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TWO CHARACTERIZATION THEOREMS FOR

LIGHTLIKE HYPERSURFACES OF A

SEMI-RIEMANNIAN SPACE FORM

Dae Ho Jin

Abstract. We study lightlike hypersurfaces M of a semi-Riemannian

space form M̃(c) with a semi-symmetric non-metric connection whose
structure vector field is tangent to M . Our main result is two char-
acterization theorems for such a lightlike hypersurface.

1. Introduction

The theory of lightlike submanifolds is used in mathematical physics,
in particular, in general relativity since lightlike submanifolds produce
models of different types of horizons [10, 19]. Lightlike submanifolds
are also studied in the theory of electromagnetism [4]. As for any semi-
Riemannian manifold there is a natural existence of lightlike subspaces,
Duggal and Bejancu published their work [4] on the general theory of
lightlike submanifolds to fill a gap in the study of submanifolds. Since
then there has been very active study on lightlike geometry of subman-
ifolds (see up-to date results in two books [5, 9]).

Ageshe and Chafle [1] introduced the notion of a semi-symmetric non-
metric connection on a Riemannian manifold. Although now we have
lightlike version of a large variety of Riemannian submanifolds, the the-
ory of lightlike submanifolds of semi-Riemannian manifolds with semi-
symmetric non-metric connections has been few known. Yasar et al. [20]
and Jin [11]∼ [15] studied lightlike submanifolds of semi-Riemannian
manifolds admitting semi-symmetric non-metric connections.

Cǎlin proved the following result [2]: For any lightlike submanifolds

M of indefinite almost contact manifolds M̃ , if the structure vector

field ζ of M̃ is tangent to M , then it belongs to S(TM). After Cǎlin’s
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work, many earlier works [7, 8, 16], which have been written on light-
like submanifolds of indefinite almost contact manifolds or lightlike sub-
manifolds of semi-Riemannian manifolds admitting semi-symmetric non-
metric connections, obtained their results by using the Cǎlin’s result.

In this paper, first we prove that the afore cited Cǎlin’s result is not
true for any lightlike hypersurfaces M of a semi-Riemannian space form

M̃(c) admitting a semi-symmetric non-metric connection (see Theorem
3.2 and its corollary). Next several authors [18] have agreed the asser-
tion that two screen conformalities, which are called screen conformal
and screen quasi-conformal, of M are dependent to each other. We prove
that such two screen conformalities are independent (see Theorem 3.2
and Theorem 3.3). In addition to these main results, we prove a classifi-
cation theorem for Einstein lightlike hypersurfaces of a Lorentzian space
form admitting a semi-symmetric non-metric connection.

2. Semi-symmetric non-metric connection

Let (M̃, g̃) be a semi-Riemannian manifold. A connection ∇̃ on M̃
is called a semi-symmetric non-metric connection [1] if, for any vector

fields X, Y and Z on M̃ , ∇̃ and its torsion tensor T̃ satisfy

(∇̃X g̃)(Y,Z) = −π(Y )g̃(X,Z)− π(Z)g̃(X,Y ),(2.1)

T̃ (X,Y ) = π(Y )X − π(X)Y,(2.2)

where π is a 1-form associated with a non-vanishing smooth vector field
ζ, which is called the structure vector field , by

(2.3) π(X) = g̃(X, ζ).

Let (M, g) be a lightlike hypersurface of M̃ . Then the normal bundle
TM⊥ of M is a subbundle of the tangent bundle TM of M and coin-
cides the radical distribution Rad(TM) = TM ∩TM⊥ of M . Therefore
there exists a complementary non-degenerate vector bundle S(TM) of
Rad(TM) in TM , which is called a screen distribution on M , such that

(2.4) TM = Rad(TM)⊕orth S(TM),

where ⊕orth denotes the orthogonal direct sum. We denote such a light-
like hypersurface by M = (M, g, S(TM)). Denote by F (M) the algebra
of smooth functions on M and by Γ(E) the F (M) module of smooth
sections of a vector bundle E over M . It is well-known [4] that, for
any null section ξ of Rad(TM) on a coordinate neighborhood U ⊂ M ,
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there exists a unique null section N of a unique vector bundle tr(TM)
in S(TM)⊥ satisfying

g̃(ξ,N) = 1, g̃(N,N) = g̃(N,X) = 0, ∀X ∈ Γ(S(TM)).

We call tr(TM) andN the transversal vector bundle and the null transver-
sal vector field of M with respect to S(TM) respectively. Then the

tangent bundle TM̃ of M̃ is given by

(2.5) TM̃ = TM ⊕ tr(TM) = {Rad(TM) ⊕ tr(TM)} ⊕orth S(TM).

