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LONG-TIME BEHAVIOR FOR SEMILINEAR DEGENERATE

PARABOLIC EQUATIONS ON R
N

Cung The Anh and Le Thi Thuy

Abstract. We study the existence and long-time behavior of solutions
to the following semilinear degenerate parabolic equation on R

N :

∂u

∂t
− div(σ(x)∇u) + λu+ f(u) = g(x),

under a new condition concerning a variable non-negative diffusivity σ(·).
Some essential difficulty caused by the lack of compactness of Sobolev
embeddings is overcome here by exploiting the tail-estimates method.

1. Introduction

The understanding of the asymptotic behavior of dynamical systems is one
of the most important problems of modern mathematical physics. One way to
attack the problem for a dissipative dynamical system is to study its global at-
tractor. This is an invariant compact set that attracts all the trajectories of the
system. In the last decades, many authors have paid attention to this problem
and obtained many results for a large class of nondegenerate partial differential
equations (see e.g. [8, 17] and references therein). In recent years, there has
been an increasing interest for the study of the existence of global attractors
for a class of degenerate parabolic equations with weights of Caldiroli-Musina
type, in both semilinear case (cf. [1, 4, 10, 11, 12]) and quasilinear case (cf.
[2, 3, 5, 6]). However, all of the above results are in the compact case, that
is the case where the weights were assumed to satisfy certain conditions which
ensure the compactness of some Sobolev embeddings, and this plays an es-
sential role in the study of these works. To the best of our knowledge, little
seems to be known about the existence and asymptotic behavior of solutions
to these equations in the non-compact case, the more complicated case. This
is a motivation of the present paper.
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In this paper we study the following semilinear degenerate parabolic equation
with a variable, nonnegative coefficient σ(·) in R

N , N ≥ 2,

(1.1)

∂u

∂t
− div(σ(x)∇u) + λu+ f(u) = g(x), x ∈ R

N , t > 0,

u(x, 0) = u0(x), x ∈ R
N ,

where λ > 0, u0 and g belong to L2(RN ) given, f : R → R is a C1-function
satisfying some conditions specified later.

Problem (1.1) can be derived as a simple model for neutron diffusion (feed-
back control of nuclear reactor) (see [9]). In this case u and σ stand for the
neutron flux and neutron diffusion, respectively. The degeneracy of problem
(1.1) is considered in the sense that the measurable, nonnegative diffusion co-
efficient σ(·), is allowed to have at most a finite number of (essential) zeroes at
some points.

Problem (1.1) in a general (bounded or unbounded) domain Ω ⊂ R
N was

studied extensively in [1, 4, 10, 11, 12], in which the diffusivity σ(·) was assumed
to satisfy one of the following conditions which ensure important compactness
properties:

(Hα) σ ∈ L1
loc(Ω) and for some α ∈ (0, 2), lim infx→z |x − z|−ασ(x) > 0 for

every z ∈ Ω, when the domain Ω is bounded;
(H∞

α,β) σ satisfies condition (Hα) and lim inf |x|→∞ |x|−βσ(x) > 0 for some
β > 2, when the domain Ω is unbounded.

Both assumptions have a strong physical significance which is related to the
existence of regions occupied by perfect insulators or perfect conductors (see
[7, 9, 10, 11, 12]). The natural phase space for problem (1.1) in these cases
involves D1

0(Ω, σ), which is defined as the closure of C∞
0 (Ω) in the norm

‖u‖D1

0
(Ω,σ) :=

(

∫

Ω

σ(x)|∇u|2dx
)1/2

.

Then under either assumption (Hα) or (H∞
α,β), the embedding D1

0(Ω, σ) →֒

L2(Ω) is compact and this property plays an essential role for the investigation
in [1, 4, 10, 11, 12]. Observe, however, that when Ω is unbounded, the function
σ(·) must grow faster than quadratically at infinity for this property to hold
(see [7] for more details).

In this paper we would like to find a new condition concerning the diffusivity
σ(·) which ensures the asymptotic compactness of the semigroup generated by
problem (1.1) and as a result, the existence of a global attractor, without
restricting the limiting behavior of σ(·) at infinity. As it turns out, such a
condition can be found with careful tails estimates as in [18] (see the proof of
Lemma 3.2 below). More precisely, we assume that the function σ : RN → R

satisfies the following assumption:
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(H∞) σ is a nonnegative measurable function such that σ ∈ L1
loc(R

N ), and
for some α ∈ (0, 2), lim infx→z |x−z|−ασ(x) > 0 for every z ∈ R

N , and
σ satisfies one of the following two conditions:
i) there exists K0 > 0 such that sup

k≥K0

sup
k≤|x|≤

√
2k

σ(x) < ∞;

ii) there exists K0 > 0 such that sup
k≥K0

∫

k≤|x|≤
√
2k

|σ(x)|
N

2−α dx < ∞.

