We studied the Drain-Induced-Barrier-Lowering (DIBL) effect by different drain engineering. One other drain engineering is symmetric source-drain n-channel MOSFETs (SSD NMOSs), the other drain engineering is asymmetric source-drain n-channel MOSFETs (ASD NMOSs). Devices were fabricated using state of art 40 nm dynamic-random-access-memory (DRAM) technology. These devices have different modes which are deep drain junction mode in SSD NMOSs and shallow drain junction mode in ASD NMOSs. The shallow drain junction mode means that drain is only Lightly-Doped-Drain (LDD). The deep drain junction mode means that drain have same process with source. The threshold voltage gap between low drain voltage ($V_D$=0.05V) and high drain voltage ($V_D$=3V) is 0.088V in shallow drain junction mode and 0.615V in deep drain junction mode at $0.16{\mu}m$ of gate length. The DIBL coefficients are 26.5 mV/V in shallow drain junction mode and 205.7 mV/V in deep drain junction mode. These experimental results present that DIBL effect is higher in deep drain junction mode than shallow drain junction mode. These results are caused that ASD NMOSs have low drain doping level and low lateral electric field.
Concurrent Junction process (simultaneous formation of a silicide and a junction on the implanted substrate) by Rapid Thermal Annealig has been investigated. Electrical and material properties of CoSi$_2$ films were analyzed with Alpha Step, 4-point probe, X-ray diffraction(XRD) and Scanning Electron Microscope(SEM). And CoSi$_2$ junctions were examined with Spreading Resistance probe in order to see the redistribution of electrically activated dopants and determined the junction depth. Two step annealing process, which was 80$0^{\circ}C$ for 30sec and 100$0^{\circ}C$ for 30sec in NS12T ambient was employed to form CoSi$_2$ and shallow junctions. Resistivity of CoSi$_2$ was turned out to be 11-15${\mu}$cm and shallow junctions less than 0.1$\mu$m were successfully formed by the process. It was found that the dopant concentration at CoSi$_2$/Si interface increased as decreasing the thickness of Co films in case of $p^{+}/n$ and $n^{+}/p$ junctions while the junction depth decreased as increasing CoSiS12T thickness in case of $p^{+}/n$ junction.
We have proposed the junction termination design employing shallow trench filled with silicon dioxide and field limiting ring (FLR). We have designed trenches between P+ FLRs to decrease the junction termination radius without sacrificing the breakdown voltage characteristics. We have successfully fabricated and measured improved breakdown voltage characteristics of the Proposed device for 1200 V-class applications. The junction termination radius of the proposed device has decreased by 15%-21% compared with that of the conventional FLR at the identical breakdown voltage. The junction termination area of the proposed device has decreased by 37.5% compared with that of the conventional FLR. The breakdown voltage of the proposed device employing 7 trenches was 1156 V, which was 80% of the ideal parallel-plane .junction breakdown voltage.
Ultr shallow p$^{+}$-n junction with Co/Ti bilayer silicidde contact was formed by ion implantation of BF$_{2}$ [energy : (30, 50)keV, dose:($5{\times}10^{14}$, $5{\times}10^{15}$/$\textrm{cm}^2$] onto the n-well Si(100) region and by RTA-silicidation and post annealing of the evaporated Co(120.angs., 170.angs.)/Ti(40~50.angs.) double layer. The sheet resistance of the silicided p$^{+}$ region of the p$^{+}$-n junction formed by BF2 implantation with energy of 30keV and dose of $5{\times}10^{15}$/$\textrm{cm}^2$ and Co/Ti thickness of $120{\AA}$/(40~$50{\AA}$) was about $8{\Omega}$/${\box}$. The junction depth including silicide thickness of about $500{\AA}$ was 0.14${\mu}$. The fabricated p$^{+}$ -n ultra shallow junction depth including silicide thickness of about $500{\AA}$ was 0.14${\mu}$. The fabricated p$^{+}$-n ultra shallow junction with Co/Ti bilayer silicide contact did not show any agglomeration or variation of sheet resistance value after post annealing at $850^{\circ}C$ for 30 minutes. The boron concentration at the epitaxial CoSi$_{2}$/Si interface of the fabricated junction was about 6*10$6{\times}10^{19}$ / $\textrm{cm}^2$./TEX>.
