
{−w2(x)

s2(x)
}
}
.

Then there exists at least one x0 ∈ Ω such that w1(x0)+μs1(x0) = 0 or w2(x0)+μs2(x0) = 0
or both and wi(x) + μsi(x) ≥ 0, ∀x ∈ Ω, i = 1, 2. Without the loss of generality we assume
that w1(x0)+μs1(x0) = 0. Therefore the function (w1+μs1) attains its minimum at x = x0.
Suppose the theorem does not hold true, then μ > 0.
Let x0 ∈ Ω−.

0 < P1(w + μs)(x0) = −ε(w1 + μs1)
′′(x0) + a1(x0)(w1 + μs1)(x0) ≤ 0.

It is a contradiction.
Similarly one can consider the case x0 ∈ Ω+ and get a contradiction.
Let x0 = 1.

0 ≤ [(w1 + μs1)
′](1) = [w′1](1) + μ[s′1](1) < 0.

It is a contradiction. �

Corollary 3.2. (Stability Result) Let u = (u1, u2), u1, u2 ∈ Y be any function. Then

| uj(x) |≤ C max
{
max
i=1,2

{| ui(0) |}, max
i=1,2

{| ui(2) |}, max
i=1,2

{‖ Piu ‖Ω∗}
}
,

∀ x ∈ Ω, j = 1, 2. (3.1)

Proof. Let C > 0 be a constant. Define ψ
±
= (ψ±1 , ψ

±
2 ), where

ψ±i (x) = CC1si(x)± ui(x), x ∈ Ω, i = 1, 2,

C1 = max
{
max
i=1,2

{| ui(0) |}, max
i=1,2

{| ui(2) |}, max
i=1,2

{‖ Piu ‖Ω∗}
}
. Then

ψ±i (0) = CC1si(0) ± ui(0) > 0 and ψ±i (2) = CC1si(2) ± ui(2) > 0, i = 1, 2 by a proper
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choice of C.
Let x ∈ Ω−.

P1ψ
±
(x) = CC1P1s(x)± P1u(x) ≥ CC1α1

8
± P1u(x) ≥ 0,

by a proper choice of C.
Similarly one can prove that, P1ψ

±
(x) ≥ 0 in Ω+. Therefore P1ψ

±
(x) ≥ 0 in Ω∗. Similarly

one can prove that P2ψ
±
(x) ≥ 0 in Ω∗. Further,

[ψ±
′

i ](1) = CC1[s
′
i](1) + [u′i](1) < 0, i = 1, 2

by a proper choice of C.
Then by Theorem 3.1, we have ψ±i (x) ≥ 0, x ∈ Ω, i = 1, 2. Therefore

| uj(x) |≤ C max
{
max
i=1,2

{| ui(0) |}, max
i=1,2

{| ui(2) |}, max
i=1,2

{‖ Piu ‖Ω∗}
}
, ∀ x ∈ Ω, j = 1, 2.

�

4. AN ASYMPTOTIC EXPANSION

In this section, an asymptotic expansion approximation for the solution of the problem (2.1)
is constructed using the fundamental idea of WKB method [21].

Let u0(x) = (u01(x), u02(x)), u01, u02 ∈ C0(Ω∗ ∪ {0, 2}) be the solution of the reduced
problem of (2.1) given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

a1(x)u01(x) +
∑2

k=1 b1k(x)u0k(x− 1) = f1(x), x ∈ Ω∗,
a2(x)u02(x) +

∑2
k=1 b2k(x)u0k(x− 1) = f2(x), x ∈ Ω∗,

u01(x) = φ1(x), x ∈ [−1, 0),

u02(x) = φ2(x), x ∈ [−1, 0)

(4.1)

and assumed that ‖ u
(2)
0i ‖Ω∗≤ C, i = 1, 2. Further, let v1, v2, v3, v4, w1, w2, w3 and w4 be

the solutions of the following problems (4.2)-(4.9), respectively:

L1v1 =
√
εv′1(x) +

√
a1(x)v1(x) = 0, x ∈ (0, 2], v1(0) = 1, (4.2)