Let us give a comment on the condition (H∞). Observe that the absence
of a specific limiting behavior at infinity for σ(·) (cf. condition (H∞

α,β)) is
now compensated by a higher local integrability. A simple example in which
(H∞) is fulfilled but (H∞

α,β) is not, is provided by the function σ(x) ≡ 1 (the

nondegenerate case) or σ(x) = e−|x|(|x|α + |x|γ
)

with α, γ ∈ (0, 2).
In this paper we assume that the nonlinearity f and the external force g

satisfy the following conditions:

(F) f : R → R is a C1-function satisfying

f(u)u ≥ −µu2, µ < λ,(1.2)

f ′(u) ≥ −C,(1.3)

|f(u)| ≤ C|u|.(1.4)

It is noticed that assumption (F) covers two significant cases arising
in physics. The first one corresponds to the sinusoidal nonlinearity
f(u) = sinu, while the second to the so-called saturated nonlinearity
f(u) = u

1+u2 .

(G) g ∈ L2(RN ).

Let us introduce some function spaces related to problem (1.1). For a domain
Ω ⊂ R

N , we define the space H1
0(Ω, σ) as the closure of C

∞
0 (Ω) with respect to

the norm

‖u‖H1

0
(Ω,σ) :=

(

∫

Ω

σ(x)|∇u|2dx+

∫

Ω

|u|2dx
)1/2

.

Hence, the natural energy spaces for problem (1.1) involves the spaceH1
0(R

N , σ)
and its dual space H−1(RN , σ). It is noticed that in the compact case, that is
the case where the assumption (Hα) or (H

∞
α,β) holds, then H1

0(Ω, σ) ≡ D1
0(Ω, σ)

and the embeddingH1
0(Ω, σ) →֒ L2(Ω) is compact. However, this property is no

longer true in the non-compact case, that is the case σ(·) satisfies (H∞). This
introduces some new essential difficulty when studying problem (1.1), both in
the existence of solutions and the existence of global attractors, when compared
with the compact case in [1, 4, 10, 11, 12].

This paper is an attempt to study the existence and long-time behavior of
solutions to problem (1.1) in the non-compact case. Let us explain the method
used in the paper. First, using the Galerkin method, we prove the global exis-
tence of a unique weak solution and then construct the continuous semigroup
S(t) : L2(RN ) → H1

0(R
N , σ) associated to problem (1.1). Next, we use a priori
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estimates to show the existence of a bounded absorbing set in H1
0(R

N , σ) for
the semigroup. In the compact case, that is the case σ(·) satisfies (Hα) or
(H∞

α,β), since the embedding H1
0(Ω, σ) ≡ D1

0(Ω, σ) →֒ L2(Ω) is compact, this

immediately implies the asymptotic compactness of the semigroup in L2(Ω),
and therefore the existence of a global attractor in L2(Ω). Here, because the
embedding is no longer compact, the proof of the asymptotic compactness in
L2(RN ) is much more involved. To do this, we exploit the tail estimates method
introduced by B. Wang in [18], and as a result, we obtain the existence of a
global attractor in L2(RN ). Finally, under an additional condition of the non-
linearity f (see hypothesis (F′) in Section 4), we show that the global attractor
exists in H1

0(R
N , σ). The main new feature of the paper is that we are able

to prove the existence of global attractors for a class of semilinear degenerate
parabolic equations in the non-compact case. To the best of our knowledge,
this work seems to be the first one addressing the question about the long-time
dynamics of (1.1) in the case lack of compactness of the Sobolev embeddings.

The paper is organized as follows. Section 2 is devoted to the proof of
existence and uniqueness of solutions. In Section 3, we prove the existence of
a compact global attractor in L2(RN ). In the last section, under an additional
condition of f , we show that the global attractor is in fact in H1

0(R
N , σ).

2. Existence of weak solutions

Definition 2.1. A function u(t, x), t ∈ [0, T ], x ∈ R
N , is said to be a weak so-

lution of (1.1) on [0, T ] if u ∈ L2(0, T ;H1
0(R

N , σ)), du
dt ∈ L2(0, T ;H−1(RN , σ)),

u(0) = u0, and u satisfies equation (1.1) in the distribution sense, that is,
∫ T

0

(ut, v)L2(RN )dt+

∫ T

0

∫

RN

σ(x)∇u∇vdxdt + λ

∫ T

0

(u, v)L2(RN )dxdt

+

∫ T

0

(f(u), v)L2(RN )dxdt =

∫ T

0

(g, v)L2(RN )dxdt

for all test functions v ∈ L2(0, T ;H1
0(R

N , σ)).

