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EQUIVALENCES OF SUBSHIFTS

JUNGSEOB LEE

§1. Introduction

Subshifts of finite type can be classified by various equivalence rela-
tions. The most important equivalence relation is undoubtedly strong
shift equivalence, i.e., conjugacy. In [W], R. F. Williamns introduced
shift equivalence which is weaker than conjugacy but still sensitive.
Since then it has been conjectured that shift equivalent irreducible sub-
shifts of finite type are conjugate. Krieger [K1] introduced a very im-
portant shift equivalence invariant - the dimension group. It is known
that the dimension triple is a full invariant of shift equivalence.

In this paper, we extend definitions of shift equivalence and the di-
mension group for subshifts in general, and estzblish basic results. In
Section 3, it will be shown that shift equivalent subshifts have isomor-
phic dimension groups. In Section 4, we prove that conjugate subshifts
are shift equivalent using Nasu's bipartite decom:position of conjugacy.

§2. Definitions

Consider a finite set A equipped with the discrete topology. The set
A is called the alphabet and elements of A are called symbols. The set
of bi-infinite sequences

A% = {o ={2i)igz 1 2: € A}

is called the full A-shift. We think of A% as tne countable product
of A. A? is given the product topology and this becomes a compact
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metrizable space. There is the usual shift map o : A% = A% defined
by

U(I‘)i == T4

for each z = (;Ii)iéfﬂ S AZ

A subset X of A% is called a subshift if it is closed and shift invariant,
that is, o(X) = X.

A block over a subshift X is a finite sequence of symbols which
appears on some infinite sequence in X. The length of a block 1s the
number of symbols it contains. For r € X and integers i, with ¢ <7,
the block of coordinates in z from position i to position j is denoted
by

;’IT[,"J’] = Lyl gy - Ty
The collection of finite blocks with length n is denoted by Bn(X).

Let X be a subshift. For each z = (z;) € X, we define the left
infinite sequence o = &(_n 0 and the right infinite sequence r4 =
T[1,00)- L€t

X_={zr_:2eX}

and
X, ={ry xe X}

For each z_ € X_. the follower set of z_ is defined by

fla)={y+ € Xy ro_ys € X},

Let
Fx ={f(z_):r€ X}

denote the class of follower sets of X', and let Fx the free abelian group
generated by the elements in Fx.

For any . € X_, we will define the set i x(z_) of following symbols:
a € ix(z_)if and only if a is a leading symbol of some y4 in f(x_).
Also for w = f(x_) € Fx we set

ix(w)=ix(z-).

We note that the definition is independent from the choice of x_.
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Now we define the linear map Ly : Fx — Fx by

Ly(w)= Y f(r-a)

forw = f(z_) € Fx. Again, we can easily see that Ly is well-defined.

We will define the dimension group of a subshift as an analogy to
the usual one of a subshift of finite type. See, for example, [(BMT].
For a subshift X, we define an equivalence relation on the set Fx xZ
by declaring («,m) and (3,n) with m < n to be equivalent when
L ™ @) = 3. Let Dx denote the set of equivalence classes and
[a,m] denote the equivalence class that contains (a,m). We provide
an abelian group structure on Dy by defining

[o,m] + [3,n] = [LY"™(a) + 3,n]

for {a,m] and [8,n] € Dx with m < n. It is routine to check that this
operation is well-defined. Finally, we define a map dx : Dy — Dy by
for every [a,m] € Dy

dx([a,m]) = [Lx(a),m].

Again, it is easily seen that dx is a well-defined automorphism. We
note that d3'([e,m]) = [a,m — 1). The dimension pair of a subshift
X is ('Dx,dx).

If there exists an isomorphism 6 : Dx — Dy such that 6 o dy =
dy o8, we say that (Dx,dy) and (Dy,dy) are isomorphic.

§3. Shift Equivalence

Two subshifts X and ¥ are called shift equivalent if there exist linear
maps S : Fy — Fy and T : Fy — Fyx satisfying the following four
equations

SoLyxy=LyoS, ToLy=LxoT,

(1) SoT=L}, ToS=Lk

for some nonnegative integer . We should remark that the shift equiv-
alence is an equivalence relation.
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THEOREM 1. If two subshifts are shift equivalent. then their dimen-
sion pairs are isormorphic.

Proof. Let X and Y be shift equivalent subshifts, and linear maps
S, T and a nonnegative integer k satisfy the equationsin (1). We define
amap S: Dy — Dy by §([a,m]) = [S(a),m] for any [a,m] € Dx.
It is easily seen that S is a well-defined abelian group homomorphism.
In fact, for [a.m], [3.n] € Dx with m <n,

S([a.m] + [8.n]) = S(tL"f'"‘m +4.1])
S L’}( ™))+ S(3),n]
L™ ) S(3).n]
Ste m] + [S(4), 1]
=S(a, mb+5 [3.7]).

= |
= |
=[5!

Now we observe that for [a,m] € Dy,

dy o S([a, m)) :dy([S(a'),m])
= [Ly(S(a)),m]
= [S(Lx(a)),m]
= Sodx([a,m])

The linear map T : Dy — Dy is defined analogously from T. Then
we see that for [a,m] € Dy

T o S(ja,m]) = [T(S(e)). m]
= [L%(a), m]
= di([a,m)).

Similarly we can show that SoT = dé Since dy and dy are auto-

morphisms, we conclude that S is an isomorphism. [
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§4. Conjugacy and Shift Equivalence

Suppose that X and Y are subshifts over the alphabets A x and Ay
respectively. Fix nonnegative integers m and n. Let ® : B, ,41(X) —
Ay be a map from the set of (m + n + 1)-blocks of X to the alphabet
of Y. A function ¢ : X — Y is called a sliding block code with memory
m and anticipation n induced by the block map & if

'19(1')1 - ¢(r[i~»m,i+n])-
Such a sliding block code is called of (m,n)-type.

