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1. Introduction

The purpose of this paper is to investigate the growth rate of
blow-up solution to the semilinear parabolic equation

Up = Ugy + e*(0t) (z,t) € (—a,a) x (0,T)
(P) u(xa,t) =0, t>0
u(z,0) = uo(z), = € (—a,a)

in a neighborhood of a blow-up point as ¢ approaches the finite
blow-up time T < oo, where a is a positive constant.

Assume that the initial condition satisfies the followings:
(Assumption A) : wuo(z) € C?[~a, a] is nonnegative, bounded,
symmetric and ug(z) is nondecreasing in (—a,0) and
(Assumption B) :  ull(z) +e*(®) >0, x € (~a,a).

Then a unique solution u(x,t) of (P) exists for t < o¢ suffi-
ciently small.

By the maximum principle, u(z,t) > 0, (z,t) € (—a,a) x (0,7T)
and

(1) U(t) = max u(x,t)

z€[—a,a]
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is monotone increasing in ¢.

If a solution u(z,t) exists for all t < (< oo) and U(s™) <
oo, then the solution u(z,t) can be uniquely continued into some
interval 0 < t < o + ¢ with ¢ > 0 sufficiently small.

Let T be the supremum of all ¢ such that the solution exists
for all t < 0. We assume T < oco. Then

U(T™) = oc.

In this case, T is called the finite blow-up time.

The problem (P) aries in a model for ignition(see Bebernes and
Kassoy[1]). Wang and Chen[7] recently characterized the growth
rate of asymptotic behavior for blow-up solution of

Up = Ugg + 'u,p(O,t), (:L‘, t) € ('"l7l) X (0’ T)
2) u(£l,t) =0, ¢>0
u(z,0) = up(z), = € (=L1)

near blow-up point using self-similar solution technique and ob-
served the boundary-layer phenomena.

This fact suggest a similar result for the solution u(z,t) of (P).
In this paper, we prove that the solution u(z,t) of (P) satisfies

lim (T —t)e*Ot) =1,
t—T-
(3) : u(c,t)
lim (T - t)e*'*" =1
t—T~
for any a € (~a, a) and observe the asymptotic solution of (P).
Our method is based on their general ideas i.e., maximum prin-
ciple, comparison method and self-similar solution technique.

2. Preliminaries

In this section, we set up some definitions and the auxiliary
estimate of the solution of (P).

DEFINITION 2.1. A point z € (—a,a) is called a blow-up point
if there exists a sequence {(zn,t,)} such that z, — z, t, —» T
and u(x,,t,) — 00 as n — o0.
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LEMMA 2.2 (THE MAXIMUM PRINCIPLE). Let ) be a bounded
domain in R" and let

Lu = Du+b(z,t)- Vu+ c(z, t)u — u,

in an (n+1)-dimensional domain Q x (0,T), where b = (b, b,, - - -,
b,). Assume that coeflicients of L are continuous functions in
Qx(0,T) and c¢(z,t) < 0. Suppose that either Lu > 0 in Q x (0, T)
or that Lu > 0 and c¢(z,t) < 0. Then u cannot have a positive
maximum in Q x (0, T).

Proof. See Friedman (2] and Protter and Weinberger [6].

THEOREM 2.3. Suppose that u(x,t) is a solution of (P) sat-
isfying (Assumption B). For any n € (0, min{a,T}) there exist a
& > 0 such that

(4) ugp > e @b

for (z,t) € (—a+mn,a—n) x (n,T).

Proof. We know that u; > 0 on (—a + n,a — ) x (n,T) by
the maximum principle. Define J(z,t) = u;(z,t) — £e*(®t) where
€ > 0 is to be determined. Then we observe that .J satisfies

Jy = Jpp = e"(o’t)ut((), t) — &e{u((?,ff)-*u(m»t)} + Ee“(x’t)ui
(5) > e* 00y, (0, ) — eln(0D)+ulzt)}
> @ {u,(0,1) — £e“ OV} = 4 (=) (0, 1).
Since z = 0 is the blow-up point, if 5 is sufficiently small, e*(#t) <
Ci <ooind(—a+mna-mn)x(nT). Also, uy > Cy > 0 on the

parabolic boundary of (—a+mn,a—n)x(n,T). For £ > 0 sufficiently
small, we have :

J =y — €& > Oy - £Cy > 0

on the parabolic boundary (—a + n,a — 1) x (n, T). Hence, u; >
ce*® for (x,t) € (~a+n,a~1) x (n,T).
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COROLLARY 2.4. Suppose that u(z,t) is a solution of (P) sat-
isfying (Assumption B). For any 1 € (0,min{a,T}) there exists
M such that

(6) u(z,t) < M ~ log(T - t),

for (z,t) € (~a+n,a - n) x (n,T).
Proof. By Theorem 2.3, integrating (4) from ¢ to T, we obtain
that u(z,t) < M — log(T — t) in (-a +n,a - p) x (n, T).
THEOREM 2.5. Let u(x,t) be a solution of (P) and let for
to € (0,7), u, = MAT el g o)u(T, tp). Define flu) = fou flw)du
for f(u) = e*. Then if f(uy) > f(uo(x)) + 3up’(x)?, then we have

1
(7) Sua < v
in (-a,a) x (0,T), ifty is near T.
Proof. Since our proof is similar to the proof of Theorem 3.1
in 3], we omit it.

REMARK. Since our concern is the asymptotic behavior near
blow-up point, we have no interest in the behavior of the solution
in the neighborhood of the parabolic boundary of (-a,a).