To develop VLSI of higher packing density with 0.5.mu.m gate length of less, semiconductor devices require shallow junction with higher doping concentration. the most common method to form the shallow junction is ion implantation, but in order to remove the implantation induced defect and activate the implanted impurities electrically, ion-implanted Si should be annealed at high temperature. In this annealing, impurities are diffused out and redistributed, creating deep PN junction. These make it more difficult to form the shallow junction. Accordingly, to miimize impurity redistribution, the thermal-budget should be kept minimum, that is. RTA needs to be used. This paper reports results of the diffusion characteristics of PSG film by varying Phosphorus weitht %/ Times and temperatures of RTA. From the SIMS.ASR.4-point probe analysis, it was found that low sheet resistance below 100 .OMEGA./ㅁand shallow junction depths below 0.2.mu.m can be obtained and the surface concentrations are measured by SIMS analysis was shown to range from 2.5*10$^{17}$ aroms/cm$^{3}$~3*10$^{20}$ aroms/cm$^{3}$. By depending on the RTA process of PSG film on Si, LDD-structured nMOSFET was fabricated. The junction depths andthe concentration of n-region were about 0.06.mu.m. 2.5*10$^{17}$ atom/cm$^{-3}$ , 4*10$^{17}$ atoms/cm$^{-3}$ and 8*10$^{17}$ atoms/cm$^{3}$, respectively. As for the electrical characteristics of nMOS with phosphorus junction for n- region formed by RTA, it was found that the characteristics of device were improved. It was shown that the results were mainly due to the reduction of electric field which decreases hot carriers.
This paper describes a novel structure of NMOSFET with elevated SiGe source/drain region and ultra-shallow source/drain extension(SDE)region. A new ultra-shallow junction formation technology. Which is based on damage-free process for rcplacing of low energy ion implantation, is realized using ultra-high vacuum chemical vapor deposition(UHVCVD) and excimer laser annealing(ELA).
차세대 반도체 제조에서 Design rule 이 점점 더 shrink 됨에 따라 shallow junction 분석의 중요성이 강조되고 있다. 이러한 shallow junction에 대한 분석방법중의 하나인 SIMS 분석에 있어서 depth resolution을 향상시키는 것이 중요하며, 일차이온의 에너지를 낮추어 줌으로써 이러한 효과를 달성할 수 있다. 그러나 최근의 연구에 따르면 O2+를 이용한 low energy SIMS 분석 시에 non-zero incidence angle로 분석할 경우 surface roughness가 발생한다는 사실이 보고되었으며, surface roughness를 줄이고 분석 초기의 transient region을 줄이기 위한 방법으로 oxygen flooding을 사용하는 경우 특정 각도에서 surface roughness가 여전히 존재할 뿐 아니라 분석 초기영역에서의 sputter rate이 변화하는 문제가 있음이 보고된바 있다. 본 연구에서는 2keV O2+ 일차이온을 이용하여 oxygen flooding 하에서 기존 조건인 60도 incidence로 분석하는 방법의 문제점을 파악하고 incidence angle을 45도로 바꾸어 분석하는 방법을 검토하였다. 그 결과 기존의 분석조건에서는 분석도중 표면부근에서 sputter rate이 변화하고 surface roughness가 증가하는 것을 확인하였고, 그로 인하여 oxygen flooding을 하지 않은 경우와 많은 차이가 발생하는 것을 발견하였다. Incidence angle을 45도로 바꾼 결과 이러한 문제가 해결되는 것을 확인하였으며, 특히 GaAs $\delta$layer 분석을 통하여 이 분석조건이 기존의 분석조건에 비하여 획기적으로 향상되는 것을 확인 할 수 있었다. 또한 여러 가지 shallow junction 분석을 통하여 이 분석방법이 상당히 신뢰성이 있음을 알 수 있었다. 그러나 여전히 oxygen flooding을 하지 않은 경우에 비하여 다소간의 차이가 있는 것이 발견되었는데, 이는 주로 표면에 잔존하는 산화막에 의한 효과와 oxygen flooding에서 보다 더 depth resolution이 좋음으로 인하여 발생하는 것으로 추정되었으며 그 밖에 다른 가능성도 제기되었다. 따라서 이 방법은 표면 산화막이 거의 없는 시료에 대하여 적용한다면 oxygen flooding을 하지 않은 경웨 비하여 transient region이 거의 없고 junction depth를 보다 신뢰성 있게 측정할 수 잇는 장점이 있는 것으로 판단되었다. As, P의 저 에너지이온 주입시료에 대해 이 분석방법을 적용할 경우 C+s 분석법에 비하여 depth resolution을 비교적 쉽게 향상시킬 수 있었고, oxygen follding을 쓰지 않은 경우에 비해서는 검출한도를 약 100배 정도 향상시킬 수 있었다. 그러나 2.5keV Cs+ 분석법에 비하면 아직 depth resolution이 불충분하여 실제로 shallow As 분석에 적용하기에는 다소 문제점이 있었다.