In the entire discussion of this article we shall assume that ζ to be
unit spacelike vector field of M . Therefore ζ is tangent to M . In the
sequel, we take X, Y, Z ∈ Γ(TM) unless otherwise specified.

Let P be the projection morphism of TM on S(TM). The local Gauss
and Weingartan formulas for M and S(TM) are given respectively by

∇̃XY = ∇XY +B(X,Y )N,(2.6)

∇̃XN = −ANX + τ(X)N ;(2.7)

∇XPY = ∇∗XPY + C(X,PY )ξ,(2.8)

∇Xξ = −A∗ξX − τ(X)ξ,(2.9)

where ∇ and ∇∗ are the induced linear connections on TM and S(TM)
respectively, B and C are the local second fundamental forms on TM
and S(TM) respectively, AN and A∗ξ are the shape operators on TM

and S(TM) respectively, and τ is a 1-form on TM .
From (2.1), (2.2) and (2.6), we have

(∇Xg)(Y, Z) = −π(Y )g(X,Z)− π(Z)g(X,Y )(2.10)

+ B(X,Y )η(Z) +B(X,Z)η(Y ),

T (X,Y ) = π(Y )X − π(X)Y(2.11)

and B is symmetric on TM , where T is the torsion tensor with respect
to the induced connection ∇ of M and η is a 1-form on TM such that

η(X) = g̃(X,N).

From the fact B(X,Y ) = g̃(∇̃XY, ξ), we know that B is independent
of the choice of a screen distribution S(TM). The above two local second
fundamental forms are related to their shape operators by

g(A∗ξX,Y ) = B(X,Y ), g̃(A∗ξX,N) = 0,(2.12)

g(ANX,PY ) = C(X,PY )− fg(X,PY )− η(X)π(PY ),(2.13)

g̃(ANX,N) = −fη(X),
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where f is the smooth function given by f = π(N). By (2.12), we show
that A∗ξ is a S(TM)-valued self-adjoint operator and

(2.14) B(X, ξ) = 0, A∗ξξ = 0.

Denote by R̃ , R and R∗ the curvature tensors of the semi-symmetric

non-metric connection ∇̃ on M̃ , the induced connection ∇ on M and
the induced connection ∇∗ on S(TM) respectively. Using the Gauss -
Weingarten formulas for M and S(TM), we obtain the Gauss-Codazzi
equations for M and S(TM) :

g̃(R̃(X,Y )Z, PW ) = g(R(X,Y )Z, PW )(2.15)

+ B(X,Z)g(ANY, PW )−B(Y,Z)g(ANX,PW ),

g̃(R̃(X,Y )Z, ξ) = (∇XB)(Y,Z)− (∇YB)(X,Z)(2.16)

+ B(Y,Z){τ(X)− π(X)} −B(X,Z){τ(Y )− π(Y )},

g̃(R̃(X,Y )Z, N) = g̃(R(X,Y )Z, N)(2.17)

+ f{B(Y, Z)η(X)−B(X,Z)η(Y )},

g̃(R̃(X,Y )ξ, N) = B(X,ANY )−B(Y,ANX)− 2dτ(X,Y )(2.18)

= C(Y,A∗ξX)− C(X,A∗ξY )− 2dτ(X,Y ),

g(R(X,Y )PZ, PW ) = g(R∗(X,Y )PZ, PW )(2.19)

+ C(X,PZ)g(A∗ξY, PW )− C(Y, PZ)g(A∗ξX,PW )

g̃(R(X,Y )PZ, N)(2.20)

= (∇XC)(Y, PZ)− (∇Y C)(X,PZ)

+ C(X,PZ){τ(Y ) + π(Y )} − C(Y, PZ){τ(X) + π(X)},

g̃(R̃(X,Y )N, PZ)(2.21)

= g(−∇X(ANY ) +∇Y (ANX) +AN [X,Y ], PZ)

− τ(Y )g(ANX,PZ) + τ(X)g(ANY, PZ),

g(R(X,Y )ξ, PZ)(2.22)

= g(−∇∗X(A∗ξY ) +∇∗Y (A∗ξX) +A∗ξ [X,Y ], PZ)

+ τ(Y )g(A∗ξX,PZ)− τ(X)g(A∗ξY, PZ).
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A complete simply connected semi-Riemannian manifold M̃ of con-
stant curvature c is called a semi-Riemannian space form and denote it

by M̃(c). In this case, the curvature tensor R̃ of M̃(c) is given by

(2.23) R̃(X,Y )Z = c{g̃(Y,Z)X − g̃(X,Z)Y },

for all X, Y, Z ∈ Γ(TM̃).

