GENERIC LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAHLER MANIFOLD WITH A SEMI-SYMMETRIC METRIC CONNECTION

JAE WON LEE AND CHUL WOO LEE*

Abstract. Depending on the characteristic vector filed ζ, a generic lightlike submanifold M in an indefinite Kaehler manifold \bar{M} with a semi-symmetric metric connection has various characterizations. In this paper, when the characteristic vector filed ζ belongs to the screen distribution $S(TM)$ of M, we provide some characterizations of (Lie-) recurrent generic lightlike submanifold M in an indefinite Kaehler manifold \bar{M} with a semi-symmetric metric connection. Moreover, we characterize various generic lightlike submanifolds in an indefinite complex space form $\bar{M}(c)$ with a semi-symmetric metric connection.

1. Introduction

A lightlike submanifold M of an indefinite almost complex manifold \bar{M}, with an indefinite almost complex structure J, is called generic if there exists a screen distribution $S(TM)$ of M, which is a complementary non-degenerate distribution of $Rad(TM) = TM \cap TM^\perp$ in TM, such that

\[(1.1) \quad J(S(TM)^\perp) \subset S(TM),\]

where $S(TM)^\perp$ is the orthogonal complement of $S(TM)$ in the tangent bundle TM of \bar{M} such that $TM = S(TM) \oplus_{\text{orth}} S(TM)^\perp$. The notion of generic lightlike submanifolds was introduced by Jin-Lee [9] and later, studied by several authors [2, 5, 6, 10]. Moreover, Jin [8]...
studied generic lightlike submanifolds of an indefinite Kaehler manifold with a semi-symmetric non-metric connection. Lightlike hypersurfaces of an indefinite almost complex manifold are important examples of the generic lightlike submanifold. Much of the theory of generic submanifolds will be immediately generalized in a formal way to general lightlike submanifolds.

In 1924, Friedmann-Schouten [4] introduced the idea of a semi-symmetric connection as follow: A linear connection \(\bar{\nabla} \) on a semi-Riemannian manifold \((\bar{M}, \bar{g})\) is called a semi-symmetric connection if its torsion tensor \(\bar{T} \) satisfies
\[
\bar{T}(\bar{X}, \bar{Y}) = \theta(\bar{Y})\bar{X} - \theta(\bar{X})\bar{Y},
\]
where \(\theta \) is a 1-form associated with a smooth unit vector field \(\zeta \), which is called the characteristic vector field of \(\bar{M} \), by \(\theta(\bar{X}) = \bar{g}(\bar{X}, \zeta) \). In the followings, we denote by \(\bar{X}, \bar{Y} \) and \(\bar{Z} \) the smooth vector fields on \(\bar{M} \). Moreover, if this connection is a metric one, \(\bar{\nabla} \bar{g} = 0 \), then \(\bar{\nabla} \) is called a semi-symmetric metric connection on \(\bar{M} \). The notion of a semi-symmetric metric connection on a Riemannian manifold was introduced by Yano [12].

Remark 1.1. Denote \(\bar{\nabla} \) by the Levi-Civita connection of a semi-Riemannian manifold \((\bar{M}, \bar{g})\) with respect to \(\bar{g} \). It is well known that a linear connection \(\bar{\nabla} \) on \(\bar{M} \) is a semi-symmetric metric connection if and only if it satisfies
\[
\bar{\nabla}_X \bar{Y} = \bar{\nabla}_X \bar{Y} + \theta(\bar{Y})\bar{X} - \bar{g}(\bar{X}, \bar{Y})\zeta.
\]

The object of this paper is to study generic lightlike submanifolds \(M \) of an indefinite Kaehler manifold \(\bar{M} \) with a semi-symmetric metric connection \(\bar{\nabla} \) subject to the condition that the characteristic vector field \(\zeta \) of \(\bar{M} \) belongs to our screen distribution \(S(TM) \) of \(M \). In Section 3, we provide several new results on such a generic lightlike submanifold. In Section 4, we characterize generic lightlike submanifolds of an indefinite complex space form \(\bar{M}(c) \) with a semi-symmetric metric connection subject such that \(\zeta \) belongs to \(S(TM) \).

2. Semi-symmetric metric connections

Let \(\bar{M} = (\bar{M}, \bar{g}, J) \) be an indefinite Kaehler manifold, where \(\bar{g} \) is a semi-Riemannian metric and \(J \) is an indefinite almost complex structure;
\[
J^2 \bar{X} = -\bar{X}, \quad \bar{g}(J\bar{X}, J\bar{Y}) = \bar{g}(\bar{X}, \bar{Y}), \quad (\bar{\nabla}_X J)\bar{Y} = 0.
\]
Replacing the Levi-Civita connection $\tilde{\nabla}$ by the semi-symmetric metric connection ∇, the third equation of three equations in (2.1) is reduced to

\[(2.2) \quad (\bar{\nabla}_X J)\bar{Y} = \theta(J\bar{Y})\bar{X} - \theta(\bar{Y})J\bar{X} - \bar{g}(\bar{X}, J\bar{Y})\zeta + \bar{g}(\bar{X}, \bar{Y})J\zeta.\]

Let (M, g) be an m-dimensional lightlike submanifold of an indefinite Kaehler manifold (\bar{M}, \bar{g}) of dimension $(m + n)$. Then the radical distribution $\text{Rad}(TM) = TM \cap TM^\perp$ of M is a subbundle of the tangent bundle TM and the normal bundle TM^\perp, of rank r $(1 \leq r \leq \min\{m, n\})$. In general, there exist two complementary non-degenerate distributions $S(TM)$ and $S(TM^\perp)$ of $\text{Rad}(TM)$ in TM and TM^\perp, respectively, which are called the screen distribution and the co-screen distribution of M [1], such that

\[TM = \text{Rad}(TM) \oplus_{\text{orth}} S(TM), \quad TM^\perp = \text{Rad}(TM) \oplus_{\text{orth}} S(TM^\perp),\]

where \oplus_{orth} denotes the orthogonal direct sum. Denote by $F(M)$ the algebra of smooth functions on M and by $\Gamma(E)$ the $F(M)$ module of smooth sections of a vector bundle E over M. Let X, Y, Z and W be the vector fields on M, unless otherwise specified. We use the following range of indices:

\[i, j, k, \ldots \in \{1, \ldots, r\}, \quad a, b, c, \ldots \in \{r + 1, \ldots, n\}.\]

Let $\text{tr}(TM)$ and $\text{ltr}(TM)$ be complementary vector bundles to TM in $TM|_M$ and TM^\perp in $S(TM)^\perp$, respectively, and let $\{N_1, \ldots, N_r\}$ be a null basis of $\text{ltr}(TM)|_{U}$, where U is a coordinate neighborhood of M. Then we have

\[\bar{g}(N_i, \xi_j) = \delta_{ij}, \quad \bar{g}(N_i, N_j) = 0,\]

where $\{\xi_1, \ldots, \xi_r\}$ is a null basis of $\text{Rad}(TM)|_U$. Then we have

\[TM = TM \oplus \text{tr}(TM) = \{\text{Rad}(TM) \oplus \text{tr}(TM)\} \oplus_{\text{orth}} S(TM)
\]

\[= \{\text{Rad}(TM) \oplus \text{ltr}(TM)\} \oplus_{\text{orth}} S(TM) \oplus_{\text{orth}} S(TM^\perp).\]

A lightlike submanifold $M = (M, g, S(TM), S(TM^\perp))$ of \bar{M} is called an r-lightlike submanifold [1, 3] if $1 \leq r < \min\{m, n\}$. For an r-lightlike M, we see that $S(TM) \neq \{0\}$ and $S(TM^\perp) \neq \{0\}$. In the sequel, by saying that M is a lightlike submanifold we shall mean that it is an r-lightlike submanifold, with following local quasi-orthonormal field of frames of M:

\[\{\xi_1, \ldots, \xi_r, N_1, \ldots, N_r, F_{r+1}, \ldots, F_m, E_{r+1}, \ldots, E_n\},\]
where \(\{F_{r+1}, \ldots, F_m\} \) and \(\{E_{r+1}, \ldots, E_n\} \) are orthonormal bases of \(S(TM) \) and \(S(TM^\perp) \), respectively. Denote \(\epsilon_a = \bar{g}(E_a, E_a) \). Then \(\epsilon_a \delta_{ab} = \bar{g}(E_a, E_b) \).

