• Title/Summary/Keyword: semiconductor scheduling

Search Result 67, Processing Time 0.029 seconds

Advanced Planning and Scheduling (APS) System Implementation for Semiconductor Manufacturing : A Case at Korean Semiconductor Manufacturing Company (반도체 제조를 위한 고도화 계획 및 일정 관리 시스템 구축 : 국내 반도체 업체 사례)

  • Lim, Seung-Kil;Shin, Yong-Ho
    • IE interfaces
    • /
    • v.20 no.3
    • /
    • pp.277-287
    • /
    • 2007
  • Semiconductor manufacturing is one of the most complex and capital-intensive processes composed of several hundreds of operations. In today’s competitive business environments, it is more important than ever before to manage manufacturing process effectively to achieve better performances in terms of customer satisfaction and productivity than those of competitors. So, many semiconductor manufacturing companies implement advanced planning and scheduling (APS) system as a management tool for the complex semiconductor manufacturing process. In this study, we explain roles of production planning and scheduling in semiconductor manufacturing and principal factors that make the production planning and scheduling more difficult. We describe the APS system implementation project at Korean semiconductor manufacturing company in terms of key issues with realistic samples.

Scheduling of Wafer Burn-In Test Process Using Simulation and Reinforcement Learning (강화학습과 시뮬레이션을 활용한 Wafer Burn-in Test 공정 스케줄링)

  • Soon-Woo Kwon;Won-Jun Oh;Seong-Hyeok Ahn;Hyun-Seo Lee;Hoyeoul Lee; In-Beom Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.107-113
    • /
    • 2024
  • Scheduling of semiconductor test facilities has been crucial since effective scheduling contributes to the profits of semiconductor enterprises and enhances the quality of semiconductor products. This study aims to solve the scheduling problems for the wafer burn-in test facilities of the semiconductor back-end process by utilizing simulation and deep reinforcement learning-based methods. To solve the scheduling problem considered in this study. we propose novel state, action, and reward designs based on the Markov decision process. Furthermore, a neural network is trained by employing the recent RL-based method, named proximal policy optimization. Experimental results showed that the proposed method outperformed traditional heuristic-based scheduling techniques, achieving a higher due date compliance rate of jobs in terms of total job completion time.

  • PDF

On-Line Scheduling Method for Track Systems in Semiconductor Fabrication (반도체 제조 트랙장비의 온라인 스케줄링 방법)

  • Yun, Hyeon-Jung;Lee, Du-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.443-451
    • /
    • 2001
  • This paper addresses an on-line scheduling method for track systems in semiconductor fabrication. A track system is a clustered equipment performing photolithography process in semiconductor fabrication. Trends toward high automation and flexibility in the track systems accelerate the necessity of the intelligent controller that can guarantee reliability and optimize productivity of the track systems. This paper proposes an-efficient on-line scheduling method that can avoid deadlock inherent to track systems and optimize the productivity. We employ two procedures for the on-line scheduling. First, we define potential deadlock set to apply deadlock avoidance policy efficiently. After introducing the potential deadlock set, we propose a deadlock avoidance policy using an on-line Gantt chart, which can generate optimal near-optimal schedule without deadlock. The proposed on-line scheduling method is shown to be efficient in handling deadlock inherent to the track systems through simulation.

A New Scheduling Algorithm for Semiconductor Manufacturing Process (반도체 제조공정을 위한 새로운 생산일정 알고리즘)

  • 복진광;이승권;문성득;박선원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.811-821
    • /
    • 1998
  • A new scheduling algorithm for large scale semiconductor processes is addressed. The difficulties of scheduling for semiconductor fabrication processes are mainly due from repeating production of wafers that experience reentrant flows. Sequence branch algorithm (SBA) is proposed for large real scheduling problems when all processing times are deterministic. The SBA is based on the reachability graph of Petri net of which the several defects such as memory consumption and system deadlock are complemented. Though the SBA shows the solution deviating a little from the optimal solution of mixed integer programming, it is adjustable for large size scheduling problems. Especially, it shows a potential that is capable of handling commercial size problems that are intractable with mathematical programming.

  • PDF

Agent-Based Scheduling for Semiconductor Wafer Fabrication Facilities (반도체 웨이퍼 팹의 에이전트 기반 스케쥴링 방법)

  • Yoon, Hyun Joong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1463-1471
    • /
    • 2005
  • This paper proposes an agent-based scheduling method fur semiconductor wafer fabrication facilities with hard inter-operation temporal constraints. The scheduling problem is to find the feasible schedules that guarantee both logical and temporal correctness. A proposed multi-agent based architecture is composed of scheduling agents, workcell agents, and machine agents. A scheduling agent computes optimal schedules through bidding mechanisms with a subset or entire set of the workcell agents. A dynamic planning-based approach is adopted for the scheduling mechanism so that the dynamic behaviors such as aperiodic job arrivals and reconfiguration can be taken into consideration.

