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SINGULAR SOLUTIONS OF SEMILINEAR
PARABOLIC EQUATIONS IN
SEVERAL SPACE DIMENSIONS

JEONGSEON BAEK AND MINKYU KWAK

ABSTRACT. We study the existence and uniqueness of nonnegative
singular solutions u(x, ¢) of the semilinear parabolic equation

ur = Au —a - V(u?) — uP,

defined in the whole space R¥ for t > 0, with initial data Ms(x), a
Dirac mass, with M > 0. The exponents p, g are larger than 1 and
the direction vector a is assumed to be constant.

We here show that a unique singular solution exists for every
M > 0ifandonly if 1l < g < (N4+1)/(N-1)and 1 < p <
1+ (2¢*)/(N + 1), where ¢* -= max{gq, (N + 1)/N}. This result
agrees with the earlier one for NV = 1. In the prool of this result, we
also show that a unique singular solution of a diffusion-convection
equation without absorption,

ut = Au —a- V(ul),

exists if and only if 1 < g < (N -~ 1)/(N —1).

1. Introduction

This paper is concerned with the Cauchy problem for the nonlinear
diffusion-convection equation

(E) u =Au—a-Vu?), g>1
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and for the nonlinear diffusion-convection equation with absorption
(F) ug=Au—a - V(u')—u?’, pg>1

in the domain Q = {(x,t) : x € R™ ¢ > 0}. We assume for convenience
that the convection direction a is a constant vector in RV .

Following Escobedo and Zuazua (1991) (see [5]), it is easy to see
that for given nonnegative initial data ug(x) € L*(R™) there exists a
unique nonnegative solution u(x,¢) of (E) and (F) such that

u e C((0,00); WHRN)) n (0, 00); LHRNY)

for every [ € (1,00). Moreover, u(x, ) is positive unless u = 0 in Q by
the Maximum Principle and becomes C° smooth in Q by the standard
regularity theory.

A singular solution is the one which develops a siagularity at (x,t) =
(0,0) as t — 0. More precisely, a singular solution (it is also called a
fundamental solution or a source-type solution) is the one correspond-
ing to the initial data Mé(x) (a Dirac mass) with M > 0, namely, a
classical solution u(x,t) of (E) or (F) such that u(x,t) — Md(x) as
t — 0 in the sense of measures, that is,

lim u(x,t)o(x)dx = M¢(0),
t—0 RN

for every bounded continuous function ¢ on RV.

By rotating the coordinate axes and rescaling, we may assume that
the convection direction a satisfies a = gey, ey = (0,---,0,1). With
the convenient notation x = (z,y) € R"~! x R, (E) and (F) become

(1.1) u = Au —u?
and

(1.2) up = Au — ud ly, —uP,
respectively.

Escobedo, Vazquez and Zuazua (see [4]) have studied the asymptotic
behaviour of solutions of (1.1) with nonnegative initial data ug(x) €
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L'(R") in the range 1 < ¢ < (N + 1)/N. They have shown that the
asymptotic behaviour of generic solutions of this problem is given in
terms of the fundamental solution of the reduced equation

(R) Uy = Agu — u"_luy,

where A, denotes the Laplace operator acting only on the variable
z which spans the hyperplane perpendicular to a in RY. Thus the
diffusion in the direction a disappears in the limit as ¢ — oo. The
question of existence of nonnegative singular solutions of (E) and (R)
has been treated but not completed.

The main purpose of this paper is to complete the question of exis-
tence of nonnegative singular solutions of (E), (R) and (F) for all the
range of p and ¢. In fact, we prove that

THEOREM A. There exists a unique singular solution of (E) (and
R)) for every total mass M > 0 ifand only if 1 < ¢ < (N +1)/(N —1).

THEOREM B. There exists a unique singular solution of (F) for
every M > 0 ifand only if 1l < g < (N+1)/(N -=1)and 1 < p <
1+ (2¢*)/(N + 1). Here ¢* = max{q,(N +1)/N}

We recall that the heat equation with absorption u; = Au — ¥?
admits a unique singular solution only for 1 < p < 1+ 2/N, see [2].
The case N = 1 has been considered in [1] and the existence range
becomes 1 < p < 1+ ¢* for any ¢ > 1.

For the proof, we first obtain the so-called L° — L* regularizing

effect for (E):
N+
2q

0 < u(x,t) < Clg, N)Mit™
for any ¢ > 1, which generalizes the main estimate of [4]. Here and
in the sequel, C'(g, N) will denote a constant depending only on ¢q and
N. In fact, the estimate is essential in proving both existence and
nonexistence of singular solutions. Together with this estimate we use
a comparison argument for the proof of existence and uniqueness, see
section 3 and 4.