We now prove the existence theorem.

Theorem 2.1. Let hypotheses (H∞) − (F) − (G) hold. Then, for any u0 ∈
L2(RN ) and T > 0 given, problem (1.1) has a unique weak solution u on [0, T ].
Moreover, for each t ∈ [0, T ], the map u0 7→ u(t) is continuous on L2(RN ).

Proof. i) Existence. For m ≥ 1, we put

Ωm = R
N ∩ {x ∈ R

N : |x|RN < m},

where | · |RN denotes the Euclidean norm in R
N . For each integer n ≥ 1, we

denote by

un(t) =
n
∑

j=1

γnj(t)ωj
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a solution of

d

dt
(un(t), ωj)−(div(σ(x)∇u), ωj)+λ(un(t), ωj)+(f(un(t)), ωj)=(g, ωj), t > 0,

(un(0), ωj) = (u0, ωj), j = 1, 2, . . . , n,

where {ωj}
∞
j=1 ⊂ H1

0(R
N , σ) is a Hilbert basis of L2(RN ) such that span{ωj}

∞
j=1

is dense in H1
0(R

N , σ).
Multiplying (1.1) by un and integrating over RN , we have

1

2

d

dt
‖un‖

2
L2(RN )+

∫

RN

σ(x)|∇un|
2dx+λ‖un‖

2
L2(RN )+

∫

RN

f(un)undx=

∫

RN

gundx.

Using (F) and the Cauchy inequality, we obtain

d

dt
‖un‖

2
L2(RN ) + 2

∫

RN

σ(x)|∇un|
2dx+ (λ − µ)‖un‖

2
L2(RN ) ≤

1

λ− µ
‖g‖2L2(RN ).

Integrating the last inequality over (0, t), 0 < t ≤ T , we obtain

‖un(t)‖
2
L2(RN ) + 2

∫ t

0

∫

RN

σ(x)|∇un(s)|
2dxds+ (λ− µ)

∫ t

0

‖un(s)‖
2
L2(RN )ds

≤ ‖u0‖
2
L2(RN ) +

1

λ− µ
‖g‖2L2(RN )T,

where we have used the fact that ‖un(0)‖L2(RN ) ≤ ‖u0‖L2(RN ). It follows from
the above estimate that

(2.1) {un} is bounded in L2(0, T ;H1
0(R

N , σ)) ∩ C([0, T ];L2(RN )).

Hence, by assumption (F), it is easy to check that

{f(un)} is bounded in L2(0, T ;L2(RN )).

Then, there exists a subsequence {uµ} such that

(2.2) uµ ⇀ u in L2(0, T ;H1
0(R

N , σ)),

f(uµ) ⇀ χ in L2(0, T ;L2(RN )).

Hence, (2.2) implies that

−div(σ(x)∇uµ) + λuµ ⇀ −div(σ(x)∇u) + λu in L2(0, T ;H−1(RN , σ)).

On the other hand, to prove that χ(t) = f(u(t)), we argue similarly to [15]. As
in [15], we first deduce that

(2.3) lim
a→0

sup
µ

∫ T−a

0

‖uµ(t+ a)− uµ(t)‖
2
L2(RN )dt = 0.

Let φ ∈ C1([0,+∞)) be a function such that

0 ≤ φ(s) ≤ 1,

φ(s) = 1 ∀s ∈ [0, 1],

φ(s) = 0 ∀s ≥ 2.
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For each µ and m ≥ 1, we define

vµ,m(x, t) = φ
( |x|2

RN

m2

)

uµ(t) ∀x ∈ Ω2m, ∀µ, ∀m ≥ 1.

We obtain from (2.1) that, for all m ≥ 1, the sequence {vµ,m}µ≥1 is bounded
in L∞(0, T ;L2(Ω2m)) ∩ L2(0, T ;H1

0(Ω2m, σ)). In particular, it follows that

lim
a→0

sup
µ

(

∫ a

0

‖vµ,m(x, t)‖2L2(Ω2m)dt+

∫ T

T−a

‖vµ,m(x, t)‖2L2(Ω2m)dt
)

= 0.

On the other hand, from (2.3) we deduce that for all m ≥ 1,

lim
a→0

sup
µ

(

∫ T−a

0

‖vµ,m(x, t+ a)− vµ,m(x, t)‖2L2(Ω2m)dt
)

= 0.

