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EFFICIENT BIT SERIAL MULTIPLIERS
OF BERLEKAMP TYPE IN Fm

2

SOONHAK KWON

Abstract. Using good properties of an optimal normal basis of type I in a
finite field F2m , we present a design of a bit serial multiplier of Berlekamp
type, which is very effective in computing xy2. It is shown that our multiplier
does not need a basis conversion process and a squaring operation is a simple
permutation in our basis. Therefore our multiplier provides a fast and an
efficient hardware architecture for a bit serial multiplication of two elements in
F2m .

1. Introduction

Arithmetic of finite fields, especially finite field multiplication, found various applica-
tions in coding theory, cryptography and digital signal processing. Therefore efficient
design of finite field multipliers is needed. A good multiplication algorithm depends
on the choice of basis for a given finite field. One of the most widely used finite field
multipliers is the Berlekamp’s bit serial multiplier [1],[2],[3]. Because of it’s low hard-
ware complexity, it has been used in Reed-Solomon encoders which have been utilized
in various practical applications such as a deep space probe and a compact disc tech-
nology. Let us briefly explain Berlekamp’s multiplier over a finite field. We are mainly
interested in a finite field F2m with characteristic two because it is suitable for a hard-
ware implementation, but the basic theory can be easily extended to an arbitrary finite
field. A finite field F2m with 2m elements is regarded as a m-dimensional vector space
over F2. Therefore it has a basis over F2. One may choose a standard polynomial basis
but there exist other types of basis which are useful for their specific purposes.

Definition 1. Two bases {α1, α2, · · · , αm} and {β1, β2, · · · , βm} of GF (2m) are said
to be dual if the trace map, Tr : GF (2m) → GF (2), with Tr(α) = α+α2 + · · ·+α2m−1

,
satisfies Tr(αiβj) = δij for all 1 ≤ i, j ≤ m, where δij = 1 if i = j, zero if i 6= j. A
basis {α1, α2, · · · , αm} is said to be self dual if Tr(αiαj) = δij.
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Let α be an element of F2m be such that {1, α, α2, · · · , αm−1} is a basis of F2m over F2.
Let {β0, β1, · · · , βm−1} be the dual basis of {1, α, α2, · · · , αm−1}. For any x ∈ F2m , by
considering both polynomial basis and it’s dual basis expression of x, we may express
x as

x =
m−1∑

i=0

xiα
i =

m−1∑

i=0

[x]iβi.

Let y =
∑m−1

i=0 yiα
i be another element in F2m . Then we have the dual basis expression

xy =
m−1∑

k=0

[xy]kβk,

where

[xy]k = Tr(αkxy) = Tr(αkx
m−1∑

i=0

yiα
i)

=
m−1∑

i=0

yiTr(αi+kx) =
m−1∑

i=0

yi[αkx]i.

Note that [αkx]i is the ith coefficient of the dual basis expression of αkx. On the other
hand, we have

[αx]i = Tr(αiαx) = [x]i+1, i = 0, 1, 2, · · · ,m− 2.

Also letting f0 + f1X + f2X
2 + · · · + fm−1X

m−1 + Xm ∈ F2[X] be the irreducible
polynomial of α over F2,

[αx]m−1 = Tr(αm−1αx) = Tr(
m−1∑

i=0

fiα
ix) =

m−1∑

i=0

fiTr(αix) =
m−1∑

i=0

fi[x]i.

Therefore for each k and i, [αkx]i can be computed by the feedback shifting pro-
cess of previous expression [αk−1x]i, i = 0, 1, · · · ,m − 1. The multiplication [xy]k =∑m−1

i=0 yi[αkx]i is realized by the following hardware design of a feedback shift register
[1].



BIT SERIAL MULTIPLIERS OF BERLEKAMP TYPE 77

Figure 1. Bit serial arrangement of Berlekamp’s dual basis multiplier.