For nonexistence, we treat three cases separately. For 1 < g <
(N+1)/(N—-1)and 1 <p <1+ (2¢*)/(N + 1), following [1], we take
a function of the form n(k(|z|? + |y|* + 1)) with a = Wl—Q(qN_:lﬁT as a
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test function to lead to a contradiction. For ¢ > (N +1)/(N — 1) and
p>1+(2¢")/(N + 1), using a similarity transformation

NY1—(N-1)q )
x— A2z, y— A 24 , i At

we will show that a family {u,} defined by

ur(z,y, t) = )\%%lu('/\%x,)\%kmy,/\t)
has a limit as A — 0 and its limit is a singular sclution of the reduced
equation (R), which contradicts the nonexistence result of singular so-
lution for (R). For the completion of proof of limiting process, we bring
a compensated compactness argument from Evans [6] and Tartar [9).
Incase ¢ > (N +1)/(N~-1)and 1 < p <1+ (2¢*)/(N + 1), we use
the same similarity transformation and consider the limit of

1
/ / / ux(z,y, t)drdydt
0 Jizi<l Jiyl«l

as A — 0 to lead to another contradiction. See section 5 for details.
This nonexistence argument is also applicable for (E) in the range
q> (N+1)/(N —1).

The asymptotic behaviour of solutions of (F' as t — oo (also as
t — 0) will be discussed in other space.

2. Preliminary Estimates

For the diffusion-convection equation (E), it is shown in 5] (see
estimate (2.32) in that paper) that

(2.1) 0 <u(z,t) < CM)(t N2 0Ny gy s g,

where C'(M) is a constant depending only on M = .[RN up(x)dx. This
estimate is not sharp and for 1 < ¢ < 2, Escobedo, Vazquez and Zuazua
obtained a better (for large ¢) bound for u:

LEMMA 2.1 ([4], LEMMA 2.2). Forl < ¢ < 2 we have
(2.2) 0 < u(x,t) < Clg, N)MVag=(N+1/CRa 4 o ¢

We here extend the above estimate (2.2) to the whole range of q.
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LEMMA 2.2. For g > 2 we have
(2.3) 0 < u(x,t) < Clg, NYMYa=(N+D/Ca 4 5 ¢,

Proof. We define the new variable z = u?™! as explained in [4]. In
terms of z, equation (E) reads

Vaf?

(2.4) 2 —Dz+ 22y - B
where 3= (2—¢q)/(¢—1).

Let v(z,t) be a solution of the Burgers type equation
(25) Ve — Av + VUy = 0

with initial data v(x,0) = w97 *(x,s), s > 0. For ¢ > 2, § < 0 and
v(x,t) is a supersolution of (2.5) and Nagumo’s Lemma implies that

wi Hx,t+s) < v(x,t), t>0

=0,

Moreover from Lemma 2.1 we obtain

1/2 ,
0 <o) < 2N ( [uxojax) s

and from the conservation of mass of solutions of (2.5) we get

(2.6)
VA
0<ut (x,t+s)<C(2,N) </u""1(x, s)dx)> (TINED/A 5,
We also have
[ xsstax < a2 x o) masy [ o she = Ml o)t

We now let s =t + ¢, with ¢ > 0 and define

w(t) = sup 7.(N+1)/(‘~><1)|u()(’7.+ e)an(Rw),
0<r<t

then, for t > 0, 0 < w(t) < oo and

0 < wt)?™ ! <w(28)77! < C(g, N)YM 2w ()22,
Therefore we have
(2.7) w(t) < Clg, NYMY4, vt >

This implies that 0 < tV+1D/Cy(x t +€) < C(g, N)M?/7 and (2.3)
in the limit as e — 0. X
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3. Existence

We discuss in this section the existence of fundamental solutions for
equations (E) and (F).

THEOREM 3.1. For1 < ¢ < (N +1)/(N —1) there exists a funda-
mental solution of (E) for every M > 0.

Proof. The proof of existence for the reduced equation (R) given in
(4] can be directly applied to this case. The only different point is when
checking the initial data where they use Lemma 2.1 and the restriction
(N+1)/(N—1) < 2 appears. Due to Lemma 2.2. no such a restriction
is needed. (See [4], Theorem 8.1 for details.) O

We now turn to the equation (F). We denote by Eup(x,t) the sin-
gular solution for (E) corresponding to the initial data, a Dirac mass,
Mé(x). We note that [ Ep(x,t)dx = M for all { > 0. We also denote
¢* = max{q, (N + 1)/N} and we prove

THEOREM 3.2. For 1 < ¢ < (N+1)/(N-1)and1 < p < 1 +
(2¢*)/(N + 1), there exists a fundamental solution of (F) for every
M > 0.