L2v2 =
√
εv′2(x)−

√
a1(x)v2(x) = 0, x ∈ [0, 1), v2(1) = 1, (4.3)

L1v3 =
√
εv′3(x) +

√
a1(x)v3(x) = 0, x ∈ (1, 2], v3(1) = 1, (4.4)

L2v4 =
√
εv′4(x)−

√
a1(x)v4(x) = 0, x ∈ [0, 2), v4(2) = 1, (4.5)

L3w1 =
√
εw′1(x) +

√
a2(x)w1(x) = 0, x ∈ (0, 2], w1(0) = 1, (4.6)

L4w2 =
√
εw′2(x)−

√
a2(x)w2(x) = 0, x ∈ [0, 1), w2(1) = 1, (4.7)

L3w3 =
√
εw′3(x) +

√
a2(x)w3(x) = 0, x ∈ (1, 2], w3(1) = 1, (4.8)

L4w4 =
√
εw′4(x)−

√
a2(x)w4(x) = 0, x ∈ [0, 2), w4(2) = 1. (4.9)
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Now an asymptotic expansion approximation to the solution of the original problem (2.1) is
given by

uas1(x) =

{
u01(x) + k11v̂1(x) + k12v̂2(x), x ∈ [0, 1],

u01(x) + k13v̂
∗
3(x) + k14v̂4(x), x ∈ [1, 2],

(4.10)

uas2(x) =

{
u02(x) + k21ŵ1(x) + k22ŵ2(x), x ∈ [0, 1],

u02(x) + k23ŵ
∗
3(x) + k24ŵ4(x), x ∈ [1, 2],

(4.11)

v̂∗3(x) =

{
0, x ∈ [0, 1),

v̂3(x), x ∈ [1, 2],
ŵ∗3(x) =

{
0, x ∈ [0, 1),

ŵ3(x), x ∈ [1, 2],

where u0(x) = (u01(x), u02(x)), v̂1(x) = [a1(x)]
− 1

4 v1(x), v̂2(x) = [a1(x)]
− 1

4 v2(x),

v̂3(x) = [a1(x)]
− 1

4 v3(x), v̂4(x) = [a1(x)]
− 1

4 v4(x), ŵ1(x) = [a2(x)]
− 1

4 w1(x), ŵ2(x) =

[a2(x)]
− 1

4 w2(x), ŵ3(x) = [a2(x)]
− 1

4 w3(x) and ŵ4(x) = [a2(x)]
− 1

4 w4(x).
The constants kij , i = 1, 2, j = 1(1)4 are to be determined such that uas1, uas2 ∈ Y ,

uas1(0) = φ1(0), uas2(0) = φ2(0), uas1(2) = l1 and uas2(2) = l2. In fact the constants are
given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

k11 =
{
[φ1(0)− u01(0)]− k12v̂2(0)

}
(a1(0))

1/4, k12 =
B1 + k13A12

A11
,

k13 =
B2A11 −B1A21

A11A22 +A12A21
, k14 =

{
[l1 − u01(2)]− k13v̂3(2)

}
(a1(2))

1/4,

k21 =
{
[φ2(0)− u02(0)]− k22ŵ2(0)

}
(a2(0))

1/4, k22 =
D1 + k23C12

C11
,

k23 =
D2C11 −D1C21

C11C22 + C12C21
, k24 =

{
[l2 − u02(2)]− k23ŵ3(2)

}
(a2(2))

1/4,

(4.12)
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where

A11 = [(a1(1))
−1/4 − (a1(0))

1/4v̂1(1)v̂2(0)],

A12 = [(a1(1))
−1/4 − (a1(2))

1/4v̂3(2)v̂4(1)],

A21 = (a1(1))
1/4 −√

ε(a1(1))
−5/4a′1(1)/4

+ v̂2(0)v̂1(1)(a1(0))
1/4[

√
ε(a1(1))

−1a′1(1)/4 +
√
a1(1)],

A22 = (a1(1))
1/4 +

√
ε(a1(1))

