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ON CLOSING CODES

Somayyeh Jangjooye Shaldehi

Abstract. We extend Jung’s result about the relations among bi-closing,

open and constant-to-one codes between general shift spaces to closing

codes. We also show that any closing factor code ϕ : X → Y has a degree
d, and it is proved that d is the minimal number of preimages of points in

Y . Some other properties of closing codes are provided. Then, we show
that any closing factor code is hyperbolic. This enables us to determine

some shift spaces which preserved by closing codes.

1. Introduction

Closing codes are important in symbolic dynamics. A classical consideration
of them is in [7, 8]. Jung showed that these maps have a close relation with
open codes [6]. They also have a very natural description from the viewpoint
of hyperbolic dynamics [3]: right-closing codes are injective on unstable sets
while left-closing codes are injective on stable sets.

There are some relations among bi-closing, open and constant-to-one codes.
In [9], Nasu showed that in the category of irreducible shifts of finite type, these
conditions are equivalent. Jung extended this result to the general shift spaces
and showed that any two of these properties imply the third [6]. In Section
3, we prove that any closing factor code ϕ : X → Y has a degree d and also,
we show that d is the minimal number of preimages of points in Y (Theorem
3.3). Then, Corollary 3.5 states that any open closing code from a shift space
to an irreducible shift space is bi-closing. After that, we extend Jung’s result
to closing codes (Theorem 3.7).

Closing extensions have been given some attention in coded systems which
are subshifts generated by the arbitrary concatenations of a countable set of
words. Boyle et al. [2] investigated the irreducible closing extensions of SFT
(resp. sofic) shift spaces and showed that they are SFT (resp. sofic). Also in
[1], Blanchard proved that the property ‘coded’ lifts under closing codes. In
Section 4, first, we show that any closing factor code is hyperbolic (Theorem
4.5). Then, by Theorem 4.7, we show that synchronized and half-synchronized
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systems which are two well-known subclasses of coded systems, are preserved
by closing codes. Finally, Theorem 4.8 gives an equivalence relation by closing
codes on some families of shift spaces.

2. Background and notations

This section is devoted to the basic definitions in symbolic dynamics. The
notations has been taken from [8]. Given a non-empty finite set A, the full
A-shift, denoted by AZ, is the collection of all bi-infinite sequences of symbols
from A. A word (or block) over A is a finite sequence of symbols from A.
The shift map on AZ is the map σ : AZ → AZ where (σx)i = xi+1. The pair
(AZ, σ) is called the full shift. Let F be a set of words over A. Define XF to
be the subset of AZ which do not contain any word in F . A shift space is a
closed subset X of AZ such that X = XF for some set F of forbidden words.
A shift space X is called a shift of finite type (SFT) if X = XF for a finite set
F and it is called irreducible if for every ordered pair of words u, v ∈ B(X),
there is a word w ∈ B(X) such that uwv ∈ B(X).

Let Bn(X) be the set of all admissible n-words and B(X) =
⋃∞

n=0 Bn(X).
Given u ∈ B(X), the cylinder l[u] is the set {x ∈ X : x[l,l+|u|−1] = u}. For
l ≥ 0 and |u| = 2l + 1, −l[u] is called a central 2l + 1 cylinder.

Let A and D be alphabets and X a shift space over A. For m, n ∈ Z with
−m ≤ n, the (m+ n+ 1)-block map Φ : Bm+n+1(X)→ D is defined by

(2.1) yi = Φ(xi−mxi−m+1 · · ·xi+n) = Φ(x[i−m,i+n]),

where yi ∈ D. Then, the map ϕ = Φ
[−m,n]
∞ : X → DZ defined by ϕ(x) = y

with yi given by (2.1) is called the code induced by Φ. If m = n = 0, then ϕ is
called a 1-block code and ϕ = Φ∞. An onto (resp. invertible) code ϕ : X → Y
is a factor code (resp. conjugacy). Then, X is called an extension of Y .

A code ϕ : X → Y is finite-to-one if there is a positive integer M such that
|ϕ−1(y)| ≤ M for every y ∈ Y and if the points in the image have the same
number of preimages, ϕ is called constant-to-one.

Let G be a directed graph and V (resp. E) the set of its vertices (resp.
edges). An edge shift, denoted by XG, is a subshift which consists of all bi-
infinite sequences of edges from E . A labeled graph G is a pair (G,L) where G
is a directed graph and L : E → A its labeling. Associated to G, a shift space

XG = closure{L∞(ξ) : ξ ∈ XG} = L∞(XG)

is defined and G is called a cover (or presentation) of XG . When G is a finite
graph and hence compact, XG = L∞(XG) is a sofic shift. If the shift space X
is a factor of a SFT, then it is sofic.