Moreover, as Ω2m is a bounded set, then H1
0(Ω2m, σ) is included in L2(Ω2m)

with compact injection. Then, by Theorem 13.3 and Remark 13.1 in [16] with
X = L2(Ω2m), Y = H1

0(Ω2m, σ), r = 2 and G = {vµ,m}µ≥1, we obtain that

{vµ,m}µ≥1 is relatively compact in L2(0, T ;L2(Ω2m)),

and thus, taking into account that vµ,m(x, t) = uµ(x, t) for all x ∈ Ωm, we
deduce that, in particular, for all m ≥ 1,

(2.4) {uµ|Ωm
} is pre-compact in L2(0, T ;L2(Ωm)).

By a diagonal procedure, one can conclude from (2.4) and (2.2) that there
exists a subsequence {uµ

µ}µ≥1 ⊂ {uµ}µ≥1 such that

uµ
µ → u in Ωm × (0, T ) as µ → ∞, ∀m ≥ 1.

Then, as f(·) is continuous,

f(uµ
µ) → f(u) a.e. in Ωm × (0, T ),

and as {f(uµ
µ)} is bounded in L2(Ωm × (0, T )), by Lemma 1.3 in [13, Chapter

1], we obtain

f(uµ
µ) ⇀ f(u) in L2(0, T ;L2(Ωm)).

By the uniqueness of the weak limit, we have

χ = f(u) a.e. in Ωm × (0, T ), ∀m ≥ 1,

and thus, taking into account that ∪∞
m=1Ωm = R

N , we obtain

χ = f(u) a.e. in R
N × (0, T ).

It is now straightforward to show that u is a weak solution of problem (1.1)
with the initial datum u0.

ii) Uniqueness and continuous dependence. Let u1, u2 be two weak solutions
to problem (1.1) with the initial data u01, u02 ∈ L2(RN ), respectively. Putting
u = u1 − u2, we have

du

dt
− div(σ∇u) + λu + f(u1)− f(u2) = 0.
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Multiplying this equation by u in L2(RN ), we obtain

1

2

d

dt
‖u‖2L2(RN )+

∫

RN

σ|∇u|2dx+λ

∫

RN

u2dx+

∫

RN

(f(u1)−f(u2))(u1−u2)dx=0.

From hypothesis (F), we have

d

dt
‖u‖2L2(RN ) + 2

∫

RN

σ|∇u|2dx+ 2λ

∫

RN

u2dx ≤ 2C

∫

RN

u2dx.

In particular, we have

d

dt
‖u(t)‖2L2(RN ) ≤ 2C‖u(t)‖2L2(RN ).

Applying the Gronwall inequality, we get

‖u(t)‖2L2(RN ) ≤ ‖u(0)‖2L2(RN )e
2Ct.

This implies the uniqueness (if u01 = u02), and continuous dependence of the
solutions on the initial data. �

3. Existence of a global attractor in L2(R)

Thanks to Theorem 2.1, we can define a continuous semigroup {S(t)}t≥0 as
follows

S(t) : L2(RN ) → H1
0(R

N , σ),

where S(t)u0 := u(t) is the unique weak solution of (1.1) subject to u0 as initial
datum.

For the shake of brevity, in the proofs of the following lemmas, we will
give some formal calculations, the rigorous proof is done by use of Galerkin
approximations (these solutions are smooth enough) and Lemma 11.2 in [14].

We first prove the existence of an absorbing set for S(t) in H1
0(R

N , σ).

Lemma 3.1. Suppose (H∞) - (F) - (G) hold. Then the semigroup S(t) gen-
erated by (1.1) has a bounded absorbing set in H1

0(R
N , σ), that is, there exists

a positive constant ρ, such that for every bounded subset B in L2(RN ), there
is a number T = T (B) > 0, such that for all t ≥ T , u0 ∈ B, we have

‖u(t)‖H1

0
(RN ,σ) ≤ ρ.

Proof. Taking the inner product of (1.1) with u in L2(RN ) and using (F) we
get

(3.1)
1

2

d

dt
‖u‖2L2(RN ) +

∫

RN

σ(x)|∇u|2dx+ (λ− µ)‖u‖2L2(RN ) =

∫

RN

gudx.

Applying the Cauchy inequality, we have
(3.2)
∣

∣

∣

∣

∫

RN

gudx

∣

∣

∣

∣

≤ ‖g‖L2(RN )‖u‖L2(RN ) ≤
λ− µ

2
‖u‖2L2(RN ) +

1

2(λ− µ)
‖g‖2L2(RN ).
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It follows from (3.1) and (3.2) that

(3.3)
d

dt
‖u‖2L2(RN )+2

∫

RN

σ(x)|∇u|2dx+(λ−µ)‖u‖2L2(RN ) ≤
1

λ− µ
‖g‖2L2(RN ).

Hence,

d

dt
‖u(t)‖2L2(RN ) + (λ− µ)‖u(t)‖2L2(RN ) ≤

1

λ− µ
‖g‖2L2(RN ).

