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SINGULAR SOLUTIONS OF
SEMILINEAR PARABOLIC EQUATIONS

(GEONGSEON BAEK AND MINKYU KWAK

1. Introduction

In this paper we discuss the existence and uniqueness of singular
solutions for equations of the form

(F) Ut = Ugy — |u|q_1ur — |u|P_1u, p,g>1,

in the domain @ = {(z,t) : € R,t > 0}. This equation represents a
mode] of diffusion-convection with absorption.

Following Escobedo and Zuazua (1991), it is easy to see that given
initial data ugp € L'(R) there exists a unique solution u(z,t) of (F) such
that u € C((0,00); WHI(R)) N C*((0,00); L'(R)) for every | € (1,00).
Moreover, physical considerations lead us to assume that uo(z) > 0,
in which case u(a,t) is positive unless u = 0 in @ from the Maximum
Principle and becomes C* smooth in @ from standard regularity the-
ory.

The properties of solutions are usually explained in terms of the
properties of special solutions such as singular ones. A singular solution
(it is also called a fundamental solution or a source-type solution) is
the one corresponding to initial data a Dirac mass, Mé(z) with M > 0,
namely a solution u(x,?) such that u(x,t) satisfies (F) in the classical
sense and u(z,t) — Mé(a) as t — 0 in the sense of measures, namely

t—{

lim/u(;r,t)qﬁ(r)dw = M),

for all continuous, bounded functions ¢ on R.
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Brezis and Friedman ( 1983) showed that the equation u; = uyy — uP
admits the unique singular solution only for 1 < p < 3. Moreover
Escobedo, Vazquez and Zuazua (1991) considered equations of the type

(E) Uy = Upy — w7 u,

and proved its existence and uniqueness for every ¢ > 1. But it seems
to us that no results are available for equations of mixed type.

As a first attempt to this direction, combining those two results we
here show that the unique singular solution of (F) exists if and only if
1 <p<3or3<p<qg+1. This reveals some interactions between
absorption and convection for the existence of singular solution.

For the proof of existence and uniqueness we mainly use the com-
parison with the equation (E) and for nonexistence following [1], we
take a function of the form n(k(|z]*" + t)) as a test function to lead
a contradiction, see section 5 for details. This method and the main
estimates (see Lemma 2) turns out to be very useful and concise and
applicable to wide class of diffusion equations. This will be discussed
in other space.

2. Preliminary Estimates

We first recall some basic estimates which will be used. Any solution
u(z,t) of (F) as mentioned in introduction satisfies

d

1 =

(1) dt

Moreover for any two solutions u, v; by the standard technique of mul-

tiplying by a sign function and integrating we get the contraction prin-

ciple

(2) Ju(-t) — v )o@ < |lul-,7) = v(, ) Lm),

forany t > 7 > 0.
For the equation (E), it is shown in [3] (see estimate (2.32) in that
paper) that

(3) 0 <w(z,t) < C(M) (™2 440972y vyt >0,

where C(M) is a constant depending only on M = |ue(x)|z:(r). This
estimate is not sharp and for 1 < ¢ < 2, Escobedo, Vazquez and Zuazua
obtained a better bound for u:

u(x,t)dz < 0.
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LEMMA 1. ([2], Lemma 1.2) For 1 < ¢ < 2 we have

(4) 0 < ulz,1) < ((—J%Ml—)t) "

where M is defined above.

The main estimate in this paper is a bound for ¢ > 2. Accidently
we obtained a similar estimate.