A labeled graph G = (G,L) is right-resolving if for each vertex I of G the
edges starting at I carry different labels. A Fischer cover of an irreducible
sofic shift X is a right-resolving cover having the fewest vertices among all
right-resolving covers of X. It is unique up to isomorphism.
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3. An extension of Jung’s theorem

In this section, we investigate some properties of closing codes. First we
show that any closing factor code ϕ : X → Y has a degree and it is the
minimal number of preimages of points in Y . Then, we extend Jung’s result [6]
about relations among bi-closing, open and constant-to-one codes to the class
of closing codes and conclude that any open closing code is bi-closing.

A 1-block code ϕ = Φ∞ : X → Y is called right-resolving if whenever
ab, ac ∈ B2(X) with Φ(b) = Φ(c), then b = c. A pair x, x of points in a shift
space X is left-asymptotic if there exists an integer N for which x(−∞,N ] =
x(−∞,N ]. A code ϕ : X → Y is called right-closing if whenever x and x
are left-asymptotic and ϕ(x) = ϕ(x), then x = x. A right-closing code can
be recoded to a right-resolving code. Right-asymptotic points and left-closing
(resp. resolving) codes are defined similarly. If ϕ is left or right-closing, it is
called closing and we call ϕ bi-closing (resp. bi-resolving) if it is both left and
right-closing (resp. resolving).

A point x in a subshift X is called doubly transitive if every word in X
appears in x infinitely often to the left and to the right. Let ϕ : X → Y be
a factor code. If there exists a d ∈ N such that every doubly transitive point
of Y has exactly d preimages, d is called the degree of ϕ. Then, ϕ is d-to-one
almost everywhere.

Even when a factor code ϕ : X → Y is finite-to-one, the degree of ϕ need
not be defined. Jung [6] proved that bi-closing codes have a degree. Now we
extend this result to closing factor codes. For this, we will use quantity d∗.

Definition 3.1. Suppose ϕ = Φ∞ : X → Y is a 1-block code. For w =
w1 · · ·wm ∈ Bm(Y ) and 1 ≤ i ≤ m, we define d∗(w, i) to be the number of
distinct symbols that you can see at coordinate i in preimages of the word w.
Now put

d∗ = min{d∗(w, i) : w ∈ B(Y ), 1 ≤ i ≤ |w|}.
A magic word is a word w such that d∗(w, i) = d∗ for some i. Then, the index
i is called a magic coordinate.

Theorem 3.2. Let ϕ : X → Y be a resolving 1-block factor code and Y an
irreducible shift space. Then ϕ has a degree d and d = d∗. Furthermore,
|ϕ−1(y)| ≥ d for any y ∈ Y .

Proof. Let w be a magic word with the magic coordinate i. So if y ∈ Y , then
for each m, there exist at least d∗ distinct symbols that we can see at coordinate
0 in the preimages of y[−m,m]. Therefore, by compactness, y has at least d∗

preimages.
Now we show that any doubly transitive point has at most d∗ preimages.

Let y ∈ Y be a doubly transitive point. By definition, w appears in y infinitely
often to the left and to the right. Since ϕ is resolving, the number of preimages
of y is at most d∗. Thus, d = d∗. �
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Recall that if ϕ : X → Y is a right-closing code, then there exist a shift
space X ′ and a conjugacy ψ : X ′ → X such that ϕ ◦ ψ is right-resolving. So
by Theorem 3.2, we have:

Theorem 3.3. Let ϕ : X → Y be a closing factor code and Y an irreducible
shift space. Then ϕ has a degree d and |ϕ−1(y)| ≥ d for any y ∈ Y .

Jung showed that any open bi-closing code from a shift space to an irre-
ducible subshift is constant-to-one [6, Corollary 2.8]. We give an analogue of
this result for closing codes. For this, first recall that any open code from a
shift space to an irreducible shift space is onto [6, Lemma 2.1].

Theorem 3.4. Let ϕ : X → Y be an open closing code and Y irreducible.
Then ϕ is constant-to-one.

Proof. By Theorem 3.3, ϕ has a degree d and |ϕ−1(y)| ≥ d for all y ∈ Y . Since
ϕ is closing, it is finite-to-one [8, Proposition 8.1.11]. So openness implies that
|ϕ−1(y)| ≤ d for all y ∈ Y [6, Lemma 2.5]. �

Corollary 3.5. Any open closing code from a shift space to an irreducible shift
space is bi-closing.

Proof. Theorem 3.4 implies that such codes are constant-to-one and by [6,
Proposition 2.9], any open constant-to-one code is bi-closing. �

A continuous map f : Y → X is called a cross section of a code ϕ : X → Y
if ϕ(f(y)) = y for all y ∈ Y . We say that ϕ has d disjoint cross sections if there
are d cross sections fi : Y → X such that fi(Y )∩fj(Y ) = ∅ for all i 6= j. Using
cross sections, Jung showed that any constant-to-one bi-closing code is open
[6, Proposition 4.5]. Using Theorem 3.3, the main ingredients of the proof of
[6, Proposition 4.5] works for closing codes as follows.

