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Abstract. This paper is devoted to study Ricci semi-symmetric lightlike hypersurfaces of

an indefinite cosymplectic space form with structure vector field tangent to hypersurface.

The condition for Ricci tensor of lightlike hypersurface of indefinite cosymplectic space

form to be semi-symmetric and parallel have been obtained. An example of non-totally

geodesic Ricci semi-symmetric lightlike hypersurface in R7
2 have been given.

1. Introduction

A semi-Riemannian manifold is called semi-symmetric if R(X,Y ) ·R = 0, where
R(X,Y ) is the curvature operator act as a derivative on R. Semi-symmetric
hypersurfaces of Euclidean spaces were classified by Nomizu [9] and a general
study of semi-symmetric Riemannian manifolds was made by Szabo [13]. A semi-
Riemannian manifold is said to be Ricci semi-symmetric [4], if the following
condition is satisfied: R(X,Y ) ·Ric = 0.

It is clear that every semi-symmetric manifold is Ricci semi-symmetric; however
the converse is not true in general. P. J. Ryan [11] raised the following question for
hypersurfaces of Euclidean spaces in 1972; ”Are the conditions R(X,Y ) ·R = 0 and
R(X,Y ) ·Ric = 0 equivalent for hypersurfaces of Euclidean spaces?”. In his papers
[10, 11], Ryan proved that the two conditions are equivalent for hypersurfaces in
spheres and hyperbolic spaces and for hypersurfaces of Euclidean space with non-
negative scalar curvature. The explicit example of Ricci-symmetric but not semi-
symmetric hypersurfaces in Euclidean space En+1(n ≥4) is given in [1, 4]. Also
it is proved in [3] that Ricci-semisymmetric and semi-symmetric conditions are
equivalent for hypersurfaces of 5-dimensional semi-Riemannian space of constant
curvature. The geometry of lightlike hypersurfaces of semi-Riemannian manifolds
was studied in [6]. The lightlike hypersurfaces of semi-Euclidean spaces satisfying
curvature conditions of semi-symmetry type was studied in [12].
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The purpose of the present paper is to study the Ricci semi-symmetric lightlike
hypersurface of indefinite cosymplectic space form with structure vector field ξ
tangent to hypersurface.

In Section 2, We have collected the formulae and information which are
useful in our subsequent sections. Section 3, is devoted to study the Ricci semi-
symmetric lightlike hypersurfaces of an indefinite cosymplectic space form. Also,
we have given an example of non-totally geodesic Ricci semi-symmetric lightlike
hypersurface in R7

2.

2. Preliminaries

An odd-dimensional semi-Riemannian manifold M is said to be an indefinite
almost contact metric manifold if there exist structure tensors {ϕ, ξ, η, g}, where ϕ
is a (1,1) tensor field, ξ a vector field, η a 1-form and g is the semi-Riemannian
metric on M satisfying

(2.1)

{
ϕ2 X = −X + η(X)ξ, η ◦ ϕ = 0, ϕξ = 0, η(ξ) = 1

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), g(X, ξ) = η(X)

for any X,Y ∈ Γ(TM), where Γ(TM) denotes the Lie algebra of vector fields on
M .

An indefinite almost contact metric manifold M is called an indefinite
cosymplectic manifold if [7],

(2.2) (∇Xϕ)Y = 0, and ∇Xξ = 0

for any X,Y ∈ TM , where ∇ denote the Levi-Civita connection on M .
An indefinite almost contact metric manifold {M,ϕ, ξ, η, g} is called an indefi-

nite cosymplectic space form M(c) if it satisfies [7]

(2.3)
R(X,Y )Z = c

4{g(Y, Z)X − g(X,Z)Y + g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX
+2g(X,ϕY )ϕZ + η(X)η(Z)Y − η(Y )η(Z)X

+g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ}

for any X,Y, Z ∈ Γ(TM).
We write as follows:

(2.4) R(X,Y, Z,W ) = g(R(X,Y )Z,W )