A Real-Time Scheduling System Architecture in Next Generation Wafer Production System (차세대 웨이퍼 생산시스템에서의 실시간 스케줄링 시스템 아키텍처)

  • Lee, Hyun;Hur, Sun;Park, You-Jin;Lee, Gun-Woo;Cho, Yong-Ju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.184-191
    • /
    • 2010
  • In the environment of 450mm wafers production known as the next-generation semiconductor production process, one of the most significant features is the full automation over the whole manufacturing processes involved. The full automation system for 450mm wafer production will minimize the human workers' involvement in the manufacturing process as much as possible. In addition, since the importance of an individual wafer processing increases noticeably, it is necessary to develop more robust scheduling systems in the whole manufacturing process than so ever. The scheduling systems for the next-generation semiconductor production processes also should be capable of monitoring individual wafers and collecting useful data on them in real time. Based on the information gathered from these processes, the system should finally have a real-time scheduling functions controlling whole the semiconductor manufacturing processes. In this study, preliminary investigations on the requirements and needed functions for constructing the real time scheduling system and transforming manufacturing environments for 300mm wafers to those of 400mm are conducted and through which the next generation semiconductor processes for efficient scheduling in a clustered production system architecture of the scheduler is proposed. Our scheduling architecture is composed of the modules for real-time scheduling, the clustered production type supporting, the optimal scheduling and so on. The specifications of modules to define the major required functions, capabilities, and the relationship between them are presented.

Research Trends of Scheduling Techniques for Domestic Major Industries (국내 주요 산업별 스케줄링 기법의 연구동향)

  • Lee, Jae-yong;Shin, Moonsoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.1
    • /
    • pp.59-69
    • /
    • 2018
  • The up-to-date business environment for Korean manufacturers is very complex and rapidly changing. Especially, the companies have faced with various changes derived from small quantity batch production, diversification of customer demands, and short life cycles of products. Consequently, the Korean manufacturing companies are in need of more efficient production planning and scheduling techniques. In this paper, the research trend of scheduling techniques is investigated to provide relevant information to researchers in this field. Furthermore, some implications for future researches are presented regarding literatures published in Korea over the last 10 years. This paper presents an entire investigation into Korean research works on scheduling (2,569 papers) that are published from 2007 to 2016. Especially, detailed analysis was carried out in the following three industry : 1) semiconductor, 2) shipbuilding and 3) automobile. In this paper, approaches to scheduling presented in the literature are categorized into the following three categories : 1) application, 2) algorithm, and 3) simulation modeling. First, in the semiconductor industry, scheduling techniques related to semiconductor cleaning processes, photolithography processes, chemical processes, transport and transport equipment have been found to be dominant. Second, the shipbuilding industry is focused on assembly processes, transporter, crane and various existing production management system. On the other hand, the scheduling research of the automobile industry is mainly focused on the vehicle movement routing and procurement supply-chain planning algorithm in terms of logistics. The conclusion of this study are expected to provide many implications for various types of academic and practical follow-up studies related to scheduling in consideration of main characteristics of semiconductor, shipbuilding and automobile industries.

A Scheduling Algorithm for Workstations with Limited Waiting Time Constraints in a Semiconductor Wafer Fabrication Facility (대기시간 제약을 고려한 반도체 웨이퍼 생산공정의 스케쥴링 알고리듬)

  • Joo, Byung-Jun;Kim, Yeong-Dae;Bang, June-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.4
    • /
    • pp.266-279
    • /
    • 2009
  • This paper focuses on the problem of scheduling wafer lots with limited waiting times between pairs of consecutive operations in a semiconductor wafer fabrication facility. For the problem of minimizing total tardiness of orders, we develop a priority rule based scheduling method in which a scheduling decision for an operation is made based on the states of workstations for the operation and its successor or predecessor operation. To evaluate performance of the suggested scheduling method, we perform simulation experiments using real factory data as well as randomly generated data sets. Results of the simulation experiments show that the suggested method performs better than a method suggested in other research and the one that has been used in practice.

A Study on Multi-criteria Trade-off Structure between Throughput and WIP Balancing for Semiconductor Scheduling (반도체/LCD 스케줄링의 다목적기준 간 트레이드 오프 구조에 대한 연구)

  • Kim, Kwanghee;Chung, Jaewoo
    • Korean Management Science Review
    • /
    • v.32 no.4
    • /
    • pp.69-80
    • /
    • 2015
  • The semiconductor industry is one of those in which the most intricate processes are involved and there are many critical factors that are controlled with precision in those processes. Naturally production scheduling in the semiconductor industry is also very complex and studied by the industry and academia for many years; however, still there are many issues left unclear in the problem. This paper proposes an multi-objective optimization-based scheduling method for semiconductor fabrication(fab). Two main objectives are throughput maximization and meeting target production quantities. The first objective aims to reduce production cost, especially the fixed cost incurred by a large investment constructing a new fab facility. The other is meeting customer orders on time and also helps a fab maintain stable throughput through controlled WIP balancing in the long run. The paper shows a trade-off structure between the two objectives through experimental studies, which provides industrial practitioners with useful references.

Semiconductor Backend Scheduling Using the Backward Pegging (Backward Pegging을 이용한 반도체 후공정 스케줄링)

  • Ahn, Euikoog;Seo, Jeongchul;Park, Sang Chul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.402-409
    • /
    • 2014
  • Presented in this paper is a scheduling method for semiconductor backend process considering the backward pegging. It is known that the pegging for frontend is a process of labeling WIP lots for target order which is specified by due date, quantity, and product specifications including customer information. As a result, it gives the release plan to meet the out target considering current WIP. However, the semiconductor backend process includes the multichip package and test operation for the product bin portion. Therefore, backward pegging method for frontend can't give the release plan for backend process in semiconductor. In this paper, we suggest backward pegging method considering the characteristics of multichip package and test operation in backend process. And we describe the backward pegging problem using the examples.