Using the Gronwall inequality, we obtain

‖u(t)‖2L2(RN ) ≤ e−(λ−µ)t‖u0‖
2
L2(RN ) +

1

(λ− µ)2
‖g‖2L2(RN ).

Hence we deduce the existence of an absorbing set in L2(RN ): There are a
positive constant R and a time t0 = t0(‖u0‖L2(RN )) such that for the solution
u(t) = S(t)u0, we have

‖u(t)‖L2(RN ) ≤ R for all t ≥ t0.

Integrating (3.3) on (t, t+ 1), t ≥ t0, in particular, we find that

(3.4)

∫ t+1

t

(

∫

RN

σ(x)|∇u(s)|2dx+ (λ− µ)‖u(s)‖2L2(RN )

)

ds

≤ ‖u(t)‖2L2(RN ) +
1

λ− µ
‖g‖2L2(RN )

≤ R2 +
1

λ− µ
‖g‖2L2(RN ).

On the other hand, multiplying the first equation in (1.1) by −div(σ(x)∇u) +
(λ− µ)u and integrating over RN , we obtain

(3.5)

1

2

d

dt

(

∫

RN

σ|∇u|2dx+ (λ − µ)

∫

RN

|u|2dx
)

+

∫

RN

|div(σ∇u)|2dx

+ (2λ− µ)

∫

RN

σ|∇u|2dx+ λ(λ− µ)‖u‖2L2(RN )

=

∫

RN

f(u)div(σ∇u)dx − (λ− µ)

∫

RN

f(u)udx

−

∫

RN

gdiv(σ∇u)dx + (λ− µ)

∫

RN

gudx.

Since
∫

RN

f(u)div(σ∇u)dx = −

∫

RN

f ′(u)σ|∇u|2dx ≤ C

∫

RN

σ|∇u|2dx,

−(λ− µ)

∫

RN

f(u)udx ≤ C(λ− µ)‖u‖2L2(RN ),

(λ− µ)

∫

RN

gudx ≤ λ(λ − µ)‖u‖2L2(RN ) + C‖g‖2L2(RN ),
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and
∣

∣

∣

∫

RN

gdiv(σ∇u)dx
∣

∣

∣
≤ ‖g‖L2(RN )

(

∫

RN

|div(σ∇u)|2dx
)1/2

≤
1

4
‖g‖2L2(RN ) + ‖div(σ∇u)‖2L2(RN ),

it follows from (3.5) that

(3.6)

d

dt

(

∫

RN

σ(x)|∇u|2dx+ (λ− µ)

∫

RN

|u|2dx
)

≤ C
(

∫

RN

σ(x)|∇u|2dx+ (λ− µ)

∫

RN

|u|2dx
)

+ C̃‖g‖2L2(RN ).

From (3.4) and (3.6), applying the uniform Gronwall inequality, we deduce that

‖u(t)‖H1

0
(RN ,σ) ≤ ρ for all t ≥ t0 + 1,

where ρ = ρ(λ, µ, ‖g‖L2(RN )). This implies the desired result. �

We now give tail-estimates of the solutions.

Lemma 3.2. Suppose (H∞) − (F) − (G) hold. Then for any η > 0 and any

bounded subset B ⊂ L2(RN ), there exist T = T (η,B) > 0 and K = K(η,B) > 0
such that for all t ≥ T and k ≥ K,

∫

|x|≥k

|u(x, t)|2dx ≤ η,

where u is the weak solution of (1.1) subject to the initial condition u(0) =
u0 ∈ B.

Proof. We use a cut-off technique to establish the estimates on the tails of
solutions. Let θ be a smooth function satisfying 0 ≤ θ(s) ≤ 1 for s ∈ R

+, and

θ(s) = 0 for 0 ≤ s ≤ 1; θ(s) = 1 for s ≥ 2.

Then there exists a constant C such that |θ′(s)| ≤ C for all s ∈ R
+. Taking

the inner product of (1.1) with θ( |x|
2

k2 )u in L2(RN ) and using hypothesis (F),
we get

(3.7)

1

2

d

dt

∫

RN

θ(
|x|2

k2
)|u|2dx −

∫

RN

θ(
|x|2

k2
)udiv(σ(x)∇u)dx

+ (λ− µ)

∫

RN

θ(
|x|2

k2
)|u|2dx

≤

∫

RN

θ(
|x|2

k2
)g(x)u(x, t)dx.
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We estimate the right-hand side of (3.7) as follows

(3.8)

∫

RN

θ(
|x|2

k2
)g(x)u(x, t)dx

=

∫

|x|≥k

θ(
|x|2

k2
)g(x)u(x, t)dx

≤
λ− µ

2

∫

|x|≥k

θ2(
|x|2

k2
)|u|2dx+

1

2(λ− µ)

∫

|x|≥k

|g(x)|2dx

≤
λ− µ

2

∫

RN

θ2(
|x|2

k2
)|u|2dx+

1

2(λ− µ)

∫

|x|≥k

|g(x)|2dx.

