• 제목/요약/키워드: semi-symmetric space

검색결과 38건 처리시간 0.021초

HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN SPACE FORM WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Jin, Dae Ho
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제21권1호
    • /
    • pp.39-50
    • /
    • 2014
  • In this paper, we study screen quasi-conformal irrotational half lightlike submanifolds M of a semi-Riemannian space form $\tilde{M}(c)$ admitting a semi-symmetric non-metric connection, whose structure vector field ${\zeta}$ is tangent to M. The main result is a classification theorem for such Einstein half lightlike submanifolds of a Lorentzian space form admitting a semi-symmetric non-metric connection.

Ricci Semi-Symmetric Lightlike Hypersurfaces of an Indefinite Cosymplectic Space Form

  • Gupta, Ram Shankar
    • Kyungpook Mathematical Journal
    • /
    • 제53권4호
    • /
    • pp.593-602
    • /
    • 2013
  • This paper is devoted to study Ricci semi-symmetric lightlike hypersurfaces of an indefinite cosymplectic space form with structure vector field tangent to hypersurface. The condition for Ricci tensor of lightlike hypersurface of indefinite cosymplectic space form to be semi-symmetric and parallel have been obtained. An example of non-totally geodesic Ricci semi-symmetric lightlike hypersurface in $R^7_2$ have been given.

SEMI-RIEMANNIAN SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Yucesan, Ahmet;Yasar, Erol
    • 대한수학회논문집
    • /
    • 제27권4호
    • /
    • pp.781-793
    • /
    • 2012
  • We study some properties of a semi-Riemannian submanifold of a semi-Riemannian manifold with a semi-symmetric non-metric connection. Then, we prove that the Ricci tensor of a semi-Riemannian submanifold of a semi-Riemannian space form admitting a semi-symmetric non-metric connection is symmetric but is not parallel. Last, we give the conditions under which a totally umbilical semi-Riemannian submanifold with a semi-symmetric non-metric connection is projectively flat.

GEOMETRY OF HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN SPACE FORM WITH A SEMI-SYMMETRIC METRIC CONNECTION

  • Jin, Dae Ho
    • 충청수학회지
    • /
    • 제24권4호
    • /
    • pp.769-781
    • /
    • 2011
  • We study the geometry of half lightlike sbmanifolds M of a semi-Riemannian space form $\tilde{M}(c)$ admitting a semi-symmetric metric connection subject to the conditions: (1) The screen distribution S(TM) is totally umbilical (geodesic) and (2) the co-screen distribution $S(TM^{\bot})$ of M is a conformal Killing one.

EQUIVALENCE CONDITIONS OF SYMMETRY PROPERTIES IN LIGHTLIKE HYPERSURFACES OF INDEFINITE KENMOTSU MANIFOLDS

  • Lungiambudila, Oscar;Massamba, Fortune;Tossa, Joel
    • 대한수학회보
    • /
    • 제53권4호
    • /
    • pp.1259-1280
    • /
    • 2016
  • The paper deals with lightlike hypersurfaces which are locally symmetric, semi-symmetric and Ricci semi-symmetric in indefinite Kenmotsu manifold having constant $\bar{\phi}$-holomorphic sectional curvature c. We obtain that these hypersurfaces are totally goedesic under certain conditions. The non-existence condition of locally symmetric lightlike hyper-surfaces are given. Some Theorems of specific lightlike hypersurfaces are established. We prove, under a certain condition, that in lightlike hyper-surfaces of an indefinite Kenmotsu space form, tangent to the structure vector field, the parallel, semi-parallel, local symmetry, semi-symmetry and Ricci semi-symmetry notions are equivalent.

ASCREEN LIGHTLIKE HYPERSURFACES OF A SEMI-RIEMANNIAN SPACE FORM WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Jin, Dae Ho
    • 대한수학회논문집
    • /
    • 제29권2호
    • /
    • pp.311-317
    • /
    • 2014
  • We study lightlike hypersurfaces of a semi-Riemannian space form $\tilde{M}(c)$ admitting a semi-symmetric non-metric connection. First, we construct a type of lightlike hypersurfaces according to the form of the structure vector field of $\tilde{M}(c)$, which is called a ascreen lightlike hypersurface. Next, we prove a characterization theorem for such an ascreen lightlike hypersurface endow with a totally geodesic screen distribution.

NON-EXISTENCE FOR SCREEN QUASI-CONFORMAL IRROTATIONAL HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN SPACE FORM ADMITTING A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Jin, Dae Ho
    • East Asian mathematical journal
    • /
    • 제31권3호
    • /
    • pp.337-344
    • /
    • 2015
  • We study screen quasi-conformal irrotational half lightlike submanifolds M of a semi-Riemannian space form $\bar{M}$ (c) equipped with a semi-symmetric non-metric connection subject such that the structure vector field of $\bar{M}$ (c) belongs to the screen distribution S(TM). The main result is a non-existence theorem for such half lightlike submanifolds.

GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER MANIFOLD WITH A SEMI-SYMMETRIC METRIC CONNECTION

  • Lee, Jae Won;Lee, Chul Woo
    • 호남수학학술지
    • /
    • 제42권3호
    • /
    • pp.621-643
    • /
    • 2020
  • Depending on the characteristic vector filed ζ, a generic lightlike submanifold M in an indefinite Kaehler manifold ${\bar{M}}$ with a semi-symmetric metric connection has various characterizations. In this paper, when the characteristic vector filed ζ belongs to the screen distribution S(TM) of M, we provide some characterizations of (Lie-) recurrent generic lightlike submanifold M in an indefinite Kaehler manifold ${\bar{M}}$ with a semi-symmetric metric connection. Moreover, we characterize various generic lightlike submanifolds in an indefinite complex space form ${\bar{M}}$ (c) with a semi-symmetric metric connection.

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE GENERALIZED SASAKIAN SPACE FORM WITH A SYMMETRIC METRIC CONNECTION OF TYPE (ℓ, m)

  • Jin, Dae Ho
    • 대한수학회논문집
    • /
    • 제31권3호
    • /
    • pp.613-624
    • /
    • 2016
  • We define a new connection on a semi-Riemannian manifold. Its notion contains two well known notions; (1) semi-symmetric connection and (2) quarter-symmetric connection. In this paper, we study the geometry of lightlike hypersurfaces of an indefinite generalized Sasakian space form with a symmetric metric connection of type (${\ell}$, m).