(2.5) Ric(X,Y ) = trace{Z → R(X,Z)Y }

where Ric denotes the Ricci tensor on M for X,Y, Z,W ∈ Γ(TM).
For a (0, k)-tensor field T on M , k ≥ 1, the (0, k + 2) tensor field R · T = 0 is

called curvature conditions of semi-symmetry type [4] and given by

(2.6)
(R.T )(X1, ...., Xk, X, Y ) = −T (R(X,Y )X1, X2, ..., Xk)

−...− T (X1, ..., Xk−1, R(X,Y )Xk)
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for X,Y,X1, Xk ∈ Γ(TM).
A semi-Riemannian space form M is said to be Ricci semi-symmetric if

R.Ric = 0, i.e.,

(2.7) (R(X,Y ).Ric)(X1, X2) = −Ric(R(X,Y )X1, X2)−Ric(X1, R(X,Y )X2) = 0

for any X,Y,X1, X2 ∈ Γ(TM).

Let (M, g) be a hypersurface of a (2m+1)-dimensional semi-Riemannian man-
ifold (M, g) with index s, 0 < s < 2m + 1 and g = g|M . Then M is lightlike hy-

persurface of M if g is of constant rank (2m− 1) and the normal bundle TM⊥ is a
distribution of rank 1 on M [6]. A non-degenerate complementary distribution
S(TM) of rank (2m− 1) to TM⊥ in TM , that is, TM = TM⊥⊥S(TM), is called
screen distribution. The following result (cf. [6], Theorem 1.1, page 79) has an
important role in studying the geometry of lightlike hypersurface.

Theorem A. Let (M, g, S(TM)) be a lightlike hypersurface of M . Then, there ex-
ists a unique vector bundle tr(TM) of rank 1 over M such that for any non-zero
section E of TM⊥ on a coordinate neighbourhood U ⊂ M , there exists a unique
section N of tr(TM) on U satisfying g(N,E) = 1 and g(N,N) = g(N,W ) = 0,
∀ W ∈ Γ(S(TM)|u).
Then, we have the following decomposition:

(2.8) TM = S(TM)⊥TM⊥, TM = S(TM)⊥(TM⊥ ⊕ tr(TM)).

Throughout this paper, all manifolds are supposed to be paracompact and
smooth. We denote by Γ(E) the smooth sections of the vector bundle E, by ⊥ and ⊕
the orthogonal and the non-orthogonal direct sum of two vector bundles,
respectively.

Let ∇, ∇ and ∇t denote the linear connections on M , M and vector bundle
tr(TM), respectively. Then, the Gauss and Weingarten formulae are given by

(2.9) ∇XY = ∇XY + h(X,Y ), ∀X,Y ∈ Γ(TM)

(2.10) ∇XV = −AV X +∇t
XV, ∀V ∈ Γ(tr(TM))

where {∇XY,AV X} and {h(X,Y ),∇t
XV } belongs to Γ(TM) and Γ(tr(TM)),

respectively and AV is the shape operator of M with respect to V . Moreover,
in view of decomposition (2.9), equations (2.10) and (2.11) take the form

(2.11) ∇XY = ∇XY +B(X,Y )N

(2.12) ∇XN = −ANX + τ(X)N

for any X,Y ∈ Γ(TM) and N ∈ Γ(tr(TM)), where B(X,Y ) and τ(X) are local
second fundamental form and a 1-form on U , respectively. It follows that
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B(X,Y ) = g(∇XY,E) = g(h(X,Y ), E), B(X,E) = 0, and

τ(X) = g(∇t
XN,E).

Let P denote the projection morphism of Γ(TM) on Γ(S(TM)) and ∇∗, ∇∗t

denote the linear connections on S(TM) and STM⊥, respectively. Then from the
decomposition of tangent bundle of lightlike hypersurface, we have

(2.13) ∇XPY = ∇∗
XPY + h∗(X,PY )

(2.14) ∇XE = −A∗
EX +∇∗t

XE

for any X,Y ∈ Γ(TM) and E ∈ Γ(TM⊥), where h∗, A∗ are the second fundamental
form and the shape operator of distribution S(TM) respectively.