−5/4a′1(1)/4

+ v̂3(2)v̂4(1)(a1(2))
1/4[−√

ε(a1(1))
−1a′1(1)/4 +

√
a1(1)],

B1 = [u01(1+)− u01(1−)] + [(l1 − u01(2))(a1(2))
1/4v̂4(1)]

+ [(u01(0)− φ1(0))(a1(0))
1/4v̂1(1)],

B2 =
√
ε[u′01(1+)− u′01(1−)] + [φ1(0)− u01(0)]v̂1(1)(a1(0))

1/4
[√

a1(1) +
√
ε
a′1(1)
4a1(1)

]
+ v̂4(1)(a1(2))

1/4[l1 − u01(2)]
[√

a1(1)−
√
ε
a′1(1)
4a1(1)

]
,

C11 = [(a2(1))
−1/4 − (a2(0))

1/4ŵ1(1)ŵ2(0)],

C12 = [(a2(1))
−1/4 − (a2(2))

1/4ŵ3(2)ŵ4(1)],

C21 = (a2(1))
1/4 −√

ε(a2(1))
−5/4a′2(1)/4

+ ŵ2(0)ŵ1(1)(a2(0))
1/4[

√
ε(a2(1))

−1a′2(1)/4 +
√
a2(1)],

C22 = (a2(1))
1/4 +

√
ε(a2(1))

−5/4a′2(1)/4

+ ŵ3(2)ŵ4(1)(a2(2))
1/4[−√

ε(a2(1))
−1a′2(1)/4 +

√
a2(1)],

D1 = [u02(1+)− u02(1−)] + [(l2 − u02(2))(a2(2))
1/4ŵ4(1)]

+ [(u02(0)− φ2(0))(a2(0))
1/4ŵ1(1)],

D2 =
√
ε[u′02(1+)− u′02(1−)] + [φ2(0)− u02(0)]ŵ1(1)(a2(0))

1/4
[√

a2(1) +
√
ε
a′2(1)
4a2(1)

]
+ ŵ4(1)(a2(2))

1/4[l2 − u02(2)]
[√

a2(1)−
√
ε
a′2(1)
4a2(1)

]
.

It is easy to see that | kij |≤ C, i = 1, 2, j = 1(1)4.

Theorem 4.1. Let u = (u1, u2) be the solution of (2.1) and uas = (uas1, uas2) be its asymp-
totic expansion approximation given by (4.10) and (4.11). Then,

‖ ui − uasi ‖Ω≤ Cε, i = 1, 2.
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Proof. Consider the barrier function ϕ± = (ϕ±1 , ϕ
±
2 ), where

ϕ±i (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C1ε

[
si(x) + e−

√
α
ε
x + e−

√
α
ε
(1−x) + 1 + e−

√
α
ε
(2−x)

]
±(ui(x)− uasi(x)), x ∈ [0, 1],

C1ε
[
si(x) + e−

√
α
ε
x + 1 + ṽ∗3(x) + e−

√
α
ε
(2−x)

]
±(ui(x)− uasi(x)), x ∈ [1, 2], i = 1, 2

ṽ∗3(x) = w̃∗3(x) =

{
0, x ∈ [0, 1),

e−
√

α
ε
(x−1), x ∈ [1, 2],

and C1 > 0 is a constant independent of ε. It is easy to see that ϕ±i ∈ C0(Ω) ∩ C2(Ω∗),
ϕ±i (0) > 0 and ϕ±i (2) > 0, i = 1, 2. Let x ∈ Ω−. First we have,

P1(u(x)− uas(x)) = ε
[
u′′01(x) + k11v̂1(x)

[ 5(a′1(x))2

16(a1(x))2
− a′′1(x)

4a1(x)

]]
+ ε

[
k12v̂2(x)

[ 5(a′1(x))2

16(a1(x))2
− a′′1(x)

4a1(x)

]]
≥ −Cε,

since | k11 |, | k12 |≤ C, ‖ u
(2)
01 ‖Ω∗≤ C, and a1 is sufficiently smooth on Ω. Then,