3. Two characterization theorems

Lemma 3.1 [11]∼ [14]. Let M be a lightlike hypersurface of a semi-

Riemannian manifold M̃ admitting a semi-symmetric non-metric con-
nection. If the structure vector field ζ is tangent to M , then ζ satisfies

(3.1) B(X, ζ) = π(A∗ξX) = 0.

Proof. From the two representations of (2.18), we obtain

B(X,ANY )−B(Y,ANX) = C(Y,A∗ξX)− C(X,A∗ξY ).

Substituting (2.12) and (2.13) into this equation, we get

π(A∗ξX)η(Y ) = π(A∗ξY )η(X).

Replacing Y by ξ to this and using (2.14)2, we have (3.1).

Definition 1. A lightlike hypersurface M of a semi-Riemannian man-

ifold M̃ admitting a semi-symmetric non-metric connection is called
screen quasi-conformal [18] if B and C satisfy

(3.2) C(X,PY ) = ϕB(X,Y ) + η(X)π(PY ),

where ϕ is a non-vanishing function on a neighborhood U in M .

From (2.12) and (2.13), we show that a necessary and sufficient con-
dition for M to be screen quasi-conformal is

(3.3) ANX = ϕA∗ξX − fX.

Theorem 3.2. Let M be a screen quasi-conformal lightlike hypersurface

of a semi-Riemannian space form M̃(c) admitting a semi-symmetric
non-metric connection. If ζ is tangent to M but it does not belong to
S(TM), then c = 1.

Proof. Applying ∇Y to (3.3), we have

∇X(ANY ) = X[ϕ]A∗ξY + ϕ∇X(A∗ξY )−X[f ]Y − f∇XY.
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Substituting this into (2.21) and using (2.11)∼(2.13) and (2.22), we have

g̃(R̃(X,Y )N,PZ)− ϕg̃(R̃(X,Y )ξ, PZ)

= {Y [ϕ]− 2ϕτ(Y )}B(X,PZ)

− {X[ϕ]− 2ϕτ(X)}B(Y, PZ)

+ {X[f ]− fτ(X)− fπ(X)}g(Y, PZ)

− {Y [f ]− fτ(Y )− fπ(Y )}g(X,PZ).

Substituting (2.23) into the last equation and using (2.14), we get

{X[ϕ]− 2ϕτ(X)}B(Y,Z)(3.4)

− {Y [ϕ]− 2ϕτ(Y )}B(X,Z)

= {X[f ]− fπ(X)− fτ(X) + cη(X)}g(Y,Z)

− {Y [f ]− fπ(Y )− fτ(Y ) + cη(Y )}g(X,Z).

Taking X = Z = ζ and Y = ξ to this equation and using (3.1), we have

(3.5) ξ[f ]− fτ(ξ) + c = 0.

On the other hand, substituting (2.23) into (2.16), we have

(∇XB)(Y,Z)− (∇YB)(X,Z)(3.6)

= B(Y, Z){π(X)− τ(X)} −B(X,Z){π(Y )− τ(Y )}.

Applying ∇̃X to η(Y ) = g̃(Y,N) and using (2.1), we have

X(η(Y )) = −π(Y )η(X)− fg(X,Y ) + g̃(∇XY,N)

− g(ANX,Y ) + τ(X)η(Y ).

Substituting this into the right term of the following equation

2dη(X,Y ) = X(η(Y ))− Y (η(X))− η([X,Y ])

and using (2.11), (3.3) and the fact A∗ξ is self-adjoint, we get

(3.7) 2dη(X,Y ) = τ(X)η(Y )− τ(Y )η(X).

Substituting (2.23) into (2.17), we obtain

g̃(R(X,Y )PZ, N) = c{g(Y, PZ)η(X)− g(X,PZ)η(Y )}
+ f{B(X,PZ)η(Y )−B(Y, PZ)η(X)}.