Proof. Let us define 4, (x, t) as the solution of (F) for ¢ > 1/n with
initial data 4,(x,1/n) = Ep(x,1/n) at ¢t = 1/n. By the Maximum
Principle (see (8] for example) we know that

Un (X, 1) < Epr(x,t) Vi>1/n and xe RV.
Since {t,(x,t)} is monotone decreasing as n — co, its limit

u(x,t) = )11‘13; Uy (X, 1)

exists and u(x, t) is a weak solution of (F) in Q. By standard regularity
results, we may conclude that u(x,t) is a classical solution in Q.
It is clear that u(x,t) < Epy(x,t) in Q and u(x,0) = 0 for every
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x # 0. Moreover, for 1/n <t <1

I(t) = } /R (a5, 0) ~ A, /) dx

¢
::/ / ub (x, s)dxds
I/nJRN
t

§/ EY,(x,s)dxds
J1/n JRYN

A
< MsupEﬁ;1(~,.9)ds
1/n RN
t

SC(q,M,N)/ s~ (N+DP=1/24) g (from (2.1) and (2.3))
1/n

2q* 29" —(N+1)ip—1)
<C(q,M,N t 2
SN s e - )
Note that 2¢* — (p— 1)(N +1) > 0if p< 1+ (2¢*)/(N +1).
Since f i, (x,1/n)dx = M by the definition of u,, first taking n —
oo and then taking ¢ — 0 we may conclude that lim; o [ u(x, t)dx =
M. For every continuous bounded function ¢,

0< [ utx fo(x) - (0] dx < [ Bux.0iolx) - 0(0)] dx

and since the second integral tends to 0 as t — 0, the same will be true
for the first integral. Similarly

lim | u(x,t)[¢(z) — ¢(0)]-dx =0

t—0
and writing
d(x) = 6(0) + [p(x) — ¢(0)]+ — [(x) — &(0)]-,

we finally obtain

lim/u(x,t)gb(x)dx = M¢(0).

t—0

This completes the proof. O
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4. Uniqueness

The uniqueness of singular solutions of (E) and (R) is proved in [4],
section 3. For equation (F), we prepare the following lemmas.

LEMMA 4.1. Let u(x,t) be a fundamental solution of (F), then

t
(4.1) /u(x,t)dx - M= —/ /up(x,:»')dxd.s.
. 0

In particular [° [uPdxds < M and Ju(x,t)dx < M for every t > 0.

Proof. An integration gives

t
/u(x,t)dx — /u(x,rﬁdx = ~/ /u“(x,s)dxds

for ¢ > 7 > 0. By definition lim; ¢ [ u(x,7)dz == M aud (4.1) holds.
The last inequality also holds obviously. ]

LEMMA 4.2. Let u(x,t) be a fundamental solution of (F), then
U(X,t) < EM(X, f) in Q

Proof. Let w,,(x,t) be a solution of
wy = Aw — (uyq/Q)'ZJa UJ(X, 1/”) = 'U(X, 1/7Z)
for t > 1/n. Similarly to the proof of Theorem 3.2, one can see that wy,
18 increasing and u(x,t) < wy(x,#) for t > 1/n. Let w = lim,, o, wy,
then u(x,t) < w(x,t) for ¢ > 0 and w(x,t) is a weak solution of (E)

and also becomes a classical solution in Q.
We now note that

/w,,,(x,f)dx = / wy(x,1/n)dx = /u(x, 1/n)dx < M

for t > 1/n. From the Monotone Convergence Theorem, we obtain

/w(x,/‘.)dx <M.
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Since [u(x,t)dx goes to M as ¢ tends to 0, the same will be true for
J w(x,t)dx. We now apply the same argument as the proof of Theorem
3.2 to conclude that

(4.2) tliné w(x, t)p(x)dx = M¢(0)

_}

for every continuous bounded function ¢. Thus w(x, t) is a fundamental
solution of (E) and the completion of the proof of Lemma follows from
the uniqueness of the fundamental solution of (E). But here we take

P(x) = ||~ — [¢p(x) — @(0)]+ as a test function. Then
0< /u(x,t)w(x)dx < /w(x,t)lj)(x)dx < Mg

Since lim; o [ u(x, t)¥(x)dx = M|¢|L~, we obtain

Lo<.