By direct calculations using Gauss-Weingarten formulae, (2.14) and (2.15), we
find

(2.15) g(ANY, PW ) = g(N,h∗(Y, PW )); g(ANY,N) = 0,

(2.16) g(A∗
EX,PY ) = g(E, h(X,PY ); g(A∗

EX,N) = 0,

for any X,Y,W ∈ Γ(TM), E ∈ Γ(TM⊥) and N ∈ Γ(tr(TM)).
Locally, we define on U

(2.17) C(X,PY ) = g(h∗(X,PY ), N), λ(X) = g(∇∗t
XE,N).

Hence,

(2.18) h∗(X,PY ) = C(X,PY )E, ∇∗t
XE = λ(X)E.

On the other hand, by using (2.12), (2.13), (2.15) and (2.18), we obtain

λ(X) = g(∇XE,N) = g(∇XE,N) = −g(E,∇XN) = −τ(X).

Thus, locally (2.14) and (2.15) become

(2.19) ∇XPY = ∇∗
XPY + C(X,PY )E, ∇XE = −A∗

EX − τ(X)E.

Finally, (2.16) and (2.17), locally become

(2.20) g(ANY, PW ) = C(Y, PW ); g(ANY,N) = 0,

(2.21) g(A∗
EX,PY ) = B(X,PY ); g(A∗

EX,N) = 0.

We note that second equation of (2.21) implies that ANX ∈ Γ(S(TM)) for
X ∈ Γ(TM), i.e. AN is Γ(S(TM)) valued. On the other hand, from
g(∇XE,E) = 0, we have

(2.22) B(X,E) = 0.

In general, the induced connection ∇ on M is not a metric connection. Since ∇ is
a metric connection, we have
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0 = (∇Xg)(Y,Z) = X(g(Y,Z))− g(∇XY, Z)− g(Y,∇XZ).

By using (2.12) in this equation, we obtain

(2.23) (∇Xg)(Y, Z) = B(X,Y )θ(Z) +B(X,Z)θ(Y ), X, Y ∈ Γ(S(TM)|u),

where θ is a differential 1-form locally defined on M by θ(·) = g(N, ·).

If R and R are the curvature tensors of M and M , then using (2.12) in the
equation R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z, we obtain

(2.24)
R(X,Y )Z = R(X,Y )Z +B(X,Z)ANY −B(Y, Z)ANX

+{(∇XB)(Y, Z)− (∇Y B)(X,Z) + τ(X)B(Y,Z)− τ(Y )B(X,Z)}N

(2.25) (∇XB)(Y, Z) = XB(Y,Z)−B(∇XY, Z)−B(Y,∇XZ).

3. Ricci Semi-symmetric Lightlike Hypersurfaces in Indefinite Cosym-
plectic Space Form

In this section, we consider Ricci semi-symmetric lightlike hypersurfaces M in
an indefinite cosymplectic space form M(c).

For X ∈ Γ(TM), we write

(3.1) ϕX = tX + β(X)N

where tX is the tangential parts of ϕX and β is the one form on M .

We have following :

Lemma 3.1. Let M be a lightlike hypersurface of a (2m + 1)-dimensional
indefinite cosymplectic space form M(c). Then the Gauss equation of M is given
by

(3.2)
R(X,Y )Z = B(Y,Z)ANX −B(X,Z)ANY + c

4{g(Y, Z)X − g(X,Z)Y
+g(X,ϕZ)tY − g(Y, ϕZ)tX + 2g(X,ϕY )tZ + η(X)η(Z)Y

−η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ}.

Proof. From (2.3), (2.25), (3.1) and comparing the tangential part, we obtain (3.2).2

Theorem 3.1. Let M be a lightlike hypersurface of a (2m + 1)-dimensional
indefinite cosymplectic space form M(c). Then, we have

(3.3)

Ric(X,Y ) = c
4{−(2m− 1)g(X,Y )− g(tX, ϕY ) + 2g(ϕX, tY )

+g(E, ϕY )g(tX,N)− 2g(X,ϕE)g(tY,N) + g(X,Y )

+(2m− 2)η(X)η(Y )}+
∑2m−1

i=1 ϵiB(wi, Y )C(X,wi)
−αB(X,Y )
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where {(wi), i = 1, 2, ..., (2m− 1)} is the orthogonal basis of S(TM)

and α =
∑2m−1

i=1 ϵiC(Wi,Wi).

