ASYMPTOTIC BEHAVIOR OF BLOW-UP SOLUTION OF A LOCALIZED SEMILINEAR PARABOLIC EQUATION

ILL-HYEON NAM AND HYEONG-KWAN JU

Dept. of Mathematics, Chonnam National University, Kwangju 500-757, Korea.

1. Introduction

The purpose of this paper is to investigate the growth rate of blow-up solution to the semilinear parabolic equation

$$u_t = u_{xx} + e^{u(0,t)}, \quad (x,t) \in (-a,a) \times (0,T)$$
(P)
$$u(\pm a,t) = 0, \quad t > 0$$

$$u(x,0) = u_0(x), \quad x \in (-a,a)$$

in a neighborhood of a blow-up point as t approaches the finite blow-up time $T < \infty$, where a is a positive constant.

Assume that the initial condition satisfies the followings:

(Assumption A): $u_0(x) \in C^2[-a, a]$ is nonnegative, bounded, symmetric and $u_0(x)$ is nondecreasing in (-a, 0) and

(Assumption B):
$$u_0''(x) + e^{u_0(0)} \ge 0, x \in (-a, a).$$

Then a unique solution u(x,t) of (P) exists for $t<\sigma_0$ sufficiently small.

By the maximum principle, $u(x,t) \ge 0, \, (x,t) \in (-a,a) \times (0,T)$ and

(1)
$$U(t) = \max_{x \in [-a,a]} u(x,t)$$

Received May 7, 1997.

The first author was partially supported by Post-Doc. Research Fund, Korea Research Foundation in 1996 and the second author was partially supported by BSRI-97-1426 and MRC-CNU.

is monotone increasing in t.

If a solution u(x,t) exists for all $t < \sigma(< \infty)$ and $U(\sigma^-) < \infty$, then the solution u(x,t) can be uniquely continued into some interval $0 < t < \sigma + \epsilon$ with $\epsilon > 0$ sufficiently small.

Let T be the supremum of all σ such that the solution exists for all $t < \sigma$. We assume $T < \infty$. Then

$$U(T^{-})=\infty.$$

In this case, T is called the finite blow-up time.

The problem (P) aries in a model for ignition (see Bebernes and Kassoy[1]). Wang and Chen[7] recently characterized the growth rate of asymptotic behavior for blow-up solution of

(2)
$$u_{t} = u_{xx} + u^{p}(0, t), \quad (x, t) \in (-l, l) \times (0, T)$$
$$u(\pm l, t) = 0, \quad t > 0$$
$$u(x, 0) = u_{0}(x), \quad x \in (-l, l)$$

near blow-up point using self-similar solution technique and observed the boundary-layer phenomena.

This fact suggest a similar result for the solution u(x,t) of (P). In this paper, we prove that the solution u(x,t) of (P) satisfies

(3)
$$\lim_{t \to T^{-}} (T - t)e^{u(0,t)} = 1, \\ \lim_{t \to T^{-}} (T - t)e^{u(\alpha,t)} = 1$$

for any $\alpha \in (-a, a)$ and observe the asymptotic solution of (P).

Our method is based on their general ideas i.e., maximum principle, comparison method and self-similar solution technique.

2. Preliminaries

In this section, we set up some definitions and the auxiliary estimate of the solution of (P).

DEFINITION 2.1. A point $x \in (-a, a)$ is called a blow-up point if there exists a sequence $\{(x_n, t_n)\}$ such that $x_n \to x$, $t_n \to T$ and $u(x_n, t_n) \to \infty$ as $n \to \infty$.

LEMMA 2.2 (THE MAXIMUM PRINCIPLE). Let Ω be a bounded domain in \mathbb{R}^n and let

$$Lu \equiv \Delta u + b(x,t) \cdot \nabla u + c(x,t)u - u_t$$

in an (n+1)-dimensional domain $\Omega \times (0,T)$, where $b=(b_1,b_2,\cdots,b_n)$. Assume that coefficients of L are continuous functions in $\Omega \times (0,T)$ and $c(x,t) \leq 0$. Suppose that either Lu > 0 in $\Omega \times (0,T)$ or that $Lu \geq 0$ and c(x,t) < 0. Then u cannot have a positive maximum in $\Omega \times (0,T)$.