For the second term on the left-hand side of (3.7), by integrating by parts, we
find that

(3.9)

−

∫

RN

θ(
|x|2

k2
)udiv(σ(x)∇u)dx

=

∫

RN

θ(
|x|2

k2
)σ(x)|∇u|2dx+

∫

RN

θ′(
|x|2

k2
)(
2x

k2
· σ(x)∇u)udx

≥

∫

k≤|x|≤
√
2k

θ′(
|x|2

k2
)(
2x

k2
· σ(x)∇u)udx.

It follows from (3.7)-(3.9) that

(3.10)

d

dt

∫

RN

θ(
|x|2

k2
)|u|2dx+ (λ− µ)

∫

RN

θ(
|x|2

k2
)|u|2dx

≤
1

λ− µ

∫

|x|≥k

|g(x)|2dx+ 2

∫

k≤|x|≤
√
2k

|θ′(
|x|2

k2
)|
2|x|

k2
σ(x)|∇u||u|dx.

We have

(3.11)

∫

k≤|x|≤
√
2k

|θ′(
|x|2

k2
)|
2|x|

k2
σ(x)|∇u||u|dx

≤
C

k

∫

k≤|x|≤
√
2k

σ(x)|∇u||u|dx

≤
C

k

(

∫

k≤|x|≤
√
2k

σ(x)|u|2dx
)1/2(

∫

k≤|x|≤
√
2k

σ(x)|∇u|2dx
)1/2

,

where C is independent of k. We now estimate the term
∫

k≤|x|≤
√
2k

σ(x)|u|2dx.

Case 1: σ satisfies condition i) in (H∞). We have for all k ≥ K0,
∫

k≤|x|≤
√
2k

σ(x)|u|2dx ≤ C

∫

k≤|x|≤
√
2k

|u|2dx.
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Case 2: σ satisfies condition ii) in (H∞). By Hölder’s inequality, we obtain
∫

k≤|x|≤
√
2k

σ(x)|u|2dx ≤
(

∫

k≤|x|≤
√
2k

σ(x)
N

2−α dx
)

2−α

N

(

∫

k≤|x|≤
√
2k

|u|2
∗
αdx

)
1

2∗
α

≤ C
(

∫

k≤|x|≤
√
2k

|u|2
∗
αdx

)
1

2∗
α .

In both these cases, since D1
0(Ω, σ) ⊂ Lp(Ω) for all p ∈ [1, 2∗α] when Ω is a

bounded domain (see [7]), we have for all t ≥ T , with T is given in Lemma 3.1,
∫

k≤|x|≤
√
2k

|θ′(
|x|2

k2
)|
2|x|

k2
σ(x)|∇u(t)||u(t)|dx ≤

C(ρ)

k
,

where we have used the fact that ‖u(t)‖H1

0
(RN ,σ) ≤ ρ for all t ≥ T . Thus, from

(3.10) we have

(3.12)

d

dt

∫

RN

θ(
|x|2

k2
)|u|2dx+ (λ− µ)

∫

RN

θ(
|x|2

k2
)|u|2dx

≤
1

(λ− µ)

∫

|x|≥k

|g(x)|2dx+
C(ρ)

k
.

Multiplying (3.12) by e(λ−µ)t and integrating over (T, t), after some simple
computations, we obtain

(3.13)

∫

RN

θ(
|x|2

k2
)|u(t)|2dx

≤ e−(λ−µ)t‖u(T )‖2L2(RN ) +
1

(λ − µ)2

∫

|x|≥k

|g(x)|2dx+
C(ρ)

k
.

For given η > 0, there exists T1 = T1(η) > 0 such that for all t ≥ T1,

(3.14) e−(λ−µ)t‖u(T )‖2L2(RN ) ≤
η

3
.

Since g ∈ L2(RN ), there is K2 = K2(η) > K1 such that for all k ≥ K2,

(3.15)
1

(λ− µ)2

∫

|x|≥k

|g(x)|2dx ≤
η

3
.

For the last term on the right-hand side of (3.13), there is K3 = K3(η) > K2

such that for all k ≥ K3,

(3.16)
C(ρ)

k
≤

η

3
.