Proof. By the definition of Ricci curvature

Ric(X,Y ) =

2m−1∑
i=1

ϵig(R(X,wi)Y,wi) + g(R(X,E)Y,N)

From (3.2), we have

(3.4)

Ric(X,Y ) = c
4{−(2m− 1)g(X,Y )− g(tX, ϕY ) + 2g(ϕX, tY )

+g(E, ϕY )g(tX,N)− 2g(X,ϕE)g(tY,N) + g(X,Y )

+(2m− 2)η(X)η(Y )}+
∑2m−1

i=1 ϵi{B(Wi, Y )C(X,Wi)
−B(X,Y )C(Wi,Wi)}.

Since
∑2m−1

i=1 ϵiC(Wi,Wi) = α, hence (3.3) follows from (3.4). 2

From theorem 3.1, we have

Proposition 3.1. The Ricci tensor of a lightlike hypersurface in a (2m + 1)-
dimensional indefinite cosymplectic space form M(c) is degenerate if c = 0.

Proposition 3.2. The Ricci tensor of a lightlike hypersurface in a (2m + 1)-
dimensional indefinite cosymplectic space form M(c) is symmetric if c = 0 and the
shape operator of a lightlike hypersurface of M(c) is symmetric with respect to the
second fundamental form of M .

Proof. For proof (cf. Proposition 3.3 [15]). 2

The following corollary is similar to the Corollary 3.3 in [15]:

Corollary 3.1. The Ricci tensor of a lightlike hypersurface in a (2m + 1)-
dimensional indefinite cosymplectic space form M(c) is symmetric if c = 0 and
C(X,A∗

ξY ) = C(Y,A∗
ξX).

Theorem 3.2. Let M be a totally geodesic lightlike hypersurface of an indef-
inite cosymplectic space form M(c). Then, the Ricci tensor of M is parallel
with respect to ∇ if c = 0.

Proof. The derivative of Ricci tensor is given by

(∇ZRic)(X,Y ) = ∇ZRic(X,Y )−Ric(∇ZX,Y )−Ric(X,∇ZY ).
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Then, from (2.23) and (3.3), we have

(3.5)

(∇ZRic)(X,Y ) = −(2m− 1)[Z( c4 )g(X,Y ) + c
4{B(Z,X)θ(Y )

+B(Z, Y )θ(X)}]− Z( c4 ){g(tX, ϕY ) + 2g(ϕX, tY )
+g(E, ϕY )g(tX,N)− 2g(X,ϕE)g(tY,N)} − c

4{B(Z, tX)θ(ϕY )
+B(Z, ϕY )θ(tX) + g((∇Zt)X,ϕY ) + g(tX, (∇Zϕ)Y )

+B(Z, ϕY )g(tX,N) + g(∇ZE, ϕY )g(tX,N)
+g(E, (∇Zϕ)Y )g(tX,N) + g(E, ϕY )g((∇Zt)X,N)
+g(E, ϕY )g(tX,∇ZN)− 2B(Z,X)θ(ϕE)g(tY,N)

−2B(Z, ϕE)θ(X)g(tY,N)− 2g(X,ϕE)g((∇Zt)Y,N)
−2g(X,ϕE)g(tY,∇ZN)− 2g(X,∇ZϕE)g(tY,N)
+g(X,Y ) + (2m− 2)η(X)η(Y ) +B(Z,X)θ(Y )

+B(Z, Y )θ(X) + (2m− 2){B(Z, ξ)θ(X)η(Y ) +B(Z, ξ)θ(Y )η(X)
+g(X,∇Zξ)η(Y ) + g(Y,∇Zξ)η(X) +B(Z, ξ)θ(Y )η(X)

+g(Y,∇Zξ)η(X)}+
∑2m−1

i=1 ϵi{(∇ZB)(Wi, Y )C(X,Wi)
+B(∇ZWi, Y )C(X,Wi) +B(Wi, Y )C(X,∇ZWi)

+B(Wi, Y )(∇ZC)(X,Wi)} − Z(α)B(X,Y )− α(∇ZB)(X,Y ).