Proof. See Friedman [2] and Protter and Weinberger [6].

THEOREM 2.3. Suppose that u(x,t) is a solution of (P) satisfying (Assumption B). For any $\eta \in (0, min\{a, T\})$ there exist a $\xi > 0$ such that

$$(4) u_t > \xi e^{u(x,t)}$$

for
$$(x,t) \in (-a+\eta, a-\eta) \times (\eta, T)$$
.

Proof. We know that $u_t > 0$ on $(-a + \eta, a - \eta) \times (\eta, T)$ by the maximum principle. Define $J(x,t) = u_t(x,t) - \xi e^{u(x,t)}$ where $\xi > 0$ is to be determined. Then we observe that J satisfies

$$J_{t} - J_{xx} = e^{u(0,t)} u_{t}(0,t) - \xi e^{\{u(0,t) + u(x,t)\}} + \xi e^{u(x,t)} u_{x}^{2}$$

$$(5) \qquad \geq e^{u(0,t)} u_{t}(0,t) - \xi e^{\{u(0,t) + u(x,t)\}}$$

$$\geq e^{u(x,t)} \{u_{t}(0,t) - \xi e^{u(0,t)}\} = e^{u(x,t)} J(0,t).$$

Since x=0 is the blow-up point, if η is sufficiently small, $e^{u(x,t)} < C_1 < \infty$ in $\partial(-a+\eta, a-\eta) \times (\eta, T)$. Also, $u_t \geq C_2 > 0$ on the parabolic boundary of $(-a+\eta, a-\eta) \times (\eta, T)$. For $\xi > 0$ sufficiently small, we have

$$J = u_t - \xi e^{u(x,t)} \ge C_2 - \xi C_1 > 0$$

on the parabolic boundary $(-a + \eta, a - \eta) \times (\eta, T)$. Hence, $u_t \ge \xi e^{u(x,t)}$ for $(x,t) \in (-a + \eta, a - \eta) \times (\eta, T)$.

COROLLARY 2.4. Suppose that u(x,t) is a solution of (P) satisfying (Assumption B). For any $\eta \in (0, min\{a, T\})$ there exists M such that

(6)
$$u(x,t) \leq M - \log(T-t),$$

for
$$(x,t) \in (-a+\eta, a-\eta) \times (\eta, T)$$
.

Proof. By Theorem 2.3, integrating (4) from t to T, we obtain that $u(x,t) \leq M - \log(T-t)$ in $(-a+\eta,a-\eta) \times (\eta,T)$.

THEOREM 2.5. Let u(x,t) be a solution of (P) and let for $t_0 \in (0,T)$, $u_* = \max_{x \in [-a,a]} u(x,t_0)$. Define $\tilde{f}(u) = \int_0^u f(u) du$ for $f(u) = e^u$. Then if $\tilde{f}(u_*) \geq \tilde{f}(u_0(x)) + \frac{1}{2}u_0'(x)^2$, then we have

(7)
$$\frac{1}{2}u_x^2 \le e^{u(0,t_0)}$$

in $(-a, a) \times (0, T)$, if t_0 is near T.

Proof. Since our proof is similar to the proof of Theorem 3.1 in [3], we omit it.

REMARK. Since our concern is the asymptotic behavior near blow-up point, we have no interest in the behavior of the solution in the neighborhood of the parabolic boundary of (-a, a).

3. Main Results

To analyze the blow-up behavior of u(x,t) near x=0 and t=T, we introduce the rescaled solution

(8)
$$w(y,s) = (T-t)e^{u(x,t)}$$

with

(9)
$$x = (T-t)^{\frac{1}{2}}y, T-t = e^{-s}.$$

If x = 0 is not a blow-up point, then w(y, s) converges rapidly to zero as $s \to \infty$.

If u solves (P), then w solves

(10)
$$w_s - w_{yy} + \frac{1}{2}yw_y + \frac{w_y^2}{w} - (w(0,s) - 1)w(y,s) = 0.$$

in the domain $W_0 \equiv \{(y, s) \in \mathbb{R}^2 \mid s > s_0 = -\log T, y \in (-a e^{\frac{s}{2}}, a e^{\frac{s}{2}})\}.$

Notice that the solution w(y, s) clearly exists for all $s > s_0$ and w(y, s) is always strictly positive in W_0 .