(4.3) th_r% w(x, t)[p(x) — ¢(0)]+dx = 0.
Similarly we have
tim [ wix,Hlp(x) - #(0)] dx =0

and (4.2). O

We now prove the uniqueness.

THEOREM 4.3. There exists at most one fundamental solution of
(F) for each M > 0.

Proof. Let u,v be fundamental solutions of (F) with initial data
M§(x). Then from the contraction principle and Lemma 4.1 we have

/;u(x,t) —u(x, b)|dx < /|u(x,1/n) —w(x, 1/n)|dx
< [(Batx.1/m) = e, /m))ix
+ /(EM(X, 1/n) — v(x,1/n))dx
oM - / u(x, 1/n)dx - /u(x, 1 /n)dx,

which tends to 0 as n — oo from lemma 4.1. Hence u = v in Q. O
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5. Nonexistence

We first consider the case 1 < ¢ < (N + )/(N—1)and p > 1+
(2¢*)/(N +1). Recall that ¢* = max{q, (N + 1)/N}. Let u(x,t) be a
fundamental solution of (F) with initial data M d, then from Lemma
4.1 we see that u(x,t) is LP-integrable over Q.

Following (1], we prove that

THEOREM 5.1. Forl <q < (N+1)/(N—1)aadp > 1+(2¢%)/(N +
1) there is no fundamental solution of (F).

Proof. Let 1(s) be any smooth non-decreasing function on R such

that
1 for s>1
n(s) = {(] for s <0,

and set ny(s) = n(ks).
If we define ¢ (z,y,¢) = ne(|z[> + |y|*+1t), where o > 2 is a constant
to be determined, then we know that

T T T ul T
| [ e [ [ wao- | [ e | [ =0
¢ JRN e JRY e JRN {4 e JRN

for 0 < € < T. We first have

T
/ / U Ppdxdt :/ u(x, T)or(x, T)dx —/ u(X, €)d(x, €)dx
€ RN RN

R~
T
- / / U ¢
€ N

and in the limit as ¢ — 0 we get

T T T T
(5.1) / /uquk S/ /Ud)k,r +/ /uA@k —r*/ — Dk y-
0 0 0 0 q

We claim that all the integral in the right tends to 0 as k — oco. It
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then follows that fOT JuPdxdt = 0 and u =0 in (). We have

T
/ / uny| < Ck / / u,
0 Dy
-
[ [uten sczc// "
0 Dy
T
/ /u¢k,yy < Ck?/ /f 2,
0 D,
T q
/ u_¢k,y S Ckl/a // uq’
0 q Dy,

where Dy = {(z,y,t);t >0, 0 < |z|*+ |y|* +1 < 1/k}. By Holder

inequality we get:
1/p
// uS(// up) |Dk[1-1/P
Dk ])k
q/p
// ul < <// up) ‘Dkll—q/P.
Dy, Dy

Here we note that

(5.3)

2q* -1
—a>1 - ——q>0
A o i
We also have
(5.4) |Dy| < 2N~ ((NFD/241/e)

and our claim will follow from the fact that [f p, U —0ask — oo if
the next inequalities hold:

(5.5) 1— (—é— + -]%’“—1> (1 - %) <0,

(5.6) é—(é+N;1)O—%>§0
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D%

' ; — 2
As an example we take o = NFIS (VT35 then

and the left sides of (5.5) and (5.6) become

N 41 2q*
EELE (RPN
2pq* N+1

and N+1 2
+ «*
— * + -1 - —
So0 (p(q q) +q(p— N 1))
respectively. Both of them are nonpositive from assumption. Hence
the proof is completed. t

We now turn to the case ¢ > (N + 1)/(N — 1). We introduce a
similarity transformation

:c—a)\%:r, y— XNy, t— M

and define 1
us(z,y,8) = Mu(Abz, Ny, M),

Suppose that u(z,y,t) be a fundamental solutior of (F) with initial
data Md(x) and if we assume that

N1
(5.7) feg =7 =0,

then since
/UA(iU,y,t)d:vdy = a7 1>/2—7/“(5& y, At)dzdy,
we obtain that

(5.8) ’/u,\(a:,y,t)d.rdy’ <M
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and

(5.9) lim [ uy(z,y,t)dedy = M

t—0
uniformly in 0 < A < 1. It is easy to see that u, satisfies

(5.10)
— —v—(q—1)3, g—1
U,\,/, = AzU)\ + Al z’yuA’yy - )‘1 v ((l 1)JUK u/\,’y

_\B+1-8p, P
A uy.