Since, M is totally geodesic lightlike hypersurface of an indefinite cosympletic space
form, therefore B(X,Y ) = 0 and ∇Xξ = 0 ∀X,Y ∈ Γ(TM). Hence, from (3.5), we
find

(3.6)

(∇ZRic)(X,Y ) = −(2m− 1)Z( c4 )g(X,Y )− Z( c4 ){g(tX, ϕY )
+2g(ϕX, tY ) + g(E, ϕY )g(tX,N)− 2g(X,ϕE)g(tY,N)}

− c
4{g((∇Zt)X,ϕY ) + g(tX, (∇Zϕ)Y )

+g(∇ZE, ϕY )g(tX,N) + g(E, (∇Zϕ)Y )g(tX,N)
+g(E, ϕY )g((∇Zt)X,N) + g(E, ϕY )g(tX,∇ZN)

−2g(X,ϕE)g((∇Zt)Y,N)− 2g(X,ϕE)g(tY,∇ZN)
−2g(X,∇ZϕE)g(tY,N) + g(X,Y ) + (2m− 2)η(X)η(Y )}.

From (3.6) it is obvious that (∇ZRic)(X,Y ) = 0 if c = 0, which proves the
Theorem. 2

Theorem 3.3. Let M be a Ricci semi-symmetric lightlike hypersurface of an
(2m + 1)-dimensional indefinite cosymplectic space form M(c). If c = 0, then,
either M is totally geodesic or Ric(E,ANE) = 0 for E ∈ Γ(TM⊥), where Ric is
the Ricci tensor of M and A denotes the shape operator of M .

Proof. Suppose M is Ricci semi-symmetric, then from (2.8), we have

(3.7) 0 = −Ric(R(X,Y )X1, X2)−Ric(X1, R(X,Y )X2)



600 Ram Shankar Gupta

Using (3.3) in (3.7), we find

(3.8)

0 = −B(Y,X1)Ric(ANX,X2) +B(X,X1)Ric(ANY,X2)
− c

4{g(Y,X1)Ric(X,X2)− g(X,X1)Ric(Y,X2)}
−g(X,ϕX1)Ric(tY,X2)− g(Y, ϕX1)Ric(tX,X2)

+2g(X,ϕY )Ric(tX1, X2)− η(X)η(X1)Ric(Y,X2)
−η(Y )η(X1)Ric(X,X2) + g(X,X1)η(Y )Ric(ξ,X2)

−g(Y,X1)η(X)Ric(ξ,X2)− g(Y,X2)Ric(X1, X)
−g(X,X2)Ric(X1, Y )− g(X,ϕX2)Ric(X1, tY )

−g(Y, ϕX2)Ric(X1, tX) + 2g(X,ϕY )Ric(X1, tX2)
−η(X)η(X2)Ric(X1, Y )− η(Y )η(X2)Ric(X1, X)

+g(X,X2)η(Y )Ric(X1, ξ)− g(Y,X2)η(X)Ric(X1, ξ)}
−B(Y,X2)Ric(X1, ANX) +B(X,X2)Ric(X1, ANY ).

Putting X1 = E in (3.8) and using (2.22), we obtain;

(3.9)

0 = − c
4{g(X,ϕE)Ric(tY,X2)− g(Y, ϕE)Ric(tX,X2)
+2g(X,ϕY )Ric(tE,X2)− g(Y,X2)Ric(E,X)
−g(X,X2)Ric(E, Y )− g(X,ϕX2)Ric(E, tY )

−g(Y, ϕX2)Ric(E, tX) + 2g(X,ϕY )Ric(E, tX2)
−η(X)η(X2)Ric(E, Y )− η(Y )η(X2)Ric(E,X)

+g(X,X2)η(Y )Ric(E, ξ)− g(Y,X2)η(X)Ric(E, ξ)}
−B(Y,X2)Ric(E,ANX) +B(X,X2)Ric(E,ANY ).