P1ϕ
±(x) = C1ε

[
[a1(x)− α]e−

√
α
ε
x + [a1(x)− α]e−

√
α
ε
(1−x)

+ [a1(x)− α]e−
√

α
ε
(2−x)

]
+ C1ε

[
a1(x)[S1(x) + 1]

]
± P1(u(x)− uas(x))

≥ C1ε
[
[α1 − α]e−

√
α
ε
x + [α1 − α]e−

√
α
ε
(1−x) + [α1 − α]e−

√
α
ε
(2−x)

]
+ C1ε

9α1

8
∓ Cε[1 + e−

√
α
ε
x + e−

√
α
ε
(1−x)].

Hence P1ϕ
±(x) ≥ 0 for a suitable choice of C1. Also it is easy to see that P2ϕ

±(x) ≥ 0 for a
suitable choice of C1.
Similarly one can show that Piϕ

±(x) ≥ 0, x ∈ Ω+, i = 1, 2. Further, we have [ϕ±
′

i ](1) <

0, i = 1, 2. Then by the Theorem 3.1, we have ϕ±i (x) ≥ 0, x ∈ Ω, that is,

| ui(x)− uasi(x) |≤ Cε, x ∈ Ω, i = 1, 2.

�

5. NUMERICAL METHODS

In this section, hybrid finite difference schemes for the first order singularly perturbed prob-
lems (4.2)-(4.9) are described.
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5.1. Mesh Selection Strategy. The BVP (2.1) exhibits strong boundary layers at x = 0, x =
2 and strong interior layers (left and right) at x = 1. Therefore, we choose a piece-wise uniform
Shishkin mesh on Ω. For this we divide the interval [0, 2] in to six subintervals, namely Ω1 =
[0, σ], Ω2 = [σ, 1−σ], Ω3 = [1−σ, 1], Ω4 = [1, 1+σ], Ω5 = [1+σ, 2−σ] and Ω6 = [2−σ, 2]

where, σ = min{0.25, 2
√
ε logN√
α

}. Let h = 4N−1τ and H = 2N−1(1 − 2τ) . The mesh

Ω
2N

= {x0, x1, . . . , x2N} is defined by

x0 = 0.0, xi = x0 + ih, i = 1(1)
N

4
, xi+N

4
= xN

4
+ iH, i = 1(1)

N

2
,

xi+ 3N
4

= x 3N
4

+ ih, i = 1(1)
N

4
, xi+N = xN + ih, i = 1(1)

N

4
,

xi+ 5N
4

= x 5N
4

+ iH, i = 1(1)
N

2
, xi+ 7N

4
= x 7N

4
+ ih, i = 1(1)

N

4
.

5.2. Hybrid Finite Difference Schemes for the Problems (4.6) - (4.9). Applying the hybrid
finite difference scheme given in [22, 23] to the above singularly perturbed problems (4.6)–
(4.9), we get

LN
1 V1i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
ε
V1i
−V1i−1

h +√a1i−1/2

V1i
+V1i−1

2 = 0, i = 1(1)N4 ,√
ε
V1i
−V1i−1

H +
√
a1iV1i ,= 0 i = N

4 + 1(1)3N4 ,
√
ε
V1i
−V1i−1

h +
√
a1iV1i = 0, i = 3N

4 + 1(1)N,
√
ε
V1i
−V1i−1

h +
√
a1iV1i = 0, i = N + 1(1)5N4 ,

√
ε
V1i
−V1i−1

H +
√
a1iV1i = 0, i = 5N

4 + 1(1)7N4 ,
√
ε
V1i
−V1i−1

h +
√
a1iV1i = 0, i = 7N

4 + 1(1)2N,

(5.1)

V10 = 1,

LN
2 V2i =

⎧⎪⎪⎨⎪⎪⎩
√
ε
V2i+1

−V2i

h −√
a1iV2i = 0, i = 0(1)N4 ,√

ε
V2i+1

−V2i

H −√
a1iV2i = 0, i = N

4 + 1(1)3N4 ,
√
ε
V2i+1

−V2i

h −√a1i+1/2

V2i+1
+V2i

2 = 0, i = 3N
4 + 1(1)N − 1,

(5.2)