Let \(P \) be the projection morphism of \(TM \) on \(S(TM) \). Then the local Gauss and Weingarten formulae of \(M \) and \(S(TM) \) are given respectively by

\[
\begin{align*}
\bar{\nabla}_X Y &= \nabla_X Y + \sum_{i=1}^{r} h^\ell_i(X,Y) N_i + \sum_{a=r+1}^{n} h^s_a(X,Y) E_a, \\
\bar{\nabla}_X N_i &= -A_{N_i} X + \sum_{j=1}^{r} \tau_{ij}(X) N_j + \sum_{a=r+1}^{n} \rho_{ia}(X) E_a, \\
\bar{\nabla}_X E_a &= -A_{E_a} X + \sum_{i=1}^{r} \lambda_{ai}(X) N_i + \sum_{b=r+1}^{n} \mu_{ab}(X) E_b, \\
\bar{\nabla}_X P Y &= \nabla^*_X P Y + \sum_{i=1}^{r} h^*_i(X, PY) \xi_i, \\
\bar{\nabla}_X \xi_i &= -A^*_\xi_i X - \sum_{j=1}^{r} \tau_{ji}(X) \xi_j,
\end{align*}
\]

where \(\nabla \) and \(\nabla^* \) are induced linear connections induced from \(\bar{\nabla} \) on \(M \) and \(S(TM) \), respectively, \(h^\ell_i \) and \(h^s_a \) are called the local second fundamental forms on \(M \), \(h^*_i \) are called the local second fundamental forms on \(S(TM) \). \(A_{N_i}, A_{E_a} \) and \(A^*_\xi_i \) are linear operators on \(M \), which are called the shape operators, and \(\tau_{ij}, \rho_{ia}, \lambda_{ai} \) and \(\mu_{ab} \) are 1-forms on \(M \). Using (1.2), (1.3) and (2.3), we see that

\[
\begin{align*}
(\nabla_X g)(Y, Z) &= \sum_{i=1}^{r} \left\{ h^\ell_i(X,Y) \eta_i(Z) + h^\ell_i(X,Z) \eta_i(Y) \right\}, \\
T(X, Y) &= \theta(Y) X - \theta(X) Y,
\end{align*}
\]

where \(\eta_i \)'s are 1-forms such that \(\eta_i(X) = \bar{g}(X, N_i) \).

From the facts that \(h^\ell_i(X,Y) = \bar{g}(\bar{\nabla}_X Y, \xi_i) \) and \(\epsilon_a h^s_a(X,Y) = \bar{g}(\bar{\nabla}_X Y, E_a) \), we know that \(h^\ell_i \) and \(h^s_a \) are symmetric and independent of the choice of \(S(TM) \). The above local second fundamental forms are
related to their shape operators by

\[(2.10) \quad h^i_\ell(X, Y) = g(A^*_\xi X, Y) - \sum_{k=1}^{r} h^k_\ell(X, \xi_k)\eta_k(Y),\]

\[(2.11) \quad \epsilon_a h^a_\sigma(X, Y) = g(A^e_a X, Y) - \sum_{k=1}^{r} \lambda_{ak}(X)\eta_k(Y),\]

\[(2.12) \quad h^i_\sigma(X, PY) = g(A^N_i X, PY).\]

Applying \(\overline{\nabla}X\) to \(\overline{g}(E_a, E_b) = \epsilon\delta_{ab}\), \(\overline{g}(\xi_i, \xi_j) = 0\), \(\overline{g}(\xi_i, E_a) = 0\), \(\overline{g}(N_i, N_j) = 0\) and \(\overline{g}(N_i, E_a) = 0\) by turns, we obtain \(\epsilon_b\mu_{ab} + \epsilon_a\mu_{ba} = 0\) and

\[(2.13) \quad \begin{align*}
\eta_j(A^N_i X) + \eta_i(A^N_j X) &= 0, \\
\eta_j(A^\sigma_{Ni} X) + \eta_i(A^\sigma_{Nj} X) &= 0, \\
\overline{g}(A^e_a X, N_i) &= \epsilon_{a\rho}(X).
\end{align*}\]

Furthermore, using (2.13), we see that

\[(2.14) \quad h^i_\ell(X, \xi_i) = 0, \quad h^j_\ell(\xi_j, \xi_k) = 0, \quad A^*_\xi \xi_i = 0.\]

Here, \((2.13)_i\) denotes the \(i\)-th equation of (2.13). We use the same notations for any others.

Definition 2.1. We say that a lightlike submanifold \(M\) of a semi-Riemannian manifold \((\overline{M}, \overline{g})\) is irrotational [11] if \(\overline{\nabla}X\xi_i \in \Gamma(TM)\) for all \(i \in \{1, \cdots, r\}\).

Remark 2.2. From (2.3) and (2.13), the above definition is equivalent to

\[(2.15) \quad h^j_\ell(X, \xi_i) = 0, \quad h^a_\sigma(X, \xi_i) = \lambda_{ai}(X) = 0.\]

3. Structure equations

Let \(M\) be a generic lightlike submanifold of \(\overline{M}\). From (1.1) we show that \(J(Rad(TM)), J(ltr(TM))\) and \(J(S(TM^\bot))\) are subbundles of \(S(TM)\). Thus there exist two non-degenerate almost complex distributions \(H_o\) and \(H\) with respect to \(J\), i.e., \(J(H_o) = H_o\) and \(J(H) = H\), such that

\[
S(TM) = \{J(Rad(TM)) \oplus J(ltr(TM))\} \oplus_{orth} J(S(TM^\bot)) \oplus_{orth} H_o, \\
H = Rad(TM) \oplus_{orth} J(Rad(TM)) \oplus_{orth} H_o.
\]

In this case, the tangent bundle \(TM\) of \(M\) is decomposed as follow:

\[(3.1) \quad TM = H \oplus J(ltr(TM)) \oplus_{orth} J(S(TM^\bot)).\]
Consider r-th local null vector fields U_i and V_i, $(n - r)$-th local non-null unit vector fields W_a, and their 1-forms u_i, v_i and w_a defined by

\begin{align*}
(3.2) \quad & U_i = -JN_i, \quad V_i = -J\xi_i, \quad W_a = -JE_a, \\
(3.3) \quad & u_i(X) = g(X, V_i), \quad v_i(X) = g(X, U_i), \quad w_a(X) = \epsilon_a g(X, W_a).
\end{align*}

Denote by S the projection morphism of TM on H and by F the tensor field of type $(1, 1)$ globally defined on M by $F = J \circ S$. Then JX is expressed as

\begin{equation}
(3.4) \quad JX = FX + \sum_{i=1}^r u_i(X)N_i + \sum_{a=r+1}^n w_a(X)E_a.
\end{equation}

Applying J to (3.4) and using (2.1)$_1$, (3.2) and (3.4), we have

\begin{equation}
(3.5) \quad F^2X = -X + \sum_{i=1}^r u_i(X)U_i + \sum_{a=r+1}^n w_a(X)W_a.
\end{equation}

By using (2.3)$_2$ and (3.4), we obtain

\begin{equation}
(3.6) \quad g(FX, FY) = g(X, Y) - \sum_{i=1}^r \{u_i(X)v_i(Y) + u_i(Y)v_i(X)\} \quad - \sum_{a=r+1}^n \epsilon_a w_a(X)w_a(Y).
\end{equation}

In the sequel, we say that F is the \textit{structure tensor field} of M.