LEMMA 2. For ¢ > 2 we have

1/q
(5) 0 < u(a,t) < 4D/ (?‘?) '

Proof. We define the new variable z = u9~! In terms of z, equation

(E) reads

22
(6) Zt+ 22, "/B?z = Zzzx

where 8 = (2 —¢q)/(q — 1).
Let v(z,t) be a solution of the Burgers’ equation

Uy + UV = Uy

with initial data v(z,0) = u?"!(a,s), s > 0. For ¢ > 2, 8 < 0 and
v(z,t) is a supersolution of (6) and a comparison principle implies that

W Nt 4 s) <ol t), t>0.
Moreover from Lemma 1 we obtain

2f'u(:1:,0)d.1:)1/2

0§v(:v,t)§< ;

and

2 f ui™(z, s)da*) 1/2

(7 0<ui Nz, t+s)< ( "
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We also have
/Uq_l(xy S)d:E S ,uq_2(,’1,', S)ILoo(m) /U(I, S)dﬂf — A[|U($,S)|%;2(m)
We now let s = ¢t + ¢, with € > 0 and define

w(t) = sup Tl/q|u(a?,7' + €)1 (m),
0<r<t

then, for t > 0, 0 < w(?) < oo and

0 <w(t)?! <w(2)' < 2(11-1)/<I(2M)1/2w(t)(q-Q)/Z'
Therefore we have
(8) w(t) < 22D/ apnte wr s

This implies that 0 < t!/9u(z,t +¢€) < 4”"])/‘12(2]W)‘/‘7 and (5) in the
limit ase — 0. O

3. Existence

We denote by Epr(x,t) the singular solution for (E) corresponding
to initial data Mé(z). We note that [ Ep(z,t)dz = M for all ¢t > 0.
We also denote ¢* = max{q, 2} and we prove

THEOREM 3. Forl < p < ¢*+1, there exists a fundamental solution
of (F) for every M > 0.

Proof. Let us define 1,(z,t) as the solution of (F) for t > 1/n with
initial data u,(z,1/n) = Epm(2,1/n) at ¢+ = 1/n. By the Maximum
Principle (see [5] for example) we know that

Un(z,t) < Ep(a,t) Vt>1/n and x€R.

Since %n(z,t) is monotone decreasing as n — oo, its limit

w(e,t) = lim un(x,t)
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exists and u(z,t) is a weak solution of (F) in Q. By a standard reg-
ularity result, we may conclude that u(z,t) is a classical solution in

Q.
It is clear that u(z,t) < Ep(z,t) in Q and u(z,0) = 0 for every
z # 0. Moreover, for 1/n <t <1

(9) I(t) = I/ (Un(x,t) — Up(z,1/n))dz

¢
:/ /ﬂﬁ(m,s)dmds
1/n JR
t
5/ /Eﬂ,(ar,s)dwd&
1/n JR
¢

S/ M sup Eg;l(-,.s)d.s
1/n i3

t

SC’/ s~P=1/9"4s  (from (3) and (5))
1/n

< b7 $1=p+a")/a"

T l-ptg

Note that 1 — p + ¢* > 0.

Since [dn(z,1/n)de = M by the definition of @,, we conclude
that @,(x,t)dz will be close to M for sufficiently small ¢ uniformly
in 7 and in the limit the same will be true for u. Consequently
lim;_.¢ f u(z,t)dz = M. For every continuous bounded function ¢,

0< /‘u(;r,t)[é('a:) — $(0))4dz < /EM(”ct)[q)(T) — ¢(0)]+da

and since the second integral tends to 0 as t — 0, the same will be true
for the first integral. Similarly

Hm / u(x,t)[¢(x) — ¢(0))dx =0
and writing

¢(z) = 6(0) + [#(x) — ¢(0)]+ — [6(x) - ¢(0)]-,
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we finally obtain

(10) }g%/u(l,t)¢(m)dr = M¢(0).
0

4. Uniqueness

For the proof of uniqueness, we prepare the following lemmas.

LEMMA 4. Let u(x,t) be a fundamental solution of (F), then

(11) /u(m,t)dz —M=- /ot/up(x,s)dmzs.

In particular lim;_o [u(x,t)dz = M and Ju(x,t)de < M for every
t>0.

Proof. An integration gives

/u(:v,t)dx - /u(m,‘r)d:r - —/rt/u”(:c,s)d:nds

for t > 7 > 0. By definition lim, .o [ u(z,7)dz = M and (11) holds.
The last inequality also holds obviously. O

LEMMA 5. Let u(z,t) be a fundamental solution of (F'), then u(z,t) <
Epy(z,t) in Q.

