• Title/Summary/Keyword: semilinear parabolic equation

Search Result 10, Processing Time 0.022 seconds

EXTINCTION AND POSITIVITY OF SOLUTIONS FOR A CLASS OF SEMILINEAR PARABOLIC EQUATIONS WITH GRADIENT SOURCE TERMS

  • Yi, Su-Cheol
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.397-409
    • /
    • 2017
  • In this paper, we investigated the extinction, positivity, and decay estimates of the solutions to the initial-boundary value problem of the semilinear parabolic equation with nonlinear gradient source and interior absorption terms by using the integral norm estimate method. We found that the decay estimates depend on the choices of initial data, coefficients and domain, and the first eigenvalue of the Laplacean operator with homogeneous Dirichlet boundary condition plays an important role in the proofs of main results.

LONG-TIME BEHAVIOR FOR SEMILINEAR DEGENERATE PARABOLIC EQUATIONS ON ℝN

  • Cung, The Anh;Le, Thi Thuy
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.751-766
    • /
    • 2013
  • We study the existence and long-time behavior of solutions to the following semilinear degenerate parabolic equation on $\mathbb{R}^N$: $$\frac{{\partial}u}{{\partial}t}-div({\sigma}(x){\nabla}u+{\lambda}u+f(u)=g(x)$$, under a new condition concerning a variable non-negative diffusivity ${\sigma}({\cdot})$. Some essential difficulty caused by the lack of compactness of Sobolev embeddings is overcome here by exploiting the tail-estimates method.

GLOBAL ATTRACTOR FOR A SEMILINEAR STRONGLY DEGENERATE PARABOLIC EQUATION WITH EXPONENTIAL NONLINEARITY IN UNBOUNDED DOMAINS

  • Tu, Nguyen Xuan
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.423-443
    • /
    • 2022
  • We study the existence and long-time behavior of weak solutions to a class of strongly degenerate semilinear parabolic equations with exponential nonlinearities on ℝN. To overcome some significant difficulty caused by the lack of compactness of the embeddings, the existence of a global attractor is proved by combining the tail estimates method and the asymptotic a priori estimate method.

THE CONTROL OF THE BLOWING-UP TIME FOR THE SOLUTION OF THE SEMILINEAR PARABOLIC EQUATION WITH IMPULSIVE EFFECT

  • Bainov, Drumi-D;Dimitar A.Kolev;Kiyokaza Nakagawa
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.793-803
    • /
    • 2000
  • An impulsive semilinear parabolic equation subject to Robin boundary condition is considered. We prove that for certain classes of impulsive sources and continuous initial data, the solutions of the problem under consideration blow up in the desired time interval.

  • PDF

SINGULAR SOLUTIONS OF SEMILINEAR PARABOLIC EQUATIONS IN SEVERAL SPACE DIMENSIONS

  • Baek, Jeong-Seon;Kwak, Min-Kyu
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1049-1064
    • /
    • 1997
  • We study the existence and uniqueness of nonnegative singular solution u(x,t) of the semilinear parabolic equation $$ u_t = \Delta u - a \cdot \nabla(u^q) = u^p, $$ defined in the whole space $R^N$ for t > 0, with initial data $M\delta(x)$, a Dirac mass, with M > 0. The exponents p,q are larger than 1 and the direction vector a is assumed to be constant. We here show that a unique singular solution exists for every M > 0 if and only if 1 < q < (N + 1)/(N - 1) and 1 < p < 1 + $(2q^*)$/(N + 1), where $q^* = max{q, (N + 1)/N}$. This result agrees with the earlier one for N = 1. In the proof of this result, we also show that a unique singular solution of a diffusion-convection equation without absorption, $$ u_t = \Delta u - a \cdot \nabla(u^q), $$ exists if and only if 1 < q < (N + 1)/(N - 1).

  • PDF

APPROXIMATE CONTROLLABILITY FOR NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Jeong, Jin-Mun;Rho, Hyun-Hee
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.173-181
    • /
    • 2012
  • In this paper, we study the control problems governed by the semilinear parabolic type equation in Hilbert spaces. Under the Lipschitz continuity condition of the nonlinear term, we can obtain the sufficient conditions for the approximate controllability of nonlinear functional equations with nonlinear monotone hemicontinuous and coercive operator. The existence, uniqueness and a variation of solutions of the system are also given.

SOLUTIONS OF QUASILINEAR WAVE EQUATION WITH STRONG AND NONLINEAR VISCOSITY

  • Hwang, Jin-Soo;Nakagiri, Shin-Ichi;Tanabe, Hiroki
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.867-885
    • /
    • 2011
  • We study a class of quasilinear wave equations with strong and nonlinear viscosity. By using the perturbation method for semilinear parabolic equations, we have established the fundamental results on existence, uniqueness and continuous dependence on data of weak solutions.

Singular solutions of semilinear parabolic equations

  • Baek, Geong-Seon;Kwak, Min-Kyu
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.483-492
    • /
    • 1995
  • In this paper we discuss the existence and uniqueness of singular solutions for equations of the form $$ (F) u_t = u{xx} - $\mid$u$\mid$^{q-1} u_x - $\mid$u$\mid$^{p-1}u, p,q > 1, $$ in the domain $Q = {(x,t) : x \in R, t > 0}$. This equation represents a model of diffusion-convection with absorption.

  • PDF