Now we shall assume that the characteristic vector field ζ belongs to the screen distribution $S(TM)$ of M. Applying ∇_X to (3.2) and (3.4) by turns and using (2.2)\sim (2.7), (2.10)\sim (2.12) and (3.2)\sim (3.4), we get

\begin{equation}
(3.7) \quad \begin{cases}
h^l_j(X, U_i) = h^*_i(X, V_j) - \theta(V_j)\eta_i(X), \\
\epsilon_a h^*_a(X, U_i) = h^*_i(X, W_a) - \theta(W_a)\eta_i(X), \\
h^l_j(X, V_i) = h^*_l(X, V_j), \\
\epsilon_b h^*_b(X, W_a) = \epsilon_a h^*_a(X, W_b),
\end{cases}
\end{equation}
\[\nabla_X U_i = F(A_{N_i} X) + \sum_{j=1}^{r} \tau_{ij}(X) U_j + \sum_{a=r+1}^{n} \rho_{ia}(X) W_a + \theta(U_i) X - v_i(X) \zeta - \eta_i(X) F \zeta, \]

\[\nabla_X V_i = F(A_{\xi_i} X) - \sum_{j=1}^{r} \tau_{ji}(X) V_j + \sum_{a=r+1}^{n} h_{ij}^a(X, \xi_i) U_j \]

\[\quad - \sum_{a=r+1}^{n} \epsilon_a \lambda_{ai}(X) W_a + \theta(V_i) X - u_i(X) \zeta, \]

\[\nabla_X W_a = F(A_{E_a} X) + \sum_{i=1}^{r} \lambda_{ai}(X) U_i + \sum_{b=r+1}^{n} \mu_{ab}(X) W_b, \]

\[\quad + \theta(W_a) X - \epsilon_a w_a(X) \zeta, \]

\[(\nabla_X F) Y = \sum_{i=1}^{r} u_i(Y) A_{N_i} X + \sum_{a=r+1}^{n} w_a(Y) A_{E_a} X \]

\[\quad - \sum_{i=1}^{r} h_{ij}^a(X, Y) U_i - \sum_{a=r+1}^{n} h_{ij}^a(X, Y) W_a \]

\[\quad + \theta(FY) X - \theta(Y) FX - \bar{g}(X, JY) \zeta + g(X, Y) F \zeta. \]

4. Recurrent and Lie recurrent generic submanifolds

Theorem 4.1. There exist no generic lightlike submanifolds of an indefinite Kaehler manifold \(\bar{M} \) with a semi-symmetric metric connection such that \(\zeta \) belongs to \(S(TM) \) and \(F \) is parallel with respect to the connection \(\nabla \).

Proof. Assume that \(F \) is parallel with respect to the connection \(\nabla \). Replacing \(Y \) by \(\xi_j \) to (3.11) and using the fact that \(F \xi_j = -V_j \), we obtain

\[\sum_{k=1}^{r} h_{ik}^j(X, \xi_j) U_k + \sum_{a=r+1}^{n} h_{aj}^a(X, \xi_j) W_a + \theta(V_j) X - u_j(X) \zeta = 0. \]

Taking the scalar product with \(N_i \) to (4.1) and then, taking \(X = \xi_j \), we get \(\theta(V_i) = 0 \). Also taking the scalar product with \(U_i \) to (4.1) and then, taking \(X = U_j \) and using \(\theta(V_j) = 0 \), we get \(\theta(U_i) = 0 \). Therefore, we obtain

\[\theta(V_i) = 0, \quad \theta(U_i) = 0. \]
Taking the scalar product with W_b to (4.1) and using $\theta(V_i) = 0$, we have
\begin{equation}
(4.2) \quad h_a^s(X, \xi_i) = \epsilon_a \theta(W_a) u_i(X).
\end{equation}
Replacing Y by W_a to (3.11) such that $\nabla X F = 0$, we have
\begin{equation}
A_{E_a} X = \sum_{i=1}^r h_i^\ell(X, W_a) U_i + \sum_{b=r+1}^n h_b^s(X, W_a) W_b \\
+ \theta(W_a) F X - \epsilon_a w_a(X) F \zeta.
\end{equation}
Taking the scalar product with U_i to this equation, we obtain
\begin{equation}
(4.3) \quad h_a^s(X, U_i) = -\epsilon_a \theta(W_a) \eta_i(X).
\end{equation}
Taking $X = U_i$ to (4.2) and also, taking $X = \xi_i$ to (4.3) and then, comparing these two resulting equations, we obtain $\theta(W_a) = 0$. Taking the scalar product with ζ to (4.1) and using the facts that $\theta(V_i) = \theta(U_i) = \theta(W_a) = 0$, we have $u_j(X) = 0$ for all $X \in \Gamma(TM)$. It is a contradiction to $u_j(U_j) = 1$. Thus there exist no generic lightlike submanifolds of an indefinite Kaehler manifold \bar{M} with a semi-symmetric metric connection subject such that ζ belongs to $S(TM)$ and F is parallel with respect to the connection ∇.

Definition 4.2. The structure tensor field F of M is said to be recurrent [6] if there exists a 1-form ϖ on TM such that
\[(\nabla_X F)Y = \varpi(X) FY.\]
A generic lightlike submanifold M of an indefinite Kaehler manifold \bar{M} is called recurrent if it admits a recurrent structure tensor field F.

Theorem 4.3. There exist no recurrent generic lightlike submanifolds of an indefinite Kaehler manifold \bar{M} with a semi-symmetric metric connection such that the characteristic vector field ζ of \bar{M} belongs to $S(TM)$.

Proof. From the above definition and (3.11), we obtain
\begin{equation}
(4.4) \quad \varpi(X) FY = \sum_{i=1}^r u_i(Y) A_{N_i} X + \sum_{a=r+1}^n w_a(Y) A_{E_a} X \\
- \sum_{i=1}^r h_i^\ell(X, Y) U_i - \sum_{a=r+1}^n h_a^s(X, Y) W_a \\
+ \theta(FY) X - \theta(Y) F X - \bar{g}(X, JY) \zeta + g(X, Y) F \zeta.
\end{equation}
Replacing Y by ξ_j to this and using the fact that $F\xi_j = -V_j$, we get (4.5)
\[\varpi(X)V_j = \sum_{k=1}^{r} h^k(X, \xi_j)U_k + \sum_{b=r+1}^{n} h^b(X, \xi_j)W_b + \theta(V_j)X - u_j(X)\zeta. \]

Taking the scalar product with N_i to this, we obtain $\theta(V_j)\eta_i(X) = 0$. Taking $X = \xi_i$ to this equation, we have $\theta(V_i) = 0$ for all i. Taking the scalar product with V_i and W_a to (4.5) and using $\theta(V_i) = 0$, we obtain
\[h^i_j(X, \xi_i) = 0, \quad h^a_i(X, \xi_i) = \epsilon_a \theta(W_a)u_i(X). \]