V2N = 1,

LN
1 V3i =

⎧⎪⎪⎨⎪⎪⎩
√
ε
V3i
−V3i−1

h +√a1i−1/2

V3i−1
+V3i

2 = 0, i = N + 1(1)5N4 ,
√
ε
V3i
−V3i−1

H +
√
a1iV3i = 0, i = 5N

4 + 1(1)7N4 ,
√
ε
V3i
−V3i−1

h +
√
a1iV3i = 0, i = 7N

4 + 1(1)2N,

(5.3)

V3N = 1,
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LN
3 V4i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
ε
V4i+1

−V4i

h −√
a1iV4i = 0, i = 0(1)N4 ,√

ε
V4i+1

−V4i

H −√
a1iV4i = 0, i = N

4 + 1(1)3N4 ,
√
ε
V4i+1

−V4i

h −√
a1iV4i = 0, i = 3N

4 + 1(1)N,
√
ε
V4i+1

−V4i

h −√
a1iV4i = 0, i = N + 1(1)5N4 ,

√
ε
V4i+1

−V4i

H −√
a1iV4i = 0, i = 5N

4 + 1(1)7N4 ,
√
ε
V4i+1

−V4i

h −√a1i+1/2

V4i+1
+V4i

2 = 0, i = 7N
4 + 1(1)2N − 1,

(5.4)

V42N = 1,

LN
4 W1i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
ε
W1i

−W1i−1

h +√a2i−1/2

W1i
+W1i−1

2 = 0, i = 1(1)N4 ,√
ε
W1i

−W1i−1

H +
√
a2iW1i ,= 0 i = N

4 + 1(1)3N4 ,
√
ε
W1i

−W1i−1

h +
√
a2iW1i = 0, i = 3N

4 + 1(1)N,
√
ε
W1i

−W1i−1

h +
√
a2iW1i = 0, i = N + 1(1)5N4 ,

√
ε
W1i

−W1i−1

H +
√
a2iW1i = 0, i = 5N

4 + 1(1)7N4 ,
√
ε
W1i

−W1i−1

h +
√
a2iW1i = 0, i = 7N

4 + 1(1)2N,

(5.5)

W10 = 1,

LN
5 W2i =

⎧⎪⎪⎨⎪⎪⎩
√
ε
W2i+1

−W2i

h −√
a2iW2i = 0, i = 0(1)N4 ,√

ε
W2i+1

−W2i

H −√
a2iW2i = 0, i = N

4 + 1(1)3N4 ,
√
ε
W2i+1

−W2i

h −√a2i+1/2

W2i+1
+W2i

2 = 0, i = 3N
4 + 1(1)N − 1,

(5.6)

W2N = 1,

LN
4 W3i =

⎧⎪⎪⎨⎪⎪⎩
√
ε
W3i

−W3i−1

h +√a2i−1/2

W3i−1
+W3i

2 = 0, i = N + 1(1)5N4 ,
√
ε
W3i

−W3i−1

H +
√
a2iW3i = 0, i = 5N

4 + 1(1)7N4 ,
√
ε
W3i

−W3i−1

h +
√
a2iW3i = 0, i = 7N

4 + 1(1)2N,

(5.7)

W3N = 1,
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and

LN
6 W4i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
ε
W4i+1

−W4i

h −√
a2iW4i = 0, i = 0(1)N4 ,√

ε
W4i+1

−W4i

H −√
a2iW4i = 0, i = N

4 + 1(1)3N4 ,
√
ε
W4i+1

−W4i

h −√
a2iW4i = 0, i = 3N

4 + 1(1)N,
√
ε
W4i+1

−W4i

h −√
a2iW4i = 0, i = N + 1(1)5N4 ,

√
ε
W4i+1

−W4i

H −√
a2iW4i = 0, i = 5N

4 + 1(1)7N4 ,
√
ε
W4i+1

−W4i

h −√a2i+1/2

W4i+1
+W4i

2 = 0, i = 7N
4 + 1(1)2N − 1,

(5.8)

W42N = 1,

where a1i = a1(xi) and a1i+1/2
= a1(

xi+xi+1

2 ), the similar expressions are true for other
functions. The following theorem gives an error estimate for this scheme.