Let T0 = max{T, T1}. Then by (3.13) - (3.16) we find that for all k ≥ K3 and
t ≥ T0,

∫

RN

θ(
|x|2

k2
)|u(t)|2dx ≤ η,
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and hence for all k ≥ K3 and t ≥ T0,
∫

|x|≥
√
2k

|u(t)|2dx ≤

∫

RN

θ(
|x|2

k2
)|u(t)|2dx ≤ η.

This completes the proof. �

We are now ready to show the asymptotic compactness of S(t) in L2(RN ).

Lemma 3.3. Suppose (H∞) - (F) - (G) hold. Then S(t) is asymptotically

compact in L2(RN ), that is, for any bounded sequence {u0n}
∞
n=1 ⊂ L2(RN ) and

tn ≥ 0, tn → ∞, {S(tn)u0n}
∞
n=1 has a convergent subsequence with respect to

the topology of L2(RN ).

Proof. We use the uniform estimates on the tails of solutions to establish the
precompactness of {un(tn) := S(tn)u0n}, that is, we prove that for every η > 0,
the sequence un(tn) has a finite covering of balls of radii less than η. Given
K > 0, denote

ΩK = {x : |x| ≤ K} and Ωc
K = {x : |x| > K}.

Then by Lemma 3.2, for the given η > 0, there exist K = K(η) > 0 and
T = T (η) > 2 such that for t ≥ T ,

‖u(t)‖L2(Ωc

K
) ≤

η

4
.

Since tn → ∞, there is N1 = N1(η) > 0 such that tn ≥ T for all n ≥ N1, and
hence we obtain that, for all n ≥ N1,

(3.17) ‖un(tn)‖L2(Ωc

K
) ≤

η

4
.

Let ζ(·) ∈ C∞(RN ) be a function such that 0 ≤ ζ(s) ≤ 1 for any s ≥ 0, and

ζ(s) = 1 for 0 ≤ s ≤ 1, ζ(s) = 0 for s ≥ 2.

Furthermore, define ζk(x)=ζ( |x|
2

k2 ). Then {ζKun(tn)} belongs to H1
0(Ω

√
2K , σ).

By Lemma 3.1, there exist C > 0 and N2 > 0 such that for all n ≥ N2,

‖ζKun(tn)‖H1

0
(Ω√

2K
,σ) ≤ C.

By the compactness of embedding H1
0(Ω

√
2K , σ) ≡ D1

0(Ω
√
2K , σ) →֒ L2(Ω√

2K)

(see [7]), the sequence {ζKun(tn)} is precompact in L2(Ω√
2K). This in partic-

ular implies that {un(tn)} is precompact in L2(ΩK). Therefore, for the given
η > 0, {un(tn)} has a finite covering in L2(ΩK) of balls of radii less than η,
which along with (3.17) shows that {un(tn)} has a finite covering in L2(RN )
of balls of radii less than η, and thus {un(tn)} is precompact in L2(RN ). �

We now prove the existence of a global attractor for S(t) in L2(RN ).

Theorem 3.1. Suppose (H∞) - (F) - (G) hold. Then the semigroup S(t) gen-
erated by problem (1.1) has a compact connected global attractor A in L2(RN ).
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Proof. Denote by

B =
{

u : ‖u‖L2(RN ) ≤ R
}

,

where R is the positive constant in the proof of Lemma 3.1. Noting that B is a
bounded absorbing set for S(t) in L2(RN ). In addition, S(t) is asymptotically
compact in L2(RN ) since Lemma 3.3. Thus, the existence of a global attractor
in L2(RN ) for S(t) follows immediately. �

4. Existence of a global attractor in H1

0
(RN , σ)

In this section, we assume that the nonlinearity f satisfies the following
condition:

(F’) f : R → R is a C1-function satisfying (F) and

F (u) ≥ −
µ

2
u2, µ < λ,

where F (u) =
∫ u

0
f(s)ds is a primitive of f .

Hence it is easy to check that |F (u)| ≤ Cu2 for all u ∈ R.

We now derive uniform estimates of the derivatives of solutions in time.

Lemma 4.1. Suppose (H∞) - (F’) - (G) hold. Then for every bounded subset

B in L2(RN ), there exists a constant T = T (B) > 0 such that,

‖ut(s)‖
2
L2(RN ) ≤ ρ1 for all u0 ∈ B, and s ≥ T,

where ut(s) =
d
dt (S(t)u0)|t=s and ρ1 is a positive constant independent of B.

Proof. By differentiating (1.1) in time and denoting v = ut, we get

∂v

∂t
− div(σ(x)∇v) + λv + f ′(u)v = 0.

Taking the inner product of this equality with v in L2(RN ), we obtain

(4.1)
1

2

d

dt
‖v‖2L2(RN ) +

∫

RN

σ(x)|∇v|2dx+ λ‖v‖2L2(RN ) +

∫

RN

f ′(u)|v|2dx = 0.