Replacing Y by W_a to (4.4) and using the fact that $FW_a = 0$, we have
\[A_{\epsilon_a}X = \sum_{i=1}^{r} h^i_i(X, W_a)U_i + \sum_{b=r+1}^{n} h^b_a(X, W_a)W_b + \theta(W_a)FX - \epsilon_a w_a(X)F\zeta. \]

Taking the scalar product with U_i to this equation, we obtain
\[h^a_i(X, U_i) = -\epsilon_a \theta(W_a)\eta_i(X). \]

Taking $X = \xi_i$ to (4.7) and also, taking $X = U_i$ to (4.6) and then, comparing two resulting equations, we get $\theta(W_a) = 0$. As $\theta(W_a) = 0$, we get
\[h^i_j(X, \xi_i) = 0, \quad h^a_i(X, \xi_i) = 0. \]

Using these equations and the fact that $\theta(V_i) = 0$, Eq. (4.5) is reduced to
\[\varpi(X)V_j = -u_j(X)\zeta. \]

Taking the scalar product with ζ to this, we have $u_j(X) = 0$ for all $X \in \Gamma(TM)$. It is a contradiction to $u_j(U_j) = 1$. Thus there exist no recurrent generic lightlike submanifolds of an indefinite Kaehler manifold \bar{M} with a semi-symmetric metric connection such that ζ belongs to $S(TM)$.

Definition 4.4. The structure tensor field F of M is said to be Lie recurrent [7] if there exists a 1-form ϑ on M such that
\[(\mathcal{L}_X F)Y = \vartheta(X)FY, \]
where \mathcal{L}_X denotes the Lie derivative on M with respect to X, that is,
\[(\mathcal{L}_X F)Y = [X, FY] - F[X, Y]. \]

In case $\mathcal{L}_X F = 0$, we say that F is Lie parallel. A generic lightlike submanifold M of an indefinite Kaehler manifold \bar{M} is called Lie recurrent if it admits a Lie recurrent structure tensor field F.

Theorem 4.5. Let M be a Lie recurrent lightlike submanifold of an indefinite Kaehler manifold \bar{M} with a semi-symmetric metric connection such that the characteristic vector field ξ of \bar{M} belongs to $S(TM)$. Then F is Lie parallel.

Proof. Using the above definition, (2.9) and (3.11), we obtain

\[
\vartheta(X)FY = -\nabla_{FY}X + F\nabla_{Y}X - \bar{g}(X, JY)\xi + g(X, Y)F\xi + \sum_{i=1}^{r} u_i(Y)A_{N_i}X + \sum_{a=r+1}^{n} w_a(Y)A_{E_a}X - \sum_{i=1}^{r} h_i^\xi(X, Y)U_i - \sum_{a=r+1}^{n} h_a^\xi(X, Y)W_a.
\]

Replacing Y by ξ and also, Y by V_j to (4.8), respectively, we have

\[
\vartheta(X)V_j = -\nabla_{V_j}X + F\nabla_{\xi_j}X + u_j(X)\xi - \sum_{i=1}^{r} h_i^\xi(X, \xi_j)U_i - \sum_{a=r+1}^{n} h_a^\xi(X, \xi_j)W_a,
\]

\[
\vartheta(X)\xi_j = -\nabla_{\xi_j}X + F\nabla_{V_j}X + u_j(X)F\xi - \sum_{i=1}^{r} h_i^\xi(X, V_j)U_i - \sum_{a=r+1}^{n} h_a^\xi(X, V_j)W_a.
\]

Taking the scalar product with U_i to (4.9) and N_i to (4.10), we get

\[
-\delta_{ij}\vartheta = g(\nabla_{V_j}X, U_i) - \bar{g}(\nabla_{\xi_j}X, N_i) + \vartheta u_j(X),
\]

\[
\delta_{ij}\vartheta = g(\nabla_{V_j}X, U_i) - \bar{g}(\nabla_{\xi_j}X, N_i) + \vartheta u_j(X),
\]

respectively. From these two equations, we get $\vartheta = 0$. Thus F is Lie parallel.

Proposition 4.6. Let M be a Lie recurrent lightlike submanifold of an indefinite Kaehler manifold \bar{M} with a semi-symmetric metric connection such that the characteristic vector field ξ of \bar{M} belongs to $S(TM)$. Then τ_{ij} and ρ_{ia} satisfy $\tau_{ij} \circ F = 0$ and $\rho_{ia} \circ F = 0$. Moreover,

\[
\tau_{ij}(X) = \sum_{k=1}^{r} u_k(X)g(A_{N_k}V_j, N_i).
\]

Proof. Taking the scalar product with N_i to (4.9) such that $X = W_a$ and using (2.11), (2.13) and (3.10), we get $h_a^\xi(U_i, V_j) = \rho_{ia}(\xi_j)$. Also, taking the scalar product with W_a to (4.10) such that $X = U_i$ and using
(3.8), we have \(h^s_a(U_i, V_j) = -\rho_{ia}(\xi_j) \). Thus \(\rho_{ia}(\xi_j) = 0 \) and \(h^s_a(U_i, V_j) = 0 \).

Taking the scalar product with \(U_i \) to (4.9) such that \(X = W_a \) and using (2.11), (2.13)\(_{2,4}\) and (3.10), we get \(\epsilon_a \rho_{ia}(V_j) = \lambda_{aj}(U_i) \). Also, taking the scalar product with \(W_a \) to (4.9) such that \(X = U_i \) and using (2.13)\(_2\) and (3.8), we get \(\epsilon_a \rho_{ia}(V_j) = -\lambda_{aj}(U_i) \). Thus \(\rho_{ia}(V_j) = 0 \) and \(\lambda_{aj}(U_i) = 0 \).

Taking the scalar product with \(V_i \) to (4.9) such that \(X = W_a \) and using (2.13)\(_2\), (3.7)\(_4\) and (3.10), we obtain \(\lambda_{ai}(V_j) = -\lambda_{aj}(V_i) \). Also, taking the scalar product with \(W_a \) to (4.9) such that \(X = V_i \) and using (2.13)\(_2\) and (3.9), we have \(\lambda_{ai}(V_j) = \lambda_{aj}(V_i) \). Thus we obtain \(\lambda_{ai}(V_j) = 0 \) and \(h^s_i(V_j, W_a) = 0 \).

Summarizing the above results, we obtain

\[
(4.11) \rho_{ia}(\xi_j) = 0, \quad \rho_{ia}(V_j) = 0, \quad \lambda_{ai}(U_j) = 0, \quad \lambda_{ai}(V_j) = 0, \quad \lambda_{ai}(\xi_j) = 0, \\
h^s_a(U_i, V_j) = h^s_j(U_i, W_a) = 0, \quad h^s_i(V_j, W_a) = h^s_a(V_j, V_i) = 0.
\]

Taking the scalar product with \(N_i \) to (4.8) and using (2.13)\(_4\), we have

\[
(4.12) -\bar{g}(\nabla_F Y X, N_i) + g(\nabla_Y X, U_i) + \theta(U_i)g(X, Y) \\
+ \sum_{k=1}^r u_k(Y)\bar{g}(A_{N_k} X, N_i) + \sum_{a=r+1}^n \epsilon_a w_a(Y)\rho_{ia}(X) = 0.
\]

Taking \(X = \xi_j \) and \(Y = U_k \) to (4.12) and using (2.7) and (2.10), we have

\[
h^s_j(U_k, U_i) = \eta_i(A_{N_k} \xi_j).
\]

As \(h^s_j \) are symmetric, from the last equation, we see that \(\eta_i(A_{N_k} \xi_j) \) is symmetric with respect to \(i \) and \(k \). From this result and (2.13)\(_4\), we obtain

\[
(4.13) g(A_{N_k} \xi_j, N_i) = 0, \quad h^s_i(U_k, V_j) = 0.
\]