Comparing this equation and (2.20), we get

{cg(Y, PZ)− fB(Y, PZ)}η(X)− {cg(X,PZ)− fB(X,PZ)}η(Y )(3.8)

= (∇XC)(Y, PZ)− (∇Y C)(X,PZ) + C(X,PZ){π(Y ) + τ(Y )}
− C(Y, PZ){π(X) + τ(X)}.
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Applying ∇X to C(Y, PZ) = ϕB(Y, PZ) + η(Y )π(PZ), we have

(∇XC)(Y, PZ) = X[ϕ]B(Y, PZ) + ϕ(∇XB)(Y, PZ)

+ {X(η(Y ))− η(∇XY )}π(PZ) + η(Y ){X(π(PZ))− π(∇∗XPZ)}.
Substituting this into (3.8) and using (3.2), (3.4), (3.6) and (3.7), we get

f{η(Y )B(X,PZ)− η(X)B(Y, PZ)}(3.9)

= {X[f ]− fπ(X)− fτ(X)}g(Y, PZ)

− {Y [f ]− fπ(Y )− fτ(Y )}g(X,PZ)

+ η(Y ){X(π(PZ))− π(∇∗XPZ)}
− η(X){Y (π(PZ))− π(∇∗Y PZ)}.

Applying ∇X to π(PZ) = g(ζ, PZ) and using (2.10) and (3.1), we have

X(π(PZ))− π(∇∗XPZ)

= −g(X,PZ)− π(X)π(PZ) + fB(X,PZ) + g(∇Xζ, PZ).

Substituting this equation into (3.9), we obtain

{X[f ]− fπ(X)− fτ(X)}g(Y, PZ)(3.10)

− {Y [f ]− fπ(Y )− fτ(Y )}g(X,PZ)

+ η(X){g(Y, PZ) + π(Y )π(PZ)− g(∇Y ζ, PZ)}
− η(Y ){g(X,PZ) + π(X)π(PZ)− g(∇Xζ, PZ)} = 0.

Applying ∇X to g(ζ, ζ) = 1 and using (2.10) and (3.1), we have

(3.11) g(∇Xζ, ζ) = π(X).

Taking X = ξ and Y = Z = ζ to (3.10) and using (3.11), we get

(3.12) ξ[f ]− fτ(ξ) + 1 = 0.

From this result and (3.5), we show that c = 1.

Corollary 1. There exist no screen quasi-conformal lightlike hyper-

surfaces M of a semi-Riemannian space form M̃(c) admitting a semi-
symmetric non-metric connection such that ζ belongs to S(TM).

Proof. If ζ belongs to S(TM), then f = g̃(ζ,N) = 0. It follows from
(3.12) that 1 = 0. It is a contradiction. Thus there exist no screen
quasi-conformal lightlike hypersurfaces M of a semi-Riemannian space

form M̃(c) admitting a semi-symmetric non-metric connection such that
ζ belongs to S(TM).

Remark 1. For any lightlike submanifolds M of indefinite almost con-

tact manifolds M̃ such that the structure vector field ζ of M̃ is tangent
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to M , if ζ belongs to Rad(TM), then ζ is decompose as ζ = aξ and
a 6= 0. Using this, we have 1 = g̃(ζ, ζ) = a2g̃(ξ, ξ) = 0. It is a con-
tradiction. Thus ζ does not belong to Rad(TM). This enables one to
choose a screen distribution S(TM) which contains ζ. Although S(TM)
is not unique, it is canonically isomorphic to the factor vector bundle
S(TM)] = TM/Rad(TM) [17]. Thus all screen distributions are mutu-
ally isomorphic. This implies that if ζ is tangent to M , then it belongs to
S(TM). Cǎlin [2] proved this result. Duggal and Sahin also proved this
result (see p.318 - 319 of [9]). After Cǎlin’s work, many earlier works
[7, 8, 16], which have been written on lightlike submanifolds of indefinite
almost contact manifolds or lightlike submanifolds of semi-Riemannian
manifolds admitting semi-symmetric non-metric connections, obtained
their results by using the afore cited Cǎlin’s result. However, we regret
to indicate that Cǎlin’s result is not true for any lightlike hypersurfaces

M of a semi-Riemannian space form M̃(c) admitting a semi-symmetric
non-metric connection by Theorem 3.2 and its corollary.

Definition 2. A lightlike hypersurface M of a semi-Riemannian man-

ifold M̃ admitting a semi-symmetric non-metric connection is screen
conformal [5, 6, 9] if the second fundamental forms B and C satisfy

(3.13) C(X,PY ) = ϕB(X,Y ),

where ϕ is a non-vanishing function on a neighborhood U in M .

Theorem 3.3. Let M be a lightlike hypersurface of a semi-Riemannian

space form M̃(c) admitting a semi-symmetric non-metric connection
such that ζ is tangent to M . If M is screen conformal, then c = 0.