THEOREM 3.1. If w is defined by (8) and (9), then

$$0 < w(y,s) \le e^M,$$
 $\dfrac{w_y(y,s)}{w(y,s)} \le M'(M).$

Proof. Immediately follows by Corollary 2.4 and Theorem 2.5.

To derive energy identities for w, multiplying (10) with ρw or ρw_s and then integrating by parts, they involve the "energy"

$$E[w](s) = rac{1}{2} \int
ho rac{w_y^2}{w^2} dy - \int
ho w dy + \int
ho \log w dy$$

where $\rho(y) = e^{-\frac{y^2}{4}}$ and the domain of integration being $(-ae^{\frac{z}{2}}, ae^{\frac{z}{2}})$.

Also, we consider the stationary equation of (10)

(11)
$$w_{yy} - \frac{1}{2}yw_y - \frac{w_y^2}{w} + (w(0) - 1)w(y) = 0, \quad y \in \mathbb{R}^1.$$

Using the same technique in [4], we can observe the following lemma.

LEMMA 3.2. If w(y, s) is a solution of (10), then w(y, s) has a limit, independent of any choise of subsequence, as $s \to \infty$ and the limit is the solution w(y) of (11).

Let $v(y) = \log w(y)$. Then

(12)
$$v \leq M, \\ v_y \leq M'(M)$$

by Theorem 3.1.

Also, we observe that if w solves the equation (11) then v solves

(13)
$$v_{yy} - \frac{1}{2}yv_y + e^{v(0)} - 1 = 0.$$

Let $y = \sqrt{2}z$. Then $v_{zz} - zv_z + 2(e^{v(0)} - 1) = 0$. Since z = 0 is a ordinary point in above equation, we obtain the series solution of the equation (13):

(14)
$$v(y) = c_0 + c_1 \left\{ \frac{y}{\sqrt{2}} + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{(2n+1)!} (\frac{y}{\sqrt{2}})^{2n+1} \right\} + c_2 \left\{ (\frac{y}{\sqrt{2}})^2 + 2 \sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{(2n+2)!} (\frac{y}{\sqrt{2}})^{2n+2} \right\}$$

where c_0 and c_1 are any constants, and $c_2 = 1 - e^{v(0)}$. By (12), since v(y) is bounded, c_1 and c_2 must be zero.

We summarize:

THEOREM 3.3. Suppose that w(y) is the only bounded positive solution with $\frac{w_y}{w} \leq M'$ of (11). Then $w(y) \equiv 1$.

THEOREM 3.4. If u(x,t) is a solution of (P), then

$$\lim_{t \to T^{-}} e^{u(0,t)}(T-t) = 1.$$

Proof. The proof is the direct result of Lemma 3.2 and Theorem 3.3.

Now, we investigate that if t is sufficiently near T, then $e^{u(x,t)}(T-t)$ approximately equals 1 in $(-a+\delta, a-\delta)$, where $\delta \to 0$ as $t \to T^-$. This is so-called boundary-layer phenomena.

For any $\alpha \in (-a, a)$, define the function

$$w_{\alpha}(y,s) = e^{u(x,t)}(T-t)$$

with

$$x-\alpha=(T-t)^{\frac{1}{2}}y, T-t=e^{-s}.$$

Then

$$\frac{\partial w_{\alpha}}{\partial s} - \frac{\partial^{2} w_{\alpha}}{\partial y^{2}} + \frac{1}{2} y \frac{\partial w_{\alpha}}{\partial y} + \frac{\left(\frac{\partial w_{\alpha}}{\partial y}\right)^{2}}{w_{\alpha}} - (w(0, s) - 1) w_{\alpha} = 0$$

where w(0, s) is defined in (8).

THEOREM 3.5. Suppose that u(x,t) is a solution of (P). Then

$$\lim_{t\to T^-}e^{u(\alpha,t)}(T-t)=1$$

for all $\alpha \in (-a, a)$. That is, blow-up set for (P) is the whole domain (-a, a).