Taking \(X = \xi_j \) to (4.12) and using (2.7), (2.10), (4.11)\(_1\) and (4.13)\(_1\), we get

\[
(4.14) h^s_j(X, U_i) = \tau_{ij}(FX).
\]
Taking $X = U_i$ to (4.8) and using (2.12), (3.5), (3.7) and (3.8), we get

$$\sum_{k=1}^{r} u_k(Y)A_{N_k} U_i + \sum_{a=r+1}^{n} w_a(Y)A_{k_a} U_i$$

(4.15)

$$- A_{N_i} Y + \eta(Y)\zeta + v_i(Y)F \zeta - F(A_{N_i} FY) - \sum_{j=1}^{r} \tau_{ij}(FY)U_j - \sum_{a=r+1}^{n} \rho_{ia}(FY)W_a = 0.$$

Taking the scalar product with V_j to (4.15) and using (2.11), (2.12), (3.7) and (4.13), we obtain

$$h^{'\ell}_{ij}(X, U_i) = -\tau_{ij}(FX).$$

Comparing this equation with (4.14), we obtain

(4.16)

$$\tau_{ij}(FX) = 0, \quad h^{'\ell}_{ij}(X, U_i) = 0.$$

Taking $X = V_j$ to (4.12) and using (2.10), (3.9), (4.11) and (4.16), we get

$$\tau_{ij}(X) = \sum_{k=1}^{r} u_k(X)\bar{g}(A_{N_k} V_j, N_i).$$

Taking the scalar product with W_a to (4.15), we have

$$\epsilon_a \rho_{ia}(FY) = -h^*_i(Y, W_a) + \theta(W_a)\eta(Y)$$

(4.17)

$$+ \sum_{k=1}^{r} u_k(Y)h^*_k(U_i, W_a) + \sum_{b=r+1}^{n} \epsilon_b w_b(Y)h^*_b(U_i, W_a).$$

Taking the scalar product with W_a to (4.15), we have

$$\epsilon_a \rho_{ia}(FY) = -h^*_i(Y, W_a) + \theta(W_a)\eta(Y)$$

(4.18)

$$+ \sum_{k=1}^{r} u_k(Y)h^*_k(U_i, W_a) + \sum_{b=r+1}^{n} \epsilon_b w_b(Y)h^*_b(U_i, W_a).$$

Comparing the last two equations, we obtain $\rho_{ia}(FY) = 0$.

□
Theorem 4.7. There exist no generic lightlike submanifolds of an indefinite Kaehler manifold \bar{M} with a semi-symmetric metric connection such that ζ belongs to $S(TM)$, $V_i (i = 1, \cdots, r)$ are parallel with respect to ∇ and $h^s_a (X, \xi_i) = 0$ for any vector field X on M.

Proof. Assume that $V_i (i = 1, \cdots, r)$ are parallel with respect to the connection ∇ and $h^s_a (X, \xi_i) = 0$ for any vector field X on M. Taking the scalar product with W_a to (3.9) and using $\lambda_{ai} (X) = h^s_a (X, \xi_i) = 0$, we get

$$\epsilon_a \theta(V_i) w_a (X) = \theta(W_a) u_i (X).$$

Taking $X = W_a$ and $X = U_i$ to this equation by turns, we obtain

$$\theta(V_i) = 0, \quad \theta(W_a) = 0.$$

Taking the scalar product with V_j to (3.9) and using $\theta(V_i) = 0$, we have

$$h^s_i (X, \xi_j) = 0.$$

Taking the scalar product with ζ and N_j to (3.9) by turns and using the last two equations, we obtain

$$h^s_i (X, F\zeta) = -u_i (X), \quad h^s_i (X, U_j) = 0.$$

From these two equations, we have the following impossible result:

$$-\delta_{ij} = -u_i (U_j) = h^s_i (U_j, F\zeta) = h^s_i (F\zeta, U_j) = 0.$$

Thus we have our theorem \hfill \Box

5. Indefinite complex space forms

Denote by \bar{R}, R and R^* the curvature tensor of the semi-symmetric metric connection $\bar{\nabla}$ on \bar{M} and the induced linear connections ∇ and ∇^* on M and $S(TM)$, respectively. Using the Gauss-Weingarten formulae,
we obtain Gauss equations for M and $S(TM)$, respectively:

\begin{equation}
\bar{\mathcal{R}}(X,Y)Z = R(X,Y)Z \\
+ \sum_{i=1}^{r} \{ h_i^f(X,Z)A_{N_i} Y - h_i^f(Y,Z)A_{N_i} X \} \\
+ \sum_{a=r+1}^{n} \{ h_a^s(X,Z)A_{E_a} Y - h_a^s(Y,Z)A_{E_a} X \} \\
+ \sum_{i=1}^{r} \{ (\nabla_X h_i^f)(Y,Z) - (\nabla_Y h_i^f)(X,Z) \} \\
+ \sum_{j=1}^{r} \{ \tau_{ji}(X)h_j^f(Y,Z) - \tau_{ji}(Y)h_j^f(X,Z) \} \\
+ \sum_{a=r+1}^{n} \{ \lambda_{ai}(X)h_a^s(Y,Z) - \lambda_{ai}(Y)h_a^s(X,Z) \} \\
- \theta(X)h_i^f(Y,Z) + \theta(Y)h_i^f(X,Z) \} N_i \\
+ \sum_{a=r+1}^{n} \{ (\nabla_X h_a^s)(Y,Z) - (\nabla_Y h_a^s)(X,Z) \} \\
+ \sum_{i=1}^{r} \{ \rho_{ia}(X)h_i^f(Y,Z) - \rho_{ia}(Y)h_i^f(X,Z) \} \\
+ \sum_{b=r+1}^{n} \{ \mu_{ba}(X)h_a^s(Y,Z) - \mu_{ba}(Y)h_a^s(X,Z) \} \\
- \theta(X)h_a^s(Y,Z) + \theta(Y)h_a^s(X,Z) \} E_a,
\end{equation}

\begin{equation}
R(X,Y)PZ = R^*(X,Y)PZ \\
+ \sum_{i=1}^{r} \{ h_i^s(X,PZ)A_{\xi_i} Y - h_i^s(Y,PZ)A_{\xi_i} X \} \\
+ \sum_{i=1}^{r} \{ (\nabla_X h_i^s)(Y,PZ) - (\nabla_Y h_i^s)(X,PZ) \} \\
+ \sum_{k=1}^{r} \{ \tau_{ik}(Y)h_k^s(X,PZ) - \tau_{ik}(X)h_k^s(Y,PZ) \} \\
- \theta(X)h_i^s(Y,PZ) + \theta(Y)h_i^s(X,PZ) \} \xi_i.
\end{equation}
Definition. An indefinite complex space form $\tilde{M}(c)$ is a connected indefinite Kaehler manifold of constant holomorphic sectional curvature c:

(5.3) $\tilde{R}(\tilde{X}, \tilde{Y})\tilde{Z} = \frac{c}{4}\{\tilde{g}(\tilde{Y}, \tilde{Z})\tilde{X} - \tilde{g}(\tilde{X}, \tilde{Z})\tilde{Y}
+ \tilde{g}(J\tilde{X}, \tilde{Z})J\tilde{X} - \tilde{g}(J\tilde{X}, \tilde{Z})J\tilde{Y} + 2\tilde{g}(\tilde{X}, J\tilde{Y})J\tilde{Z}\}$,

where \tilde{R} is the curvature tensor of the Levi-Civita connection $\tilde{\nabla}$ on \tilde{M}.