After k-clock cycles, we get [xy]k, the kth coefficient of the dual basis expression of xy.
As is obvious from above algorithm, Berlekamp’s bit serial multiplier uses a dual basis.
That is, to multiply two elements in a finite field, one input y is expressed in terms
of a standard polynomial basis, the other input x is expressed in terms of it’s dual
basis and the resulting output xy is expressed in terms of the dual basis. Therefore we
need a basis conversion process in Berlekamp’s algorithm, which necessarily increases
the hardware complexity in it’s implementation. This problem is largely solved in
the cases when the corresponding finite field is generated by a root of an irreducible
trinomial [2] or a pentanomial of a special kind [3]. Bit serial multipliers applicable
for all types of irreducible polynomials are presented in [8]. But they have increased
hardware complexity and the operations are relatively slow compared with Berlekamp’s
multipliers if the basis conversion is unnecessary. One more drawback of Berlekamp’s
multiplier is that exponentiation, inverse finding procedures are very time consuming
when compared with bit parallel multipliers (especially with Massey-Omura type mul-
tipliers using normal bases [5],[6],[7]). Not to mention it’s high speed because of parallel
processing, bit parallel normal basis multipliers are quite effective in such operations as
exponentiation, inverse finding since squaring operation is just a cyclic shift in normal
basis expression. So various types of normal basis multipliers are being studied. Among
them, so called optimal normal basis multipliers [6],[7] require least number of gates
than other types of parallel multipliers. There are two types of optimal normal bases
[4], namely, type I and type II. Our aim in this paper is to present a design of a bit
serial multiplier using type I optimal normal basis which satisfies the following three
properties. First, it is generally faster than Berlekamp’s bit serial multiplier. Second,
squaring operation is just a permutation in our basis. Therefore, exponentiation and
inverse finding operations are much faster than Berlekamp’s multiplier. Third, it needs
no basis conversion process which is required in Berlekamp’s algorithm.
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2. Normal basis and optimal normal basis of type I

Let α be an element of F2m of degree m and let f(X) = f0+f1X+· · ·+fm−1X
m−1+Xm

be the irreducible polynomial of α over F2. Then we have

0 = f(α) = f0 + f1α + f2α
2 + · · ·+ fm−1α

m−1 + αm.

From this, it is clear that

0 = f(α)2
i
= f(α2i

), i = 0, 1, 2, · · · ,m− 1,

since f0, f1, · · · , fm−1 are in F2 and the characteristic of F2m is two. In other words, all
the zeros of f(X) are α, α2, α22

, · · · , α2m−1
. If all the conjugates, α, α2, α22

, · · · , α2m−1
,

of α are linearly independent over F2, then they form a basis for F2m over F2.

Definition 2. A basis of F2m over F2 of the form {α, α2, · · · , α2m−1} is called a normal
basis.

It is a standard fact [4] that there is always a normal basis in F2m for any m ≥ 1. If an
element x in F2m is expressed with respect to a normal basis {α, α2, · · · , α2m−1}, i.e. if
x = x0α + x1α

2 + · · ·+ xm−1α
2m−1

, then one easily notices

x2 = xm−1α + x0α
2 + x1α

22
+ · · ·+ xm−2α

2m−1
.

That is, x2 is a right cyclic shift of x with respect the basis {α, α2, · · · , α2m−1}. On the
other hand, a normal basis expression of a product xy of two different elements x and y

in F2m is not so simple. This is because the expression α2i
α2j

=
∑m−1

k=0 aij
k α2k

may be
quite complicated if one does not choose a normal basis properly. Therefore, to find an
efficient bit serial multiplication using a normal basis, one has to choose a normal basis
so that the coefficients aij

k in the expression α2i
α2j

are zero for many indices i, j and k.
There are not so many normal bases satisfying this condition, but we have one example
of such normal basis and it is stated in the following theorem. A detailed proof can be
found in [4].

Theorem 1. Let F2m be a finite field of 2m elements where m + 1 = p is a prime.
Suppose that 2 is a primitive root (mod p). Then letting α be a primitive pth root of
unity in F2m, {α, α2, · · · , α2m−1} is a basis over F2.

Above theorem is based on the fact that the splitting field of the polynomial xs − 1 ∈
F2[x] over F2 is F2t where t is the least positive integer satisfying 2t ≡ 1 (mod s). In
the case when s = p is a prime and 2 is a primitive root (mod p), we have F2(α) =
F2p−1 = F2m . Also since {2i|i = 0, 1, · · · , p− 2} is a reduced residue system (mod p),
we easily get {α, α2, α22

, · · · , α2m−1} = {α, α2, α3, · · · , αm}. Since α is a primitive pth
root of unity where m + 1 = p is a prime, we have the irreducible polynomial f(X) of
α over F2 as
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f(X) = (X − α)(X − α2)(X − α22
) · · · (X − α2m−1

)
= (X − α)(X − α2)(X − α3) · · · (X − αm)

=
Xm+1 − 1

X − 1
= 1 + X + X2 + · · ·+ Xm.

Moreover since {α, α2, α22
, · · · , α2m−1} and {α, α2, α3, · · · , αm} are same sets, we find

α2i
α2j

= αsαt = αs+t,

where one may assume 1 ≤ s+ t ≤ m because αm+1 = 1. Therefore we deduce that the
multiplication of two different elements of F2m is not so complicated if one use above
mentioned normal basis.

Definition 3. A normal basis in theorem 1 is called an optimal normal basis of type I.