Theorem 5.1. Let v1(x), v2(x), v3(x), v4(x), w1(x), w2(x), w3(x) and w4(x) be the so-
lutions of the problems (4.2)–(4.9), respectively. Further let V1 = (V10 , · · · , V12N ), V2 =
(V20 , · · · , V2N ), V3 = (V3N , · · · , V32N ), V4 = (V40 , · · · , V42N ), W1 = (W10 , · · · ,W12N ),
W2 = (W20 , · · · ,W2N ), W3 = (W3N , · · · ,W32N ) and W4 = (W40 , · · · ,W42N ) be their
numerical solutions defined by (5.1)–(5.8). Then

‖ v1 − V1 ‖Ω2N≤ CN−2 log2N, ‖ v2 − V2 ‖Ω̃−≤ CN−2 log2N,

‖ v3 − V3 ‖Ω̃+≤ CN−2 log2N, ‖ v4 − V4 ‖Ω2N≤ CN−2 log2N,

‖ w1 −W1 ‖Ω2N≤ CN−2 log2N, ‖ w2 −W2 ‖Ω̃−≤ CN−2 log2N,

‖ w3 −W3 ‖Ω̃+≤ CN−2 log2N, ‖ w4 −W4 ‖Ω2N≤ CN−2 log2N,

where Ω̃− = Ω
2N ∩ [0, 1] and Ω̃+ = Ω

2N ∩ [1, 2].

Proof. See [22]. �

Let U0i = (U01i , U02i) be the values of the solution of the problem (4.1) given by

U01i =

{
f1(xi)
a1(xi)

− b11(xi)
a1(xi)

φ1(xi − 1)− b12(xi)
a1(xi)

φ2(xi − 1), i = 0(1)N,
f1(xi)
a1(xi)

− b11(xi)
a1(xi)

U01i−N − b12(xi)
a1(xi)

U02i−N , i = N + 1(1)2N,
(5.9)

U02i =

{
f2(xi)
a2(xi)

− b21(xi)
a2(xi)

φ1(xi − 1)− b22(xi)
a2(xi)

φ2(xi − 1), i = 0(1)N,
f2(xi)
a2(xi)

− b21(xi)
a2(xi)

U01i−N − b22(xi)
a2(xi)

U02i−N , i = N + 1(1)2N.
(5.10)

5.3. A Numerical Solution to the BVP (2.1). A numerical solution U i = (U1i , U2i) of the
original problem (2.1) is given by

U1i =

{
U01i + k11[a1i ]

−1/4V1i + k12[a1i ]
−1/4V2i , i = 0(1)N,

U01i + k13[a1i ]
−1/4V3i + k14[a1i ]

−1/4V4i , i = N + 1(1)2N,
(5.11)
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U2i =

{
U02i + k21[a2i ]

−1/4W1i + k22[a2i ]
−1/4W2i , i = 0(1)N,

U02i + k23[a2i ]
−1/4W3i + k24[a2i ]

−1/4W4i , i = N + 1(1)2N,
(5.12)

where U0i , V1i , V2i , V3i , V4i , W1i , W2i , W3i and W4i are numerical solutions of the problems
(4.1)- (4.9), respectively and kij , i = 1, 2, j = 1(1)4 are defined by (4.12). An error estimate
for this numerical solution is derived in the following section.

6. AN ERROR ESTIMATE

Theorem 6.1. Let u(x) be the solution of the problem (2.1). Further let U i = (U1i , U2i) be its
numerical solution defined by (5.11) and (5.12). Then

| uk(xi)− Uki |≤ C(N−2 log2N), i = 0(1)2N, k = 1, 2.