By directed calculations from (1.2) and (1.3), we see that

(5.4) $\tilde{R}(\tilde{X}, \tilde{Y})\tilde{Z} = \tilde{g}(\tilde{X}, \tilde{Z})\nabla_{\tilde{Y}}\tilde{X} - \tilde{g}(\tilde{Y}, \tilde{Z})\nabla_{\tilde{X}}\tilde{Y}
+ \{((\nabla_{\tilde{X}}\theta)(\tilde{Z}) - \tilde{g}(\tilde{X}, \tilde{Z}))\tilde{Y} - (((\nabla_{\tilde{Y}}\theta)(\tilde{Z}) - \tilde{g}(\tilde{Y}, \tilde{Z}))\tilde{X}.$

Taking the scalar product with ξ_i and N_i to (5.4) by turns and then, substituting (5.1) and (5.3) into the resulting equation and using (5.2) and the facts that $g(\zeta, \xi_i) = \tilde{g}(\zeta, N_i) = \tilde{g}(\zeta, E_a) = 0$ and ∇ is metric, we obtain

(5.5) $(\nabla_X h^\ell_i)(Y, Z) - (\nabla_Y h^\ell_i)(X, Z)$
+ $\sum_{k=1}^{r}\{\tau_{ki}(X)h^\ell_k(Y, Z) - \tau_{ki}(Y)h^\ell_k(X, Z)\}$
+ $\sum_{a=r+1}^{n}\{\lambda_{ai}(X)h^s_a(Y, Z) - \lambda_{ai}(Y)h^s_a(X, Z)\}$
- $\theta(X)h^\ell_i(Y, Z) + \theta(Y)h^\ell_i(X, Z)$
- $g(X, Z)h^\ell_i(Y, \zeta) + g(Y, Z)h^\ell_i(X, \zeta)$

- $\frac{c}{4}(u_i(X)\tilde{g}(JY, Z) - u_i(Y)\tilde{g}(JX, Z) + 2u_i(Z)\tilde{g}(X, JY))$,

(5.6) $(\nabla_X h^\ell_i)(Y, PZ) - (\nabla_Y h^\ell_i)(X, PZ)$
- $\sum_{k=1}^{r}\{\tau_{ik}(X)h^\ell_k(Y, PZ) - \tau_{ik}(Y)h^\ell_k(X, PZ)\}$
- $\sum_{k=1}^{r}\{h^\ell_k(Y, PZ)\eta_i(A_{N_k}X) - h^\ell_k(X, PZ)\eta_i(A_{N_k}Y)\}$
- $\sum_{a=r+1}^{n}\{h^s_a(Y, PZ)\eta_i(A_{E_a}X) - h^s_a(X, PZ)\eta_i(A_{E_a}Y)\}$.
Replacing X is symmetric, we get

$$h(X, PZ) = g(X, PZ)h^*(X, PZ) + (\nabla_X h)(PZ)\eta(Y) + (\nabla_Y h)(PZ)\eta(X)$$

$$= \left(\frac{c}{4} + 1\right)\{g(Y, PZ)\eta(X) - g(X, PZ)\eta(Y)\}$$

$$+ \frac{c}{4}\{v_i(X)\bar{g}(JY, PZ) - v_i(Y)\bar{g}(JX, PZ) + 2v_i(PZ)\bar{g}(X, JY)\}.$$

Theorem 5.1. Let M be a Lie recurrent generic lightlike submanifold of an indefinite complex space form $\tilde{M}(c)$ with a semi-symmetric metric connection such that ζ belongs to $S(TM)$. Then $c = 0$, i.e., $\tilde{M}(c)$ is flat.

Proof. In case M is Lie recurrent. As $\tau_{ij}(FX) = 0$, from (4.14) we get

$$h(X, U_j) = 0. \quad (5.7)$$

Applying ∇_X to this equation and using (3.8) and (5.7), we have

$$\nabla_X h(X, U_j) = -h(X, F(A_{N_j}X)) - \sum_{a=r+1}^n \rho_{ja}(X)h_a(Y, W_a)$$

$$- \theta(U_j)h(Y, X) + h(Y, \zeta) + \eta(X)h(Y, F\zeta).$$

Substituting the last two equations into (5.5) such that $Z = U_j$, we have

$$h(X, F(A_{N_j}Y)) - h(X, F(A_{N_j}X))$$

$$- \sum_{a=r+1}^n \{\rho_{ja}(X)h_a(Y, W_a) - \rho_{ja}(Y)h_a(X, W_a)\}$$

$$+ \sum_{a=r+1}^n \{\lambda_{a}(X)h_a(Y, U_j) - \lambda_{a}(Y)h_a(X, U_j)\}$$

$$+ \eta_j(X)h_a(Y, F\zeta) - \eta_j(Y)h_a(X, F\zeta)$$

$$= \frac{c}{4}\{u_i(Y)\eta_j(X) - u_i(X)\eta_j(Y) + 2\delta_{ij}\bar{g}(X, JY)\}.$$

Taking $X = \xi_j$ and $Y = U_i$ to this and using (4.11)$_{3, 5}$ and (5.7), we get

$$h(\xi_j, F(A_{N_j}U_i)) + \sum_{a=r+1}^n \rho_{ja}(U_i)h_a(\xi_j, W_a) = \frac{3}{4}c. \quad (5.8)$$

Replacing X by ξ_j to (2.10) and using (2.14)$_2$ and the fact that h^f is symmetric, we get $h(X, \xi_j) = g(A^*_\zeta\xi_j, X)$. From this result and
(2.13), we obtain \(g(A^*_\xi_j + A^*_\xi_i, X) = 0 \) for all \(X \). As \(S(TM) \) is non-degenerate, we get \(A^*_\xi_j = -A^*_\xi_i \). Thus \(A^*_\xi_j \) is skew-symmetric with respect to \(i \) and \(j \).

On the other hand, taking \(Y = U_j \) to (4.15), we have
\[
A_{N_j} U_i = A_{N_i} U_j.
\]
Applying \(F \) to this equation, we have
\[
F(A_{N_j} U_i) = F(A_{N_i} U_j).
\]
Thus \(F(A_{N_i} U_j) \) is symmetric with respect to \(i \) and \(j \). Therefore, we obtain
\[
(5.9) \quad h^i_j(X, W_a) = \epsilon_a h^a_i(X, V_i) = \epsilon_a h^a_i(V_i, \xi_j) = -\lambda_{aj}(V_i) = 0.
\]
From (5.8)~ (5.10), we obtain \(c = 0 \).

Definition 5.2. A lightlike submanifold \(M \) is said to be screen conformal [5] if there exist non-vanishing smooth functions \(\varphi_i \) on \(\mathcal{U} \) such that
\[
(5.11) \quad h^*_i(X, PY) = \varphi_i h^*_i(X, PY), \quad \forall i.
\]

Theorem 5.3. Let \(M \) be a screen conformal irrotational generic lightlike submanifold of an indefinite complex space form \(\bar{M}(c) \) with a semi-symmetric metric connection such that \(\zeta \) belongs to \(S(TM) \). Then \(c = 0 \), i.e., \(\bar{M}(c) \) is flat.