Putting Y = E in (3.9), we get;

(3.10)
0 = − c

4{3g(X,ϕE)Ric(tE,X2) + g(X,ϕX2)Ric(E, tE)
−g(E, ϕX2)Ric(E, tX) + 2g(X,ϕE)Ric(E, tX2)}

+B(X,X2)Ric(E,ANE).

If c = 0 then from (3.10), we have

B(X,X2)Ric(E,ANE) = 0.

So, if B(X,X2) = 0 for any X,X2 ∈ Γ(TM), then M is totally geodesic. If M is
not totally geodesic, it follows that Ric(E,ANE) = 0. 2

Hereafter, (R2m+1
q , ϕ0, ξ, η, g0) will denote the manifold R2m+1

q with its
cosymplectic structure given by

(3.11)


η = dz, ξ = ∂z,

g0 = η
⊗

η −
∑q

i=1 dx
i
⊗

dxi +
∑2m

i=q+1 dx
i
⊗

dxi,

ϕ0(
∑2m

i=1 Xi∂x
i + Z∂z) = (−X2, X1,−X4, X3, ...,−X2m, X2m−1, 0),

where (xi, z) are the Cartesian coordinates.

Example. Let M = (R7
2, g0) be a 7-dimensional indefinite cosymplectic man-

ifold of index 2 with signature (-, -, +, +, +, +, +) of the canonical basis
{∂x1, ∂x2, ..., ∂x6, ∂z}. Consider a lightlike hypersurface M of R7

2 given by
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X(u1, u2, u3, u4, u5, t) = (u1 +
√
2
√
u2
2 + u2

3, u1, u2, u3, u4, u5, t).

Then Rad(TM) = span{E =
√
x2
3 + x2

4∂x1−
√

x2
3 + x2

4∂x2+
√
2x3∂x3+

√
2x4∂x4}

and tr(TM) = span{N = 1
4(x2

3+x2
4)
(−

√
x2
3 + x2

4∂x1 +
√
x2
3 + x2

4∂x2 +
√
2x3∂x3 +

√
2x4∂x4)}. The screen distribution S(TM) is spanned by

{Z1 = ∂x1 + ∂x2, Z2 = −x4∂x3 + x3∂x4, Z3 = ∂x5, Z4 = ∂x6}⊥{ξ = ∂z}.

Now, we have

ϕ0E =
√

x2
3 + x2

4Z1 + Z2 ∈ S(TM),

ϕ0N = 1
4(x2

3+x2
4)
(−

√
x2
3 + x2

4Z1 + Z2) ∈ S(TM)

and D0 = span{Z3, Z4}. By direct computations, we obtain

∇XZ1 = ∇Z1X = 0,∇EE =
√
2E,∇Z2E = ∇EZ2 =

√
2Z2,∇Xξ = ∇ξX = 0,

∇Z2Z2 = −x3∂x3 − x4∂x4,∇XZ3 = ∇Z2X = 0,∇XZ4 = ∇Z4X = 0,

∇EN = 1
2
√
2

1√
x2
3+x2

4

∂x1 − 1
2
√
2

1√
x2
3+x2

4

∂x2 − 1
2

x3

(x2
3+x2

4)
∂x3 − 1

2
x4

(x2
3+x2

4)
∂x4,

∇Z1N = ∇Z3N = ∇Z4N = ∇ξN = 0,

and

∇Z2N = − x4

2
√
2(x2

3+x2
4)
∂x3 +

x3

2
√
2(x2

3+x2
4)
∂x4,

for any X ∈ Γ(TM). Thus, from the Weingarten formulae, we have

ANE = 0, ANZ1 = ANZ3 = ANZ4 = ANξ = 0, ANZ2 = 1
2
√
2(x2

3+x2
4)
Z2,

A∗
EZ1 = 0, A∗

EZ2 = −
√
2Z2, A

∗
EZ3 = A∗

EZ4 = A∗
Eξ = 0.

It is easy to see that M is non-totally geodesic Ricci semi-symmetric lightlike hy-
persurface.
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