Optimal normal bases of type I are widely used in the design of bit parallel multipliers.
A table in [4, p. 100] says that there is an optimal normal basis of type I when m =
2, 4, 10, 12, 18, 28, 36, 52, 58, 60, 66, 82, 100, 106, · · · . In fact, the number of m ≤ 2000 for
which there exists an optimal normal basis of type I is 118. This may not be sufficient
enough for coding theoretical purposes. But for a cryptographical purpose where one
fixes a large finite field F2m of a suitable size, we do have a sequence of a large finite
field which has an optimal normal basis of type I.

3. Multiplication algorithm

To find an efficient bit serial multiplier with respect to a type I optimal normal basis,
we express x ∈ F2m as x =

∑m
i=0 xiα

i. Note that the expression is not unique since
{1, α, α2, · · · , αm} is no longer a basis over F2. But the expression x =

∑m
i=0 xiα

i can
easily be represented using the basis {α, α2, α3, · · · , αm} as follows. If x0 = 0, x has
already an expression with respect to the basis {α, α2, α3, · · · , αm}. If x0 = 1 then,

x =
m∑

i=0

xiα
i =

m∑

i=0

xiα
i +

m∑

i=0

αi =
m∑

i=1

(xi + 1)αi,

since the minimal polynomial of α over F2 is

1 + X + X2 + · · ·+ Xm ∈ F2[X].

Theorem 2. Let x =
∑m

i=0 xiα
i and y =

∑m
i=0 yiα

i be two elements in F2m, where
{α, α2, · · · , α2m−1} is a type I optimal normal basis. Then we have xy =

∑m
i=0(xy)iα

i,
where the kth coefficient (xy)k is

y0xk + y1xk−1 + · · ·+ ykx0 + yk+1xm + yk+2xm−1 + · · ·+ ymxk+1.

Proof.
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xy =
m∑

i=0

xiα
i

m∑

j=0

yjα
j

=
m∑

i=0

m∑

j=0

xiyjα
i+j

=
∑

i+j≤m

xiyjα
i+j +

∑

i+j>m

xiyjα
i+j

=
m∑

k=0

∑

i+j=k

xiyjα
k +

m−1∑

k=0

∑

i+j=m+1+k

xiyjα
k

=
m∑

k=0

(y0xk + y1xk−1 + · · ·+ ykx0)αk

+
m−1∑

k=0

(yk+1xm + yk+2xm−1 + · · ·+ ymxk+1)αk

=
m∑

k=0

(y0xk + · · ·+ ykx0 + yk+1xm + · · ·+ ymxk+1)αk,

which completes the proof. ¤
Using above theorem, we have the matrix multiplication form of (xy)k as

(xy)k = (xk, xk−1, · · · , x0, xm, xm−1, · · · , xk+1)(y0, y1, · · · , ym)T ,

where (y0, y1, · · · , ym)T is the transposition of the row vector (y0, y1, · · · , ym). From

(xy)k+1 = (xk+1, xk, · · · , x0, xm, xm−1, · · · , xk+2)(y0, y1, · · · , ym)T ,

we notice that the row vector (xk+1, xk, · · · , x0, xm, xm−1, · · · , xk+2) is just a right
cyclic shift of (xk, xk−1, · · · , x0, xm, xm−1, · · · , xk+1) by one position. Therefore the
multiplication xy is easily realized by the shift register arrangement shown in Fig. 2
which is noticed in [9].

Figure 2. Bit serial arrangement using an optimal normal basis of type I.
The shift register is initially loaded with (x0, xm, xm−1, · · · , x1). After k clock cycles, we
get (xy)k, the kth coefficient of xy with respect to the extended basis {1, α, α2, · · · , αm}.
One may further improve above result in [9] by using the property of a normal basis.
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That is, we will present a bit serial multiplier computing xy2 in Fm
2 . In the theory of

error correcting codes, the following types of product sum operations in GF (2m), xy+z
and xy2 + z, are the most frequently used arithmetic operations. Those product sum
operations are easily realized by using extra registers and XOR gates once you have
the circuits which compute xy and xy2. Since a squaring operation is a permutation
in our basis, the operation xy2 is computed by the following two steps. First, compute
y2 by permutating the coefficients of y. Second, compute xy2 using the bit serial
arrangement in Fig. 2. However, we do not have to actually permutate the coefficients
of y to compute xy2. We only need the second step by slightly adjusting the wiring in
Fig. 2. The idea is derived in the following way. First, note that the coefficient (xy)k

in theorem 2 can be reexpressed in the following form,

(xy)k =
m∑

j=0

xk−jyj = (xk, xk−1, · · · , xk−m)(y0, y1, · · · , ym)T ,

where it is defined, for all integers s and t, that xs = xt if and only if s ≡ t (mod m+1).
Using this notation on xs for all integers s, we get the following result.

Theorem 3. (xy2)k = (xk, xk−2, xk−4, · · · , xk−2m)(y0, y1, y2, · · · , ym)T .