Proof. Using (3.7)\(_1,3\) and (5.11), we get
\[
h^j_i(X, U_i - \varphi_i V_i) = -\theta(V_i)\eta_i(X).
\]
Replacing \(X \) by \(\xi_j \) to this equation and using (2.14)\(_1\), we have
\[
(5.12) \quad \theta(V_i) = 0, \quad h^j_i(X, U_i - \varphi_i V_i) = 0.
\]
If \(M \) is irrotational, then we have (2.15). Using (3.7)\(_2,4\) and (5.11), we get
\[
h^a_i(X, U_i - \varphi_i V_i) = -\epsilon_a \theta(W_a)\eta_i(X).
\]
Replacing \(X \) by \(\xi_i \) to this equation and using (2.15)\(_2\), we obtain
\[
(5.13) \quad \theta(W_a) = 0, \quad h^a_i(X, U_i - \varphi_i V_i) = 0.
\]
Applying \(\bar{\nabla}_X \) to \(\theta(V_i) = 0 \) and using (2.15)\(_1,2\), (3.9) and (5.12)\(_1\), we obtain
\[
(5.14) \quad (\bar{\nabla}_X \theta)(V_i) = h^j_i(X, F\zeta) + u_i(X).
\]
Applying ∇_X to $h^e_i(Y, PZ) = \varphi_i h^e_i(Y, PZ)$, we have

$$(\nabla_X h^e_i)(Y, PZ) = (X \varphi_i) h^e_i(Y, PZ) + \varphi_i(\nabla_X h^e_i)(Y, PZ).$$

Substituting this equation into (4.6) and using (4.5), we have

$$(X \varphi_i) h^e_i(Y, PZ) - (Y \varphi_i) h^e_i(X, PZ)$$

$$- \sum_{j=1}^{r} \{ \varphi_j \tau_{ji}(X) + \varphi_j \tau_{ij}(X) + \eta(A_{x_j} X) \} h^e_j(Y, PZ)$$

$$+ \sum_{j=1}^{r} \{ \varphi_j \tau_{ji}(Y) + \varphi_j \tau_{ij}(Y) + \eta(A_{x_j} Y) \} h^e_j(X, PZ)$$

$$- \sum_{a=r+1}^{n} \epsilon_a \{ \rho_{ia}(X) h^e_a(Y, PZ) - \rho_{ia}(Y) h^e_a(X, PZ) \}$$

$$- (\nabla_X \theta)(PZ) \eta_i(Y) + (\nabla_Y \theta)(PZ) \eta_i(X)$$

$$= (c + 1) \{ \eta_i(X) g(Y, PZ) - \eta_i(Y) g(X, PZ) \}$$

$$+ \frac{c}{4} \{ [v_i(X) - \varphi_i u_i(X)] g(FY, PZ) - [v_i(Y) - \varphi_i u_i(Y)] g(FX, PZ)$$

$$+ 2[v_i(PZ) - \varphi_i u_i(PZ)] g(X, JY) \}.$$

Taking $Y = \xi_i$ and $PZ = V_j$ to this and using (2.15) and (5.14), we have

$$- (\xi_i \varphi_i) h^e_i(X, V_j) - h^e_j(X, F\zeta)$$

$$+ \sum_{j=1}^{r} \{ \varphi_j \tau_{ji}(\xi_i) + \varphi_j \tau_{ij}(\xi_i) + \eta(A_{x_j} \xi_i) \} h^e_j(X, V_j)$$

$$+ \sum_{a=r+1}^{n} \epsilon_a \rho_{ia}(\xi_i) h^e_a(X, V_j) = - \frac{3}{4} cu_j(X).$$

Taking $X = U_j + \varphi_j V_j$ to this and using (5.12) and (5.13), we get $c = 0$.

Definition 5.4. [1] We say that $S(TM)$ is totally umbilical in M if there exist smooth functions γ_i on a coordinate neighborhood U such that

$$(5.15) \quad h^e_i(X, PY) = \gamma_i g(X, PY), \quad \forall i.$$

In case $\gamma_i = 0$ on U, we say that $S(TM)$ is totally geodesic in M.

Theorem 5.5. Let M be an irrotational generic lightlike submanifold of an indefinite complex space form $\bar{M}(c)$ with a semi-symmetric metric...
connection such that \(\zeta \) belongs to \(S(TM) \). If \(S(TM) \) is totally umbilical in \(M \), then \(c = 0 \) and \(\gamma_i = 0 \), i.e., \(S(TM) \) is totally geodesic in \(M \).

Proof. If \(S(TM) \) is totally umbilical, then, from (3.7)\(_1\) and (5.15), we have

\[
h^\ell_j(X, U_i) = \gamma_i u_j(X) - \theta(V_j)\eta_i(X).
\]

Replacing \(X \) by \(\xi_j, V_k, U_k \) and \(\zeta \) to this by turns and using (2.14)\(_1\), we get

\[
(5.16) \quad \theta(V_i) = 0, \quad h^\ell_j(V_k, U_i) = 0, \quad h^\ell_j(U_k, U_i) = \gamma_i \delta_{kj}, \quad h^\ell_j(U_i, \zeta) = 0,
\]

\[
(5.17) \quad h^\ell_j(X, U_i) = \gamma_i u_j(X).
\]

If \(M \) is irrotational, then we have (2.15). From (3.7)\(_2\) and (5.15), we get

\[
h^a_i(X, U_i) = \gamma_i w_a(X) - \theta(W_a)\eta_i(X).
\]

Replacing \(X \) by \(\xi_i, V_k, U_k \) and \(\zeta \) to this by turns and using (2.15)\(_2\), we have

\[
(5.18) \quad \theta(W_a) = 0, \quad h^a_i(V_k, U_i) = 0, \quad h^a_i(U_k, U_i) = 0, \quad h^a_i(U_i, \zeta) = 0.
\]

Applying \(\nabla_X \) to \(\theta(V_i) = 0 \) and using (2.10), (2.15), (3.4) and (3.9), we obtain

\[
(\nabla_X \theta)(V_i) = h^\ell_i(X, F\zeta) + u_i(X).
\]

Taking \(X = F\zeta \) to (5.17), we get \(h^\ell_j(U_i, F\zeta) = 0 \). Replacing \(X \) by \(U_j \) to the last equation and using the fact that \(h^\ell_j(U_i, F\zeta) = 0 \), we obtain

\[
(5.19) \quad (\nabla_{U_j} \theta)(V_i) = \delta_{ij}.
\]

Applying \(\nabla_X \) to \(h^a_i(Y, PZ) = \gamma_i g(Y, PZ) \) and using (2.7), we obtain

\[
(\nabla_X h^a_i)(Y, PZ) = (X\gamma_i)g(Y, PZ) + \gamma_i \sum_{j=1}^{r} h^\ell_j(X, PZ)\eta_j(Y).
\]
Substituting this equation and (5.15) into (5.6), we have

\[
\begin{align*}
\{ X \gamma_i - \sum_{j=1}^{r} \gamma_j \tau_{ij}(X) - \left[\frac{c}{4} + 1 \right] \eta_i(X) \} g(Y, PZ) \\
- \{ Y \gamma_i - \sum_{j=1}^{r} \gamma_j \tau_{ij}(Y) - \left[\frac{c}{4} + 1 \right] \eta_i(Y) \} g(X, PZ) \\
+ \sum_{j=1}^{r} \{ \gamma_i \eta_j(Y) + \eta_i(A_{x_j} Y) \} h^\ell_j(Y, PZ) \\
- \sum_{j=1}^{r} \{ \gamma_i \eta_j(X) + \eta_i(A_{x_j} X) \} h^\ell_j(Y, PZ) \\
- \sum_{a=r+1}^{n} \{ h_a^s(Y, PZ) \eta_i(A_{E_a} X) - h_a^s(X, PZ) \eta_i(A_{E_a} Y) \} \\
- (\nabla X \theta)(PZ) \eta_i(Y) + (\nabla Y \theta)(PZ) \eta_i(X) \\
= \frac{c}{4} \{ v_i(X) g(FY, PZ) - v_i(Y) g(FX, PZ) + 2v_i(PZ) \bar{g}(X, Y) \}.
\end{align*}
\]