The celebrated theorem of Curtis-Hedlund-Lyndon asserts that slid-
ing block codes are the only continous functions between subshifts
which intertwine shift maps. A bijective sliding block code is called
a conjugacy. We shoule note that the inverse of a conjugacy is also a
conjugacy. When a conjuagy and its inverse are both of (0, 0)-type, it
is called a symbolic conjugacy.

THEOREM 2. Let X and Y be subshifts. Suppose that ¢ : X — Y
is a symbolic conjugacy. Then there is an isomorphism S : Fx — Fy
such that So Ly = Ly oS. In particular, Ly = ToS and Ly = SoT
for some linear map T : Fy — Fyx.

Proof. We define a map S: I’y — Fy by

S(w) = fle(x)-)

for w = f(x_) € Fx. First we will show that the definition of S is
independent of the choice of . Suppose that f(z_) = f(y_) € Fx.
If ty isin f(p(z)_) then therc exists an element s € X such that
@(8) = p(x)_ty. Since ¢ is a symbolic conjugacy, s_ = z_ and so
s+ € f(z-) = f(y-). Thus o(y-s4) = @(y)_ty and t; € f(p(y)-).
This shows that f(¢(z)_) C f(@(y)_). The other side inclusion can
be shown similarly.

Now we extend S as a linear map from Fx to Fy. The linear map
5"+ Fy — Fx is analogously defined via p~!. We see that for every
w= f(z_) e Fx

S'o S(w) = S'(flelx)))
= fle T op(a)-)
= flz_)

= w’
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and so S' 0 § is the identity on Fx. A similar argument yields that
S0 S’ is the identity on Fy and hence S’ = §~1.

Now we prove that So Lx = Ly 0o 5. Suppose that the symbolic
conjugacy ¢ 1s induced by the 1-block map ®. Then it is easily seen
that for each x _ € X_

{®la):acix(z_)}={b:bciy(plz _)}.
Thus we obtain that for w = f(r_) < Fx,

I
g
n
-
B
2

= ). flele)-b)
beiy (wiz)-)
= Ly (flyp(z)-))
= Ly(Siw)).
In order to prove the last statement of the theorem, it suffices to put
T=Lxo S-1. 0O
A subshift X over the alphabet A is said to be bipartite if there are
disjoint subsets C' and D of A such that for any (¢,).,ez € X either
r; € Cand ri4y € Dor z; € D and 2,47 € C. Then the second
power subshift X(?) is divided into two disjoint subshifts X¢p and
Xpe where X¢p is defined to be the set of sequences (¢;d;)iez € X
such that ¢; € C and d; € D for each ¢ € Z. and X p¢ is the set of
sequences (d;c;);ecz € X3 such that d; € D and c¢; € C for each i € Z.
The conjugacy ¢ : Xep — X pe defined by
Clleidi)iez) = (diciga )iez
1s said to be a forward bipartite conjugacy. The backward bipartite
conjugacy 7 : Xcp — Xpe is defined by
m{(eidi)iez) = (dioicidien.
In [N], it was proved that symbolir and bipartite conjugacies are ba-
sic constituents of any conjugacy. We state the result in the following.
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THEOREM 3. Any conjugacy ¢ between subshifts is factorized into
a composition of the form

¥ = K/nCnﬁn—lCn—l s ’{1<1’CO»
where kg,...,kn, are symbolic conjugacies, and (y,...,(, are either

forward or backward bipartite conjugacies.

THEOREM 4. Let ( : Xcp — Xpc be a forward or backward bi-
partite conjugacy. Then there exist linear maps S : Fx., — Fx,.
and T : Fx,. — Fx.p such that ToS=Lx., and SoT =Ly,...

Proof. Let w = f(...(c_1d_y)(¢codp)) € Fx, . Define

S(u) Z f -1Cp (dor))

where the sum runs over all the elements ¢ € i (...d_jcqdy). Clearly
S 1s a well-defined map from Fx,.,, to Fx,.. Now S can be extended as
a linear map from Fx,, to Fx,.. The linear map T : Fx,. — Fx.,
is defined by

T(r)= Z f(--~(C0d0:*(C1d))

deiy (...Codo cy)

f()r T = f( . (d_lco)(d()C])) S FXDC' We ﬁnd that

T(S(w)) = T( Z f(o-(d-1co)(doc)))

c€ix (...d_1rodg)

_ Z T(f(...(d_1c0)(doc)))

c€ix (...d_yepdy)

= Z Z F(.. (cod)(ed))

CEix(...d_lcgdu) dEix(..ACngC)

= > F(.. . (codp)(cd))
CdeiXCD (...(C-}d_l)(Codo))

= Lxcp(w)

for every w = f(...(c_1d_1)(codp)) € Fxop. and a similar argument
shows that SoT =Lx,.. O
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THEOREM 5. If two subshifts X and Y are conjugate then there are
linear maps S;’s and T;’s such that

LX = TloShSIOTI - T20527-~-s5n——10Tn~l = T'n )Snv SnOTn = LY-

Proof. Using Theorem 3, we can decompose the conjugacy into sym-
bolic and bipartite conjugacies. Then the result follows immediately
from Theorem 2 and Theorem 4. [

Two subshifts of finite type are called strongly shift equivalent if the
relation in Theorem 5 is satisfied, and it is known :hat strongly shift
equivalent subshifts of finite type are conjugate. We should note that
this 1s not the case in general.

Combining Theorem 1 and Theorem 5, we easily get the following
result.

COROLLARY 6. If two subshifts are conjugate, then they are shift
equivalent and therefore their dimension pairs are isomorphic.
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