Proof.

xy2 =
m∑

i=0

xiα
i

m∑

j=0

yjα
2j

=
m∑

i=0

m∑

j=0

xiyjα
i+2j =

m∑

i=0

m∑

j=0

xi−2jyjα
i ¤

Now let 2i ≡ j (mod m + 1). Then using 2m/2 ≡ −1 (mod m + 1), we get the
expression of i ≡ 2−1j (mod m + 1) as

i ≡ j

2
if j = even, and i ≡ j + 1

2
+

m

2
if j = odd.

Above relation combined with the expression, (xy2)k =
∑m

i=0 xk−2iyi =
∑m

j=0 xk−jy2−1j ,
implies that we may express (xy2)k as a matrix multiplication form

(xy2)k = (xk, xk−1, xk−2, · · · , xk−m+1, xk−m)(y0, ym
2

+1, y1, · · · , ym, ym
2
)T .

Thus we have

(xy2)k+1 = (xk+1, xk, xk−1, · · · , xk−m+2, xk−m+1)(y0, ym
2

+1, y1, · · · , ym, ym
2
)T .

Since k + 1 ≡ k −m (mod m + 1), we get xk+1 = xk−m. From this, we easily notice
that (xk+1, xk, xk−1, · · · , xk−m+2, xk−m+1) is a right cyclic shift of (xk, xk−1, xk−2, · · · ,
xk−m+1, xk−m). Above algorithm is realized in the shift register arrangement shown
in Fig. 3. Unlike the case of Berlekamp’s dual basis multiplier, our multiplier does
not need XOR operations among the elements xis to determine a shifting element.
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Therefore our multiplier is generally faster than Berlekamp’s multiplier. Also, since
our multiplier is using a normal basis, such arithmetical operations as squaring and
xy2 are very efficiently computed as is explained above. Note that, in the case of the
dual basis multiplier, we do not have a similar structure for the multiplication xy2 and
the computation of xy2 is much more time consuming than the computation of xy.

Figure 3. Bit serial arrangement for computing xy2.

Moreover we do not need a basis conversion process which is required in dual basis
multipliers. A similar design for the computation of xy is proposed in [10]. In [10],
they used a dual basis argument on {1, α, α2, · · · , αm−1}. Letting {α0, α1, · · · , αm−1}
be the dual basis of {1, α, α2, · · · , αm−1}, they expressed the inputs x and y with respect
to the dual basis as

x =
m−1∑

i=0

[x]iαi, y =
m−1∑

i=0

[y]iαi.

They also used one extra memory (or a flip-flop) similar to ours, but the input to the
extra memory is [y]0 +[y]1 + · · ·+[y]m−1. This a great drawback when one implements
it to a hardware arrangement, since one needs m−1 more XOR gates and a time delay
of order log m is occurred during the initial loading of [y]0 + [y]1 + · · ·+ [y]m−1. That
is why only the software implementation is presented in [10]. However, our multiplier
has no such problem and our method is well suited to both hardware and software
arrangements. The algorithm of software arrangement can be explained as follows. For
each x =

∑m
i=0 xiα

i ∈ F2m , we denote it as a vector form x = (x0, x1, · · · , xm). Let
x(k) = (xm−k+1, xm−k+2, · · · , xm, x0, x1, · · · , xm−k) denote the right cyclic shift of x
by k positions. Now using the relation

(xy)k =
m∑

k=0

(y0xk + · · ·+ ykx0 + yk+1xm + · · ·+ ymxk+1)αk,

we find the following matrix form
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(xy)0
(xy)1
(xy)2
·
·
·

(xy)m




=




x0 xm xm−1 · · x1

x1 x0 xm · · x2

x2 x1 x0 · · x3

· · · · · ·
· · · · · ·
· · · · · ·

xm xm−1 xm−2 · · x0







y0

y1

y2

·
·
·

ym




=
m∑

k=0

yk




xm−k+1

xm−k+2

:
xm

x0

:
xm−k




=
m∑

k=0

ykx(k)t.

Thus we have the following.

Table 1. A multiplication algorithm.
————————————————————————————–

Input: x = (x0, x1, · · · , xm), y = (y0, y1, · · · , ym)
Output: z = ((xy)0, (xy)1, · · · , (xy)m)
z ← (0, 0, · · · , 0)
for (k = 0; k ≤ m; k + +)
{

if (yk 6= 0) z ← z ⊕ x(k)
}

————————————————————————————–

The notation ⊕ in above algorithm denotes a bitwise XOR operation of two vectors
in Fm+1

2 . Though the algorithm for xy2 is not described here in detail, it should be
mentioned that it is a routine manner to write down the algorithm by using the property
that {α, α2, α3, · · · , αm} and {α, α2, α22

, · · · , α2m−1} are same sets.
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