Proof. From Theorems 4.1 and 5.1 we have

‖ ui(x)− uasi(x) ‖Ω≤ Cε, i = 1, 2, ‖ v1 − V1 ‖Ω̄2N≤ CN−2 log2N,

‖ v2 − V2 ‖Ω−∩Ω̄2N≤ CN−2 log2N, ‖ v3 − V3 ‖Ω+∩Ω̄2N≤ CN−2 log2N,

‖ v4 − V4 ‖Ω2N≤ CN−2 log2N, ‖ w1 −W1 ‖Ω2N≤ CN−2 log2N,

‖ w2 −W2 ‖Ω−∩Ω̄2N≤ CN−2 log2N, ‖ w3 −W3 ‖Ω+∩Ω̄2N≤ CN−2 log2N,

‖ w4 −W4 ‖Ω2N≤ CN−2 log2N.

Then

| u1(xi)− U1i |≤| u1(xi)− uas1(xi) | + | uas1(xi)− U1i |, i = 0(1)2N

≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
| u1(xi)− uas1(xi) | + | u01(xi)− U01i | + | k11 || a−1/41i

|| v1(xi)− V1i |
+ | k12 || a−1/41i

|| v2(xi)− V2i |, i = 0(1)N

| u1(xi)− uas1(xi) | + | u01(xi)− U01i | + | k13 || a−1/41i
|| v3(xi)− V3i |

+ | k14 || a−1/41i
|| v4(xi)− V4i |, i = N + 1(1)2N

≤ Cε+ CN−2 log2N, i = 0(1)2N.

That is,
| u1(xi)− U1i |≤ C(ε+N−2 log2N), i = 0(1)2N. (6.1)

It is easy to see that

| u2(xi)− U2i |≤ C(ε+N−2 log2N), i = 0(1)2N. (6.2)

Since it is assumed that
√
ε ≤ CN−1, we have

| uk(xi)− Uki |≤ C(N−2 log2N), i = 0(1)2N, k = 1, 2.

�
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7. DISCONTINUOUS SOURCE TERM

In the previous section it was assumed that fk, k = 1, 2 are smooth on [0, 2]. Motivated
by the works of [8, 9, 24] we suppose that f1(x) and f2(x) have a simple discontinuity at
x = 1, that is, f1(1−) 
= f1(1+) and f2(1−) 
= f2(1+). Consider the following BVP with
discontinuous source term.
Find u(x) = (u1(x), u2(x)), u1, u2 ∈ Y such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−εu′′1(x) + a1(x)u1(x) +
∑2

k=1 b1kuk(x− 1) = f1(x), x ∈ Ω∗,
−εu′′2(x) + a2(x)u2(x) +

∑2
k=1 b2kuk(x− 1) = f2(x), x ∈ Ω∗,

u1(x) = φ1(x), x ∈ [−1, 0], u1(2) = l1,

u2(x) = φ2(x), x ∈ [−1, 0], u2(2) = l2,

fj(1−) 
= fj(1+), j = 1, 2,

(7.1)

where it is assumed that the conditions stated in Section 2 for the coefficients and the relations
among ai, bij , cij and φi, i, j = 1, 2 hold true and fi, i = 1, 2 are smooth in Ω∗. It can be
easily verified that the maximum principle and stability result are valid for the above problem
(7.1). Now, an asymptotic expansion for the solution of the problem (7.1) is given by (4.10)
and (4.11). We can prove a similar result of Theorem 4.1 for the (7.1). With regard to the
numerical method, the same mesh selection strategy described in Section 5.1 can be adopted
here.

8. NUMERICAL RESULTS

In this section, two examples are given to illustrate the numerical method discussed in this
paper. The exact solutions of the test problems are not known. Therefore, we use the double
mesh principle to estimate the error and compute the experiment rate of convergence in our
computed solution. For this we put

DM
k, ε = max

0≤i≤M
| UM

ki
− U2M

k2i
|, k = 1, 2,

where UM
ki

and U2M
k2i

are the ith and 2ith components of the numerical solutions on meshes
of M and 2M points respectively, here M = 2N . We compute the uniform error and rate of
convergence as

DM
k = max

ε
DM

k, ε, p
M
k = log2

(
DM

k

D2M
k

)
, k = 1, 2.