Theorem 3.6. Let ϕ : X → Y be a d-to-one closing factor code and Y an
irreducible shift space. Then ϕ is open.

Proof. We claim that ϕ has d disjoint cross sections such that the union of
their images is X. Without loss of generality, we can assume that ϕ = Φ∞ is
a right-resolving 1-block code. For each n ≥ 0 and w ∈ B2n+1(Y ), define

D(w) = {x0 : x ∈ X, Φ(x[−n,n]) = w}.
Then by Definition 3.1, d(w) = |D(w)| ≥ d∗ and so Theorem 3.2 gives |D(w)| ≥
d. Now define Yn = {y ∈ Y : d(y[−n,n]) > d}. Each Yn is closed and the family
of Yn’s is nested. If for all n, Yn 6= ∅, then there is a y ∈ ∩Yn. Therefore,
for each n, there are at least d+ 1 distinct symbols that appear at coordinate
0 in the preimages of y[−n,n] and hence by compactness, y has at least d + 1
preimages which is a contradiction. So there is an n such that Yn = ∅. Thus,
|D(w)| = d for all w ∈ B2n+1(Y ).

For this n, we can define g1, . . . , gd : B2n+1(Y ) → B1(X) such that for any
w ∈ B2n+1(Y ), {g1(w), . . . , gd(w)} = D(w). Then, we define cross sections
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f1, . . . , fd : Y → X such that for each 1 ≤ i ≤ d, fi(y) is the unique point in
ϕ−1(y) where fi(y)0 = gi(y[−n,n]). Now it is sufficient to show continuity.

For each 1 ≤ i ≤ d, define an open and closed set

Vi = ∪{−n[u] : u ∈ B2n+1(X), (gi ◦ Φ)(u) = u0}.
Then, x ∈ Vi if and only if x = (fi ◦ ϕ)(x). Therefore, f−1i = ϕ|Vi

is an
invertible continuous map between compact metric spaces. So, fi is continuous
and the claim is proved.

Now suppose ϕ is not open. Then, there exists an open set U ⊆ X such
that ϕ(U) is not open. So there are a point x ∈ U and a sequence {y(n)} in Y
such that y(n) → ϕ(x) and y(n) 6∈ ϕ(U) for any n ∈ N. Let f be a cross section
with x ∈ f(Y ) and let z(n) = f(y(n)) for all n. Then, we have z(n) → x and
since U is open, z(n) ∈ U . But then, y(n) ∈ ϕ(U) for all large enough n, which
is a contradiction. �

Theorems 3.4, 3.6 and [6, Proposition 2.9] give the following result.

Theorem 3.7. Let ϕ : X → Y be a factor code between shift spaces and Y
an irreducible shift space. Then, any two of the following conditions imply the
third:

(1) ϕ is open;
(2) ϕ is constant-to-one;
(3) ϕ is closing.

4. Extension by closing codes

In this section, first we show that any closing factor code is hyperbolic. By
using this, we investigate some properties which preserved by closing codes.
Then, we define an equivalence relation by having a common right-closing ex-
tension on some classes of subshifts.

Theorem 4.1 ([2]). Let X be an irreducible shift, Y a SFT (resp. sofic) and
ϕ : X → Y a right-closing factor code. Then, X is also SFT (resp. sofic).

Blanchard showed that right-closing codes also preserve the property ‘coded’
[1]. Now we generalize these results to synchronized and half-synchronized
systems which are two subclasses of coded systems and defined as follows.

Definition 4.2. A word v ∈ B(X) is synchronizing if whenever uv, vw ∈
B(X), then we have uvw ∈ B(X). An irreducible shift space X with a syn-
chronizing word is called a synchronized system.

For x ∈ X, let x− = (xi)i<0 and x+ = (xi)i∈Z+ . Also, let X+ = {x+ : x ∈
X}. Then, the follower set of x− (resp. m ∈ B(X)) is defined as ω+(x−) =
{x+ ∈ X+ : x−x+ ∈ X} (resp. ω+(m) = {x+ ∈ X+ : mx+ ∈ X+}).

Definition 4.3. An irreducible shift space X is called half-synchronized, if
there exist a word m ∈ B(X) and a left-transitive point x in X where x[−|m|+1,0]
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= m and ω+(x(−∞,0]) = ω+(m). Such a word m is a half-synchronizing word
for X.

Any synchronizing word is a half-synchronizing word. So any synchronized
shift is half-synchronized. Also, half-synchronized systems are coded [5].

The following notation is motivated by the hyperbolic homeomorphism ϕ :
D(X)→ D(Y ) defined in [11] which D(X) stands for the set of doubly transi-
tive points of X.