3. Main Results

To analyze the blow-up behavior of u(z,t) near z = 0 and
t = T, we introduce the rescaled solution

(8) w(y, s) = (T - t)e(=?
with
(9) g= (T —t)iy, T —t=e"

Ifz=0is not a blow-up point, then w(y, 5) converges rapidly to
Zero as § — oo.
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If u solves (P), then w solves
2

1 w
(10) Wy — Wyy + SYWy + -—j — (w(0, 8) — Dw(y,s) =0.

in the domain Wy = {(y,3) € R2 | s > so = ~log T,y € (~aef,ae)}.
Notice that the solution w(y, s) clearly exists for all s > s¢ and
w(y, s) is always strictly positive in Wy.

THEOREM 3.1. If w is defined by (8) and (9), then
0 < w(y,s) <eM,

wy (y 8 ) !

2L < MY(M).

wiy,s) <M

Proof. Immediately follows by Corollary 2.4 and Theorem 2.5.

To derive energy identities for w, multiplying (10) with pw or
pw, and then integrating by parts, they involve the "energy”

1 w3
Elw](s) = 5/05%611/“ /pwdy+/plogwdy

2
-4

where p(y) = e~ 7 and the domain of integration being (-ae?,aef).

Also, we consider the stationary equation of (10)

1 w?
(11) Wyy — Eywy - ‘f + (w(0) - Dw(y) =0, y¢€ R

Using the same technique in [4], we can observe the following
lemma.

LEMMA 3.2. Ifw(y,s) is a solution of (10), then w(y, s) has a
limit, independent of any choise of subsequence, as s — oo and
the limit is the solution w(y) of (11).

Let v(y) = logw(y). Then
v< M,

(12) v, < M'(M)
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by Theorem 3.1.
Also, we observe that if w solves the equation (11) then v solves

1
(13) Vyy ~ YUy + e’ —1=0.

Let y = v/2z. Then v,, — zv, + 2(e¥® — 1) = 0. Since z=0is a
ordinary point in above equation, we obtain the series solution of
the equation (13):

v(y) = Co+C1{\/- + Z 1-3 (Zn +(f;7;— 1)(%)2n+1}

(14)
2-4-6- (2n) n

where co and ¢; are any constants, and c; = 1 — e¥(®), By (12),
since v(y) is bounded, ¢; and ¢z must be zero.
We summarize:

THEOREM 3.3. Suppose that w(y) is the only bounded positive
solution with % < M’ of (11). Then w(y) = 1.

THEOREM 3.4. If u(z,t) is a solution of (P), then

hm 0T —t) = 1.
T—

Proof. The proof is the direct result of Lemma 3.2 and Theorem
3.3.

Now, we investigate that if ¢ is sufficiently near 7', then e*(=*) (T —
t) approximately equals 1 in (—a+9,a—§), where § — 0ast — T—.
This is so-called boundary-layer phenomena.

For any « € (—a,a), define the function

wa(y, s) = e =(T ~ 1)
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with
a:«—ar-:(T——t)%y, T—-t=e"".
Then
dwa Pwe 1 Ow, (%)
- b : 0,8) = )we = 0
0s 0y? + 2Y dy Wo ~ (w(0,5) = Dwa

where w(0, s) is defined in (8).

THEOREM 3.5. Suppose that u(z,t) is a solution of (P). Then

u{c,t) . =1
hr:'rwx* e (T —t)=

for all & € (—a,a). That is, blow-up set for (P) is the whole
domain (—a,a).

Proof. By Theorem 2.5 and Lemma 3.2, w4 (y, s) has a limit
wq(y), independent of any choice of subsequences, as s — oo and
the limit wq(y) solves

9w 1 Bwa (g’%‘)z ‘
By; By s + (w(0,s) — 1)wq =0

Similarly, we set v, (y) = logwa(y). Then v,(y) satisfies

By Theorem 3.3, wa(y) = 1. Hence, since y = 0 if and only if
T =aq,

lim e —¢) =1.
t—T -
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REMARK. Since a is arbitrary point in (—a, a), we can see that
et(®:)=u(0t) has houndary-layer phenomena as t — T~ from The-
orems 3.3 and 3.5.

To investigate the growth rate of blow-up behavior of u(z,t)
near blow-up point, we consider the problem

u; =uy, —log(T —t), (z,t) € (—a,a)x (0,7)
(15) u*(+a,t) =0, t>0 |
u*(z,0) = up(z), =z € (——a,ﬂa).
Since for any € > 0 sufficiently small, there exists og > 0 such
that
(1 —-eu"(z,t) < u(z,t) < 1+ e)u*(z,t), t € (00,T),

we observe that if u*(z,t) is a solution of (15), then u*(z,t) ap-
proximately shows the behaviors of u(x,t). Hence, we have the
following asymptotic solution of (P).

THEOREM 3.6. Suppose that u*(x,t) is a solution of (15).

Then we have

Z ncos(—-—:c) + B sm(«—x))e“(

/ 5_0_: (1)cos( ———x)e( -0y
where A, = 1 [ uo(C)COS( 20)d¢, Bn = 2 [° uo(¢)sin(3E()d¢

and
(0, n=4m

—Saélog(T~—*r) n=4m+1

"(T):<O, n=4m+2 -
8a
— log(T — =4
~n7r0g( ), n=4m+3

where m € N.

Proof. The proof of the above theorem follows from the sepa-
ration of variables and manipulative calculation.
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