Proof. Let wy(2,t) be a solution of

Wy = Wae — (W/q)y, w(z,1/n)=u(z,1/n)

for t > 1/n. Similarly to the proof of Theorem 3, one can see that w,
is increasing and u(z,t) < w,(z,t) for t > 1/n. Let w = lim,_ o, wy,,
then u(z,t) < w(z,t) for t > 0 and w(z,t) is a weak solution of (E)
and also becomes a classical solution in Q.

We now note that

/wn(rc,t)da: = ‘/wn('m',l/n)(lrc = /u(':z:,l/n)d:c <M
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for t > 1/n. From the Monotone Convergence Theorem, we obtain

/w(:r,t)dm <M.

Since [ u(z,t)dz goes to M as ¢ tends to 0, the same will be true for
J w(z,t)dz. We now apply the same argument as the proof of Theorem
3 to conclude that

(12) %iino/w(m,t)d%ar)dm = M¢(0)

for every continuous bounded function ¢. Thus w(z,t) is a fundamental
solution of (E) and the completion of the proof of Lemma follows from
the uniqueness of the fundamental solution of (E). But here we take
Y(z) = |d|re — [#(z) — #(0)]4 as a test function. Then

0< [ e ti(e)da
< /w(-?f,f)u’»’(af)drv < M|é|pe.
Since limy_g [ u(z,t)i(z)dz = M|$| 1, we obtain
(13) ting [ e 1(612) - (O] e = 0.
Similarly we have
fig [ w(e,)ip(e) ~ 4(0)] de = 0

and (12). O
We now prove the uniqueness.

THEOREM 6. There exists at most one fundamental solution of (F)
for each M > 0.
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Proof. Let u,v be fundamental solutions of (F) with initial data
Mé(z). Then from the contraction principle (2) and Lemma 4 we have

[0 = v(e oo < [ fute,1/m) = ofa,1/mids
< /(EM(x, 1/n) = u(z,1/n))de
+/(EM(J;,1/71)—v(x,l/n))d:c
— oM - /u(m,l/n)dr - /v(m,l/n)dm,

which tends to 0 as n — oo from lemma 4. Hence u = v in ¢. O

5. Nonexistence

We here consider the case p > ¢* + 1. Recall that ¢* = max{¢,2}.
Let u(z,t) be a fundamental solution of (F') with initial data A ¢, then
from Lemma 4 we see that u(z,t) is L”-integrable over Q.

Following [1], we prove that

THEOREM 7. There is no fundamental solution of (F).

Proof. Let n(s) be any smooth non-decreasing function on R such

that
1 for s>1
n(s) = {0 for s <0,

and set ni(s) = n(ks).
If we define ¢y (x,t) = 7];;(];1'[‘1‘ + t), then we know that

T T T o0 T
/ /ut¢k “/ / u¢k,1;:v _/ / —¢k,x +/ /UPQSk =0
e JR e JR e JR 4 e JR

for 0 < e < T. We first have

/f/mumdxdt: Alt(m,T‘)¢k(x,T)dl=—Au(x,e)qsk(‘c,e)dx_/f/muqsk,,
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and in the limit as e — 0 we get

(13) /;T/upm— < /;T/ucﬁk,t+/DT/U¢k,u+/OT/uq/(1¢k.z-

We claim that all the integral in the right tends to 0 as & — oo. It
then follows that fOT JuPdzdt =0 and u = 0 in Q. We have

T
[ [uondscr[[
0 Dy
T -
/ /ucpk,rar S CkQ/(I // u,
0 J Dy
Ty .
/ /——m,x < CRe // at,
0] q S Dy

where Dy = {(z,t);t >0, 0 < |z|? +t < 1/k}. By Holder inequality

we finally get:
1/p
Sz () o
Dk DL-
q/p
s ()" ot
Dy Dy

Now note that |Dy| < 2k=0+1/9) 2/¢* <1 and

1 1 —q¢* =1
() e
q P pq

_1:_<1+_1_*> (1_2) _ _»le -q)+£)—q ~1 o
q q p Pq

Our claim follows from the fact that fka u? 5 0ask ooc. O
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