By hypothesis (F), it follows from (4.1) that

(4.2)
d

dt
‖v‖2L2(RN ) ≤ 2C‖v‖2L2(RN ).

On the other hand, multiplying (1.1) by ut(s) and integrating over R
N , we

obtain

‖ut(s)‖
2
L2(RN )+

1

2

d

ds

(

∫

RN

σ(x)|∇u(s)|2dx+λ‖u(s)‖2L2(RN )+2

∫

RN

F (u(s))dx
)

=

∫

RN

gut(s)dx ≤
1

2
‖g‖2L2(RN ) +

1

2
‖ut(s)‖

2
L2(RN ).
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Hence
(4.3)

‖ut(s)‖
2
L2(RN ) +

d

ds

(

∫

RN

σ(x)|∇u(s)|2dx+ λ‖u(s)‖2L2(RN ) + 2

∫

RN

F (u(s))dx
)

≤ ‖g‖2L2(RN ).

Integrating (4.3) from t to t+ 1 and using (F’), we obtain
∫ t+1

t

‖ut(s)‖
2
L2(RN )ds+

∫

RN

σ(x)|∇u(t + 1)|2dx+ (λ− µ)‖u(t+ 1)‖2L2(RN )

≤

∫

RN

σ(x)|∇u(t)|2dx+ λ‖u(t)‖2L2(RN ) + 2

∫

RN

F (u(t))dx + ‖g‖2L2(RN )

≤ C
(

∫

RN

(

σ(x)|∇u(t)|2 + |u(t)|2
)

dx
)

+ ‖g‖2L2(RN ).

Hence

(4.4)

∫ t+1

t

‖ut(s)‖
2
L2(RN )ds ≤ C(ρ, ‖g‖2L2(RN ))

as t large enough, where ρ is the constant in Lemma 3.1. Combining (4.2) with
(4.4), and using the uniform Gronwall inequality, we have

‖ut(s)‖
2
L2(RN ) ≤ C(ρ, ‖g‖2L2(RN )).

The proof is complete. �

Lemma 4.2. Suppose (H∞) - (F’) - (G) hold. Then the semigroup S(t) is

asymptotically compact in H1
0(R

N , σ).

Proof. LetB be a bounded subset in L2(RN ), we will show that for any {u0n} ⊂
B and tn → ∞, {un(tn) := S(tn)u0n} is precompact in H1

0(R
N , σ). By Lemma

3.3, we can assume that {un(tn)} is a Cauchy sequence in L2(RN ). For any
n,m ≥ 1, it follows from (1.1) that

(4.5)

− div(σ(x)∇(un(tn)− um(tm))) + λ(un(tn)− um(tm))

+ f(un(tn))− f(um(tm)) = −
d

dt
un(tn) +

d

dt
um(tm).

Multiplying (4.5) by un(tn)− um(tm) and using (F) we get

(4.6)

∫

RN

σ(x)|∇un(tn)− um(tm)|2dx+ λ‖un(tn)− um(tm)‖2L2(RN )

≤ ‖unt(tn)− umt(tm)‖L2(RN )‖un(tn)− um(tm)‖L2(RN )

+ C‖un(tn)− um(tm)‖2L2(RN ).

By Lemma 4.1, for any bounded subset B in L2(RN ), there exists T = T (B)
such that for all tn ≥ T ,

‖unt(tn)‖L2(RN ) ≤ C.
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Combining this with (4.6), it implies that, for all n,m ≥ N ,
∫

RN

σ(x)|∇un(tn)− um(tm)|2dx+ λ‖un(tn)− um(tm)‖2L2(RN )

≤ C‖un(tn)− um(tm)‖L2(RN ) + C‖un(tn)− um(tm)‖2L2(RN ).

Hence, by Lemma 3.3, we deduce that {un(tn)} is a Cauchy sequence in
H1

0(R
N , σ). �

Theorem 4.1. Suppose (H∞) - (F’) - (G) hold. Then the semigroup S(t)
generated by problem (1.1) has a compact connected global attractor AH1

0

in

H1
0(R

N , σ).

Proof. By Lemma 3.1, there exists a bounded absorbing set for S(t) in H1
0(R

N ,

σ). In addition, S(t) is asymptotically compact in H1
0(R

N , σ) since Lemma 4.2.
Thus, there exists a global attractor for S(t) in H1

0(R
N , σ). �

Remark 4.1. The global attractors AL2 and AH1

0

obtained in Theorems 3.1 and
4.1 are of course the same object and will be denoted by A. In particular, A
is a compact connected set in H1

0(R
N , σ).
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