Definition 4.4. Let ϕ : X → Y be a factor code and X be an irreducible shift
space. We call ϕ hyperbolic if there exist a d ∈ N and a word w ∈ B2n+1(Y )
and d words m(1),m(2), . . . ,m(d) ∈ B2k+1(X), so that

(1) if y ∈ Y such that y[−n,n] = w, then we have

ϕ−1(y)[−k,k] = {m(1),m(2), . . . ,m(d)},
(2) if w′ = ww′′w ∈ B(Y ), then for each 1 ≤ i ≤ d, there exists a unique

word a(i) ∈ B(X), so that for any x ∈ X with x[−k,k] = m(i) and

ϕ(x)[−n,n+p] = w′, we have x[−k,k+p] = a(i).

In order to show that the properties ‘synchronized’ and ‘half-synchronized’
lift under closing factor codes, first we prove that there is a close relation
between hyperbolic maps and closing codes.

Theorem 4.5. Let ϕ : X → Y be a closing factor code. Then ϕ is hyperbolic.

Proof. Without loss of generality, suppose that ϕ is a right-resolving 1-block
code. Let k ∈ N and y ∈ Y . Then, compactness of X implies that there is a
m ∈ N such that for any point x ∈ X with ϕ(x)[−m,m] = y[−m,m], we have that

x[−k,k] ∈ ϕ−1(y)[−k,k]. Let

d = min{|ϕ−1(y′)[−k,k]| : y′ ∈ Y with y′[−m,m] = y[−m,m]}

and let y ∈ Y with y[−m,m] = y[−m,m] and |ϕ−1(y)[−k,k]| = d. By com-
pactness of X, there exists n > m such that for any point x ∈ X with
ϕ(x)[−n,n] = y[−n,n], we have that x[−k,k] ∈ ϕ−1(y)[−k,k]. Now let w = y[−n,n]
and {m(1),m(2), . . . ,m(d)} = ϕ−1(y)[−k,k]. Then by the minimality of d, Defi-
nition 4.4(1) is satisfied and right-resolving gives (2). �

Remark 4.6. Not every hyperbolic map is closing. Because closing codes are
finite-to-one [8, Proposition 8.1.11], while there are some hyperbolic maps which
are not finite-to-one [4].

Fiebig showed that ‘being coded (or synchronized)’ is an invariant for hyper-
bolic codes [4]. Later we extended this result to half-synchronized systems
[10, Theorem 3.3]. So by Theorem 4.5, we have:

Theorem 4.7. Let ϕ : X → Y a closing factor code and X an irreducible shift
space. Then,
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(1) X is synchronized if and only if Y is synchronized.
(2) X is half-synchronized if and only if Y is half-synchronized.

Now we can introduce an equivalence relation using closing factor codes
among shift spaces. First, we define the notation of fiber product.

Let ϕX : X → Z and ϕY : Y → Z be codes between shift spaces. The fiber
product of (ϕX , ϕY ) is (Σ, ψX , ψY ), where

Σ = {(x, y) ∈ X × Y : ϕX(x) = ϕY (y)},

and ψX : Σ → X and ψY : Σ → Y are the projection maps. Some properties
of the maps ϕX and ϕY are inherited by ψX and ψY and vice versa. More
specifically, if ϕX is right-closing, then ψY is also right-closing.

Theorem 4.8. Having a common SFT (resp. sofic, synchronized, half- syn-
chronized or coded) extension with right-closing factor codes defines an equiv-
alence relation on the set of irreducible SFT (resp. sofic, synchronized, half-
synchronized or coded) systems.

Proof. First, we consider the set of irreducible shifts of finite type. Let X, Y
and Z be irreducible shifts of finite type such that X and Y and Y and Z
have the common SFT right-closing extensions (V, ϕX , ϕY ) and (W,ϕ′Y , ϕ

′
Z),

respectively and also, (Σ, ψV , ψ
′
W ) be the fiber product of (ϕY , ϕ

′
Y ). Suppose

that (v, w) is a point in Σ such that the orbit of ϕY (v) = ϕ′Y (w) is dense in
Y and denote by Γ the orbit closure of (v, w) in Σ. Then, Γ is an irreducible
component of Σ such that ψV : Γ → V and ψ′W : Γ → W are onto. Since ϕY

is right-closing, ψ′W : Γ → W will be right-closing. So by Theorem 4.1, Γ is
SFT and since the composition of right-closing codes is a right-closing code, the
triple (Γ, ϕX ◦ψV , ϕ

′
Z ◦ψ′W ) is a common SFT right-closing extension between

X and Z.
The result for sofic (resp. synchronized, half-synchronized or coded) systems

holds by Theorem 4.1 (resp. Theorem 4.7 or [1, Proposition 13]) in a similar
way. �
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