For the following examples the numerical results are presented for the values of perturbation
parameter

√
ε = 2−11, 2−12, 2−13, 2−14, 2−15, 2−16, 2−17.
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Example 8.1. (Continuous Source Term)⎧⎪⎪⎪⎨⎪⎪⎪⎩
−εu′′1(x) + 11u1(x)− (x2 + 1)u1(x− 1)− (x+ 1)u2(x− 1) = exp(x), x ∈ Ω∗,
−εu′′2(x) + 16u2(x)− xu1(x− 1)− xu2(x− 1) = exp(x), x ∈ Ω∗,
u1(x) = 1, x ∈ [−1, 0], u1(2) = 1,

u2(x) = 1, x ∈ [−1, 0], u2(2) = 1.
(8.1)

Table 1 presents the values of DM
k and pMk , k = 1, 2 for this problem.

Example 8.2. (Discontinuous Source Term)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−εu′′1(x) + 11u1(x)− (x2 + 1)u1(x− 1)− (x+ 1)u2(x− 1) =

{
−1, x ∈ Ω−,
1, x ∈ Ω+,

−εu′′2(x) + 16u2(x)− xu1(x− 1) − xu2(x− 1) =

{
1, x ∈ Ω−,
−1, x ∈ Ω+,

u1(x) = 1, x ∈ [−1, 0], u1(2) = 1,

u2(x) = 1, x ∈ [−1, 0], u2(2) = 1.
(8.2)

Table 2 presents the values of DM
k and pMk , k = 1, 2 for this problem. Further, Figures 1

and 2 represent the numerical solutions of the above Examples 8.1 and 8.2 respectively.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

Numerical  solution

U1=U1(x)

U2=U2(x)

FIGURE 1. Numerical solution of the above Example 8.1.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Numerical solution

U1=U1(x)

U2=U2(x)

FIGURE 2. Numerical solution of the above Example 8.2.

TABLE 1. Numerical Results for the Example 8.1

M (Number of mesh points)
32 64 128 256 512 1024 2048

DM
1 2.8268e-2 1.2121e-2 4.2829e-3 1.5128e-3 5.0124e-4 1.5237e-4 4.7635e-5

pM1 1.2217 1.5008 1.5013 1.5937 1.7179 1.6774 -
DM

2 4.4596e-2 2.0012e-2 7.3012e-3 2.5038e-3 8.5338e-4 2.6074e-4 8.0558e-5
pM2 1.1560 1.45477 1.5440 1.5529 1.7106 1.6945 -

TABLE 2. Numerical Results for the Example 8.2

M (Number of mesh points)
64 128 256 512 1024 2048 4096

DM
1 2.5288e-2 8.9355e-3 3.1562e-3 1.0457e-3 3.1788e-4 9.9382e-5 2.9950e-5

pM1 1.5008 1.5013 1.5937 1.7179 1.6774 1.7304 -
DM

2 4.1935e-2 1.5299e-2 5.2467e-3 1.7882e-3 5.4636e-4 1.6880e-4 5.1480e-5
pM2 1.4547 1.5440 1.5529 1.7106 1.6945 1.7133 -

9. DISCUSSION

A class of BVPs for one type of SPDDEs of reaction- diffusion type are considered. To
obtain an approximate solution for this type of problems, a numerical method named as initial
value method (IVM) is suggested. The method is shown to be of order O(N−2 log2N) , that is,
the method has almost second order convergence. This is very much reflected in the numerical
results presented in the Tables 1 and 2. Figures 1 and 2 represent the numerical solutions of
the problems stated in Examples 8.1 and 8.2. From the Figures 1 and 2, it is obvious that, the
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solutions of the problems (8.1) and (8.2) exhibit strong boundary layers at x = 0, x = 1 and
x = 2. But this is not the case for convection diffusion type problems and in fact there is a
boundary layer only at x = 2 [19]. The present method works irrespective of the fact that the
source term is continuous or not.
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