We also assume that 1 —y — (¢ — 1)8 = 0, then together with (5.7), we

have
N +1 (N+1)—(N--1)q
B = ;Y= 5 :

2q
N
( +1> 0,

2q
1+ ——--p].
q (+N+1 @
We split into two cases:

Case I: 1 <p<1+(29)/(N +1).

In this case (5.12) becomes positive. Hence we may consider equa-
tion (5.10) as a small perturbation of the reduced equation (R) with
convection in the y-direction and diffusion in the crthogonal directions:

Now observe that

(5.11) 1—2y =

o=z

’ =

(5.12) B+1—-0p=

[\

(R) u = Agu ~ ul

The nonexistence result will consist precisely in showing that in the
limit A — 0, we will obtain a fundamental entropy solution of (R) with
mass M > 0. This will lead to a contradiction.

It is easy to check that the uniform L®-estimates of uy is still valid.
For every A > 0 and every t > 0, we have

N

(5.13) 0 <ux(z,y,t) <Ct” T for every (z,y) € RV.
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Hence the family {u,} is uniformly bounded in L*(R™ x (7,T)) and
we may extract a subsequence {u,}52; which converges in the weak
star topology of L°>°. We now apply Theorem 26, page 202, of Tartar 9]
(see also Theorem 6, page 57, of Evans [6]) with & minor modification

(when we apply the Div-Curl Lemma, we mainly consider the vector
fields

ve = (0, F(u™),u*) and wy = (0, P(u’), —¥(u*))

in the variables (x,y,t) € RV~! x R x (0,00), see page 58, [6].) to
conclude that along such a sequence

U)‘j O U in L?{?C(Q)’

u SU? in L (Q).

’ loc

(5.14)

Thus U is an entropy solution of (R), see [4] for the precise definition.
We now want to check the initial condition. We see from (5.9) that
the total mass of U is M. Moreover

va(z,t) = /UA(w,y,t)dy = /\(N‘IW/U(/\”%,y,/\t)dy

solves the equation
5.15 U — Aguy = —NT1=8P [ Py <0,
) A

with initial data a Dirac mass, M§(z) in RVN~!. Therefore vy is
bounded from above by the fundamental solution G(z,t) of the lin-
ear heat equation in RV ™! with mass M. Now for any 7 > 0,

/ /u,\(x,y,t)dydx:/ v,\(:r,t)dasg/ G(z,t)dz,
lz|>r JR jz|>r Jai>r

which tends to 0 as ¢ — 0 uniformly in 0 < A < 1. One also sees that

/ / ux(e,y, {)dydz — / / £{€, 7, A dnde,
RN-1 Jiyl>r RN-1 Jin|>Avr
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which also tends to 0 as ¢ — 0 uniformly in 0 < A < 1. Notice that
v <0 and X\'r > r. Hence we have from (5.9) that

(5.16) lim/ / ux(z,y,t)dyde = M
t—=0 2| <r J|yl<r

uniformly in 0 < A < 1 and lim; ,oU(z,y,t) is a Dirac mass with
mass M. But this contradicts obviously to the nonexistence result of
fundamental entropy solution of (R), see Corollary 5.5, 4.

The above argument does not apply to the second case.

Case IL. p > 1+ (2¢)/(N + 1).

Nevertheless (5.9), (5.15) and the arguments leading to (5.16) still
holds and in particular (5.16) implies

1
(5.17) / / / un(z,y, t)dydzdt > €
0 Jizj<1 Jjyl<1
for all 0 < A <1 and for some ¢ > (0. On the other hand
1
/ / / un(z,y. t)dydzdt
0 Jzl<1 Jyl<1
/ / / /\1/2:c ATy, At)dydxdt
|z <1 ui<1
/ / / w(€, m, s1d€dnds,
(£ A2 Jin|< )n

which is bounded from the Holder inequality by

(5.18) e P-1-wfr) (/ / / P(&m, )dﬁdnd8>
£l<at/? |77I</\7

Lemma 4.1 implies the L?(Q)-integrability of u and this in turn implies
that (5.18) tends to 0 as A tends to 0, which contradicts to (5.17).
Therefore we have proved

/p
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THEOREM 5.2. Forq > (N+1)/(N—1), there is no singular solution

of (F).

The above compensated compactness argument used in Case I also

works for the equation (E) and we may conclude that

THEOREM 5.3. Forq > (N+1)/(N—1), there is no singular solution

of (E).
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