Proof. By Theorem 2.5 and Lemma 3.2, $w_{\alpha}(y, s)$ has a limit $w_{\alpha}(y)$, independent of any choice of subsequences, as $s \to \infty$ and the limit $w_{\alpha}(y)$ solves

$$\frac{\partial^2 w_{\alpha}}{\partial y^2} - \frac{1}{2} y \frac{\partial w_{\alpha}}{\partial y} - \frac{\left(\frac{\partial w_{\alpha}}{\partial y}\right)^2}{w_{\alpha}} + (w(0, s) - 1) w_{\alpha} = 0$$

Similarly, we set $v_{\alpha}(y) = \log w_{\alpha}(y)$. Then $v_{\alpha}(y)$ satisfies

$$\frac{\partial^2 v_{\alpha}}{\partial y^2} - \frac{1}{2}y \frac{\partial v_{\alpha}}{\partial y} + (e^{v(0)} - 1) = 0.$$

By Theorem 3.3, $w_{\alpha}(y) \equiv 1$. Hence, since y = 0 if and only if $x = \alpha$,

$$\lim_{t \to T^{-}} e^{u(\alpha,t)}(T-t) = 1.$$

REMARK. Since α is arbitrary point in (-a, a), we can see that $e^{u(x,t)-u(0,t)}$ has boundary-layer phenomena as $t \to T^-$ from Theorems 3.3 and 3.5.

To investigate the growth rate of blow-up behavior of u(x,t) near blow-up point, we consider the problem

$$u_{t}^{*} = u_{xx}^{*} - \log(T - t), \quad (x, t) \in (-a, a) \times (0, T)$$

$$u^{*}(\pm a, t) = 0, \quad t > 0$$

$$u^{*}(x, 0) = u_{0}(x), \quad x \in (-a, a).$$

Since for any $\epsilon>0$ sufficiently small, there exists $\sigma_0>0$ such that

$$(1 - \epsilon)u^*(x, t) \le u(x, t) \le (1 + \epsilon)u^*(x, t), \ t \in (\sigma_0, T),$$

we observe that if $u^*(x,t)$ is a solution of (15), then $u^*(x,t)$ approximately shows the behaviors of u(x,t). Hence, we have the following asymptotic solution of (P).

THEOREM 3.6. Suppose that $u^*(x,t)$ is a solution of (15). Then we have

$$\begin{split} u^*(x,t) &= \sum_{n=1}^{\infty} (A_n cos(\frac{n\pi}{2a}x) + B_n sin(\frac{n\pi}{2a}x)) e^{-(\frac{n\pi}{2a})^2 t} \\ &+ \int_0^t \{ \sum_{n=1}^{\infty} C_n(\tau) cos(\frac{n\pi}{2a}x) e^{(\frac{n\pi}{2a})^2 (\tau - t)} \} d\tau \end{split}$$

where $A_n = \frac{1}{a} \int_{-a}^a u_0(\zeta) cos(\frac{n\pi}{2a}\zeta) d\zeta$, $B_n = \frac{1}{a} \int_{-a}^a u_0(\zeta) sin(\frac{n\pi}{2a}\zeta) d\zeta$ and

$$C_n(\tau) = \begin{cases} 0, & n = 4m \\ -\frac{8a}{n\pi} \log(T - \tau), & n = 4m + 1 \\ 0, & n = 4m + 2 \\ \frac{8a}{n\pi} \log(T - \tau), & n = 4m + 3 \end{cases}$$

where $m \in \mathbb{N}$.

Proof. The proof of the above theorem follows from the separation of variables and manipulative calculation.

References

- J. Bebernes and D. Kassoy, A mathematical analysis of blow-up for thermal reactions, SIAM J. Appl. Math. 40 (1981), 474-484.
- 2. A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, New Jercey, 1964.
- 3. A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. Vol 34., No. 2 (1985), 425-447.
- 4. Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 (1985), 297-319.
- 5. W. Liu, The blow-up rate of solutions of semilinear heat equations, J. Diff. Eqns. 77 (1989), 104-122.
- 6. M. H. Proter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Inc., New Jersey, 1967.
- 7. L. Wang and Q. Chen, The asymptotic behavior of blowup solution of localized nonlinear equation, J. Math. Anal. Appl. 200 (1996), 315-321.