Replacing \(Y \) by \(\xi_k \) to this and using (2.15), (3.2) and (3.3), we have

\[
(5.20) \quad \{ \xi_k \gamma_i - \sum_{j=1}^{r} \gamma_j \tau_{ij}(\xi_k) - \left[\frac{c}{4} + 1 \right] \delta_{ik} \} g(X, PZ) \\
- \sum_{j=1}^{r} \{ \gamma_i \delta_{jk} + \eta_i(A_{x_j} \xi_k) \} h^\ell_j(X, PZ) \\
- \sum_{a=r+1}^{n} \eta_i(A_{E_a} \xi_k) h_a^s(X, PZ) \\
+ (\nabla X \theta)(PZ) \delta_{ik} - (\nabla \xi_k \theta)(PZ) \eta_i(X) \\
= \frac{c}{4} \{ v_i(X) u_k(PZ) + 2v_i(PZ) \bar{u}_k(X) \}.
\]

Taking \(X = U_h \) and \(PZ = V_h \) and using (5.16)\(_2\), (5.18)\(_2\) and (5.19), we have

\[
(5.21) \quad \xi_k \gamma_i - \sum_{j=1}^{r} \gamma_j \tau_{ij}(\xi_k) = \frac{3}{4} c \delta_{ik}.
\]
Applying $\tilde{\nabla}_X$ to $g(\zeta, \zeta) = 1$ and using the fact that $\tilde{\nabla}$ is metric, we obtain
\begin{equation}
(\tilde{\nabla}_X \theta)(\zeta) = 0.
\end{equation}
Taking $X = U_k$ and $Z = \zeta$ to (5.20) and using (5.16), (5.21) and (5.22), we get $\theta(U_i) = 0$. As $\tilde{g}(J\zeta, \zeta) = 0$, we see that $g(F\zeta, \zeta) = 0$. Thus
\begin{equation}
\theta(U_i) = 0, \quad g(F\zeta, \zeta) = 0.
\end{equation}
As $\theta(V_j) = \theta(U_i) = \theta(W_a) = 0$, we get $J\zeta = F\zeta \in \Gamma(S(TM))$. Applying $\tilde{\nabla}_X$ to $\theta(U_i) = 0$ and using (3.8), (5.18) and (5.23), we obtain
\begin{equation}
(\tilde{\nabla}_X \theta)(U_i) = \gamma_i g(X, F\zeta) + v_i(X).
\end{equation}
Taking $X = V_j$ and $X = U_j$ to this equation by turns, we obtain
\begin{equation}
(\tilde{\nabla}_{V_j} \theta)(U_i) = \delta_{ij}, \quad (\tilde{\nabla}_{U_j} \theta)(U_i) = 0.
\end{equation}
Taking $X = V_h$ and $PZ = U_h$ to (5.20) and using (5.16), (5.21) and (5.24), we have $c = 0$. Thus $\tilde{M}(c)$ is flat.

Theorem 5.6. Let M be a generic lightlike submanifold of an indefinite Kaehler manifold $\tilde{M}(c)$ with a semi-symmetric metric connection such that ζ belongs to $S(TM)$ and U_is are parallel with respect to the connection ∇. If either $\rho_{ia} = 0$ or $\tau_{ij} = 0$, then $c = 0$, i.e., $M(c)$ is flat.

Proof. (1) In case $\rho_{ia} = 0$. Taking the scalar product with W_a to (3.8), we get $\epsilon_a \theta(U_i) w_a(X) - \theta(W_a)v_i(X) = 0$. Taking $X = W_a$ and $X = V_i$ to this result by turns, we have
\begin{equation}
\theta(U_i) = 0, \quad \theta(W_a) = 0.
\end{equation}
Taking the scalar product with U_j, N_j, ζ and $F\zeta$ to (3.8) by turns and using (3.6), (5.26) and the fact that $g(F\zeta, \zeta) = 0$, we obtain

\begin{align*}
(5.27) \quad \bar{g}(A_{N_i}X, N_j) &= 0, \quad h_i^*(X, U_j) = 0, \\
g(F(A_{N_i}X), \zeta) &= v_i(X), \quad h_i^*(X, \zeta) = \eta_i(X).
\end{align*}

Applying ∇_X to $\theta(U_i) = 0$ and using (3.8) and (5.27), we have

\begin{equation}
(5.28) \quad (\nabla_X \theta)(U_i) = 0.
\end{equation}

Applying ∇_Y to (5.27) and using the fact that $\nabla_Y U_j = 0$, we have

\begin{equation}
(\nabla_X h_i^*)(Y, U_j) = 0.
\end{equation}

Substituting this equation and (5.27) into (5.6) such that $PZ = U_j$ and using (2.13), (5.27) and (5.28) and the fact that $\rho_{ia} = 0$, we have

\begin{equation}
\frac{c}{4} \left(v_j(Y) \eta_i(X) - v_j(X) \eta_i(Y) + v_i(Y) \eta_j(X) - v_i(X) \eta_j(Y) \right) = 0.
\end{equation}

Taking $X = \xi_i$ and $Y = V_j$ to this equation, we obtain $c = 0$.

(2) In case $\tau_{ij} = 0$. Taking the scalar product with V_j to (3.8), we get $\theta(U_i) u_j(X) - \theta(V_j) v_i(X) = 0$. Taking $X = U_j$ and $X = V_j$ to this equation by turns, we have

\begin{equation}
(5.29) \quad \theta(U_i) = 0, \quad \theta(V_i) = 0.
\end{equation}

Taking the scalar product with $U_j, N_j, F\zeta$ and ζ to (3.8) by turns and using (3.6), (5.29) and the fact that $g(F\zeta, \zeta) = 0$, we obtain

\begin{align*}
(5.30) \quad \bar{g}(A_{N_i}X, N_j) &= 0, \quad h_i^*(X, U_j) = 0, \quad h_i^*(X, \zeta) = \eta_i(X), \\
g(F(A_{N_i}X), \zeta) + \sum_{a=r+1}^n \theta(W_a) \rho_{ia}(X) &= v_i(X).
\end{align*}

Applying ∇_X to $\theta(U_i) = 0$ and using (3.8) and (5.30), we have

\begin{equation}
(5.31) \quad (\nabla_X \theta)(U_i) = 0.
\end{equation}

Applying ∇_Y to (5.30) and using the fact that $\nabla_Y U_j = 0$, we have

\begin{equation}
(\nabla_X h_i^*)(Y, U_j) = 0.
\end{equation}

Substituting this equation and (5.30) into (5.6) with $PZ = U_j$ and using (5.30) and (5.31), we have

\begin{equation}
\frac{c}{4} \left(v_j(Y) \eta_i(X) - v_j(X) \eta_i(Y) + v_i(Y) \eta_j(X) - v_i(X) \eta_j(Y) \right) = 0.
\end{equation}

Taking $X = \xi_i$ and $Y = V_j$ to this equation, we obtain $c = 0$. \qed
Generic lightlike submanifolds of an indefinite Kaehler manifold

References

Jae Won Lee
Department of Mathematics Education and RINS,
Gyeongsang National University, Jinju 52828, Republic of Korea.
E-mail: leeaew@gnu.ac.kr

Chul Woo Lee
Department of Mathematics, Kyungpook National University,
Daegu 41566, Republic of Korea.
E-mail: mathisu@knu.ac.kr