Further scaling the semiconductor devices down to low dozens of nanometer needs the extremely shallow depth in junction and the intentional counter-doping in the silicon gate. Conventional ion beam ion implantation has some disadvantages and limitations for the future applications. In order to solve them, therefore, plasma source ion implantation technique has been considered as a promising new method for the high throughputs at low energy and the fabrication of the ultra-shallow junctions. In this paper, we study about the effects of DC bias and base pressure as a process parameter. The diluted mixture gas (5% $PH_3/H_2$) was used as a precursor source and chamber is used for vacuum pressure conditions. After ion doping into the Si wafer(100), the samples were annealed via rapid thermal annealing, of which annealed temperature ranges above the $950^{\circ}C$. The junction depth, calculated at dose level of $1{\times}10^{18}/cm^3$, was measured by secondary ion mass spectroscopy(SIMS) and sheet resistance by contact and non-contact mode. Surface morphology of samples was analyzed by scanning electron microscopy. As a result, we could accomplish the process conditions better than in advance.
In this paper, novel device structures in order to realize ultra fast and ultra small silicon devices are investigated using ultra-high vacuum chemical vapor deposition(UHVCVD) and Excimer Laser Annealing (ELA). Based on these fundamental technologies for the deep sub-micron device, high speed and low power devices can be fabricated. These junction formation technologies based on damage-free process for replacing of low energy ion implantation involve solid phase diffusion and vapor phase diffusion. As a result, ultra shallow junction depths by ELA are analyzed to 10~20nm for arsenic dosage(2${\times}$10$\_$14//$\textrm{cm}^2$), exciter laser source(λ=248nm) is KrF, and sheet resistances are measured to 1k$\Omega$/$\square$ at junction depth of 15nm and realized sub-50nm n-MOSFET.
In this paper, the formation and thermal stability of Ni-silicide using Ni-Pd alloys is studied for ultra shallow S/D junction of nano-scale CMOSFETs. There are no different effects when Ni-Pd is used in single structure and TiN capping structure. But, in case of Cobalt interlayer structure, it was found that Pure Ni had lower sheet resistance than Ni-Pd, because of a thick silicide. Also, Ni-Pd has merits that surface of silicide and interface between silicide and silicon have a good morphology characteristics. As a result, Ni-Pd is an optimal candidate for shallow S/D junction when cobalt is used for thermal stability.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.