DOI QR코드

DOI QR Code

EFFICIENT PARALLEL GAUSSIAN NORMAL BASES MULTIPLIERS OVER FINITE FIELDS

  • Kim, Young-Tae (Department of Mathematics Education, Gwangju National University of Education)
  • Received : 2007.06.01
  • Accepted : 2007.08.22
  • Published : 2007.09.25

Abstract

The normal basis has the advantage that the result of squaring an element is simply the right cyclic shift of its coordinates in hardware implementation over finite fields. In particular, the optimal normal basis is the most efficient to hardware implementation over finite fields. In this paper, we propose an efficient parallel architecture which transforms the Gaussian normal basis multiplication in GF($2^m$) into the type-I optimal normal basis multiplication in GF($2^{mk}$), which is based on the palindromic representation of polynomials.

Keywords

References

  1. ANSI X 9.63, Public key cryptography for the financial sevices industry: Elliptic curve key agreement and transport protocols, draft, 1998.
  2. S. Gao Jr. and H.W. Lenstra, Optimal normal bases, Designs, Codes and Cryptography, vol. 2, pp.315-323, 1992. https://doi.org/10.1007/BF00125200
  3. M.A. Hasan, M.Z. Wang, and V.K. Bhargava, A modified Massey-Omura parallel multiplier for a class of finite fields, IEEE Trans. vol.42, no.10, pp. 1278-1280, Oct, 1993. https://doi.org/10.1109/12.257715
  4. IEEE P1363, Stabdard specifications for public key cryptography, Draft 13, 1999.
  5. T. Itoh and S. Tsujii, Structure of parallel multipliers for a class of fields, Information and Computation, vol.83, pp. 21-40, 1989. https://doi.org/10.1016/0890-5401(89)90045-X
  6. C.H. Kim, S. Oh, and J. Lim, A new hardware architecture for operations in GF($2^n$), IEEE Trans. vol.51, no.1, pp. 90-92, Jan, 2002. https://doi.org/10.1109/12.980019
  7. C.H. Kim, Y. Kim and N.S. Chang, A Parallel Architecture for Type ${\kappa}$ Gaussian Normal Basis Multiplication over $GF(2^m)$, Advances in Computational Intelligence and Security, Xidian University, pp.109-114, 2005.
  8. C.H. Kim, Y. Kim, N.S. Chang and I. Park, Modified Serial Multipliers for Type-IV Gaussian Normal Bases, Lecture Notes in Computer Science(Indocrypt 2005) 3797, pp. 375-388, 2005. https://doi.org/10.1007/11596219_30
  9. C.K. Koc and B. Sunar, Low-cimolexity bit-parallel canonoica and normal basis multipliers for a class of finite fields, IEEE Trans. vol.47, no.3, pp. 353-356, Mar, 1998. https://doi.org/10.1109/12.660172
  10. R. Lidl and H. Niederreiter, Introduction to finite fields and its applications, Cambridge Univ. Press, 1994.
  11. J.L. Massey and J.K. Omura, Computational method and apparatus for finite field arithmetic, US Patent NO. 4587627, 1986.
  12. A.J. Menezes, I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone, and T. Yaghoobian, Applications of finitr fields, Kluwer Academic, 1993.
  13. A. Reyhani-Masolleh and M.H. Hasan, A new construction of Massey-Omura parallel multiplier over $GF(2^m)$, IEEE Trans. vol.51, no.5, pp. 512-520, May, 2002. https://doi.org/10.1109/TC.2002.1004590
  14. A. Reyhani-Masolleh and M.H. Hasan, Efficient multiplication beyond optimal normal bases, IEEE Trans. vol.52, no.4, pp. 428-439, April, 2003. https://doi.org/10.1109/TC.2003.1190584
  15. B. Sunar and C.K. Koc, An efficient optimal normal basis type-II multiplier, IEEE Trans. Computers, vol. 50, no.1, pp.83-88, 2001. https://doi.org/10.1109/12.902754
  16. C.C Wang, T.K. Truong, H.M. Shao, L.J. Deutsch, J.K. Omura, and I.S. Reed, VLSI architectures for computing multiplications and inverses in $GF(2^m)$, IEEE Trans. Computers, vol.34, no.8, pp.709-716, 1985. https://doi.org/10.1109/TC.1985.1676616
  17. H. Wu and M.A. Hasan, Low Complexity bit-parallel multipliers for a class of finite fields, IEEE Trans. vol.47, no.8, pp. 883-887, Aug., 1998. https://doi.org/10.1109/12.707588