Proof. Applying ∇X to C(Y, PZ) = ϕB(Y, PZ), we have

(∇XC)(Y, PZ) = X[ϕ]B(Y, PZ) + ϕ(∇XB)(Y, PZ).

Substituting this equation into (2.20) and using (3.6), we have

g̃(R(X,Y )PZ,N)

= {X[ϕ]− 2ϕτ(X)}B(Y, PZ)− {Y [ϕ]− 2ϕτ(Y )}B(X,PZ).

Substituting this equation and (2.23) into (2.17), we get

c{g(Y, PZ)η(X)− g(X,PZ)η(Y )}
= {X[ϕ]− 2ϕτ(X) + fη(X)}B(Y, PZ)

− {Y [ϕ]− 2ϕτ(Y ) + fη(Y )}B(X,PZ).

Taking X = ξ and Y = Z = ζ to this and using (3.1), we have c = 0.
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Jin [12] proved the following result: Under the same assumption in
Theorem 3.5, if M is screen conformal and τ = 0, then c = 0.

Remark 2. From Theorem 3.2 and Theorem 3.3, we show that the
two screen conformalities, which are called screen conformal and screen
quasi-conformal, of M are not mutually dependent to each other but not
mutually independent.

4. Einstein lightlike hypersurfaces

Let R̃ic be the Ricci curvature tensor of M̃ and R(0, 2) the induced
Ricci type tensor on M given respectively by

R̃ic(X,Y ) = trace{Z → R̃(Z,X)Y }, ∀X, Y ∈ Γ(TM̃),

R(0, 2)(X,Y ) = trace{Z → R(Z,X)Y } , ∀X, Y ∈ Γ(TM).

Consider a quasi-orthonormal frame field {ξ;Wa} on M , where
Rad(TM) = Span{ξ} and S(TM) = Span{Wa} and let E = {ξ,N,Wa}
be the corresponding frame field on M̃ . Using this frame field, we obtain

R(0, 2)(X,Y ) = R̃ic(X,Y ) +B(X,Y )trAN − g(ANX,A
∗
ξY )

− g̃(R̃(ξ, Y )X, N), ∀X, Y ∈ Γ(TM).

This shows that R(0, 2) is not symmetric. The tensor field R(0, 2) is called
its induced Ricci tensor [5, 6], denoted by Ric, of M if it is symmetric.

It is known [13] that R(0, 2) is symmetric if and only if the 1-form τ is
closed, i.e., dτ = 0, for any coordinate neighborhood U ⊂M .

Remark. If R(0, 2) is symmetric, then there exists a null pair {ξ, N}
such that the corresponding 1-form τ satisfies τ = 0 [4], which called a
canonical null pair of M . Although S(TM) is not unique, it is canoni-
cally isomorphic to the factor vector bundle S(TM)] = TM/Rad(TM)
[17]. This implies that all screen distribution are mutually isomorphic.
For this reason, in case dτ = 0 we consider only lightlike hypersurfaces
M endow with the canonical null pair.

M is called an Einstein manifold if the Ricci tensor of M satisfies

(4.1) Ric = κg.

It is well-known that if dim M > 2, then κ is a constant. For dim M = 2,
any manifold M is Einstein but κ is not necessarily constant.

In case M̃ is a space form M̃(c), R(0, 2) is given by

(4.2) R(0, 2)(X,Y ) = mcg(X,Y ) +B(X,Y )trAN − g(ANX,A
∗
ξY ).
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Theorem 5.1 [13]. Let M be a lightlike hypersurface of a semi-Riemannian

manifold M̃ admitting a semi-symmetric metric connection. Then the
following assertions are equivalent :

(1) The screen distribution S(TM) is an integrable distribution.
(2) C is symmetric, i.e., C(X,Y ) = C(Y,X) for all X,Y ∈ Γ(S(TM)).
(3) The shape operator AN is self-adjoint with respect to g, i.e.,

g(ANX,Y ) = g(X,ANY ), ∀X, Y ∈ Γ(S(TM)).

Remark. Just as in the well-known case of locally product Riemannian
or semi-Riemannian manifolds [4, 5, 6, 19], if S(TM) is an integrable
distribution, then and M is locally a product manifold C ×M∗ where C
is a null curve tangent to Rad(TM) and M∗ is a leaf of S(TM).

Theorem 5.2. Let M be a screen quasi-conformal Einstein lightlike hy-

persurface of a Lorentzian space form M̃(c) admitting a semi-symmetric
non-metric connection. If ζ is tangent to M but it does not belong to
S(TM) and the mean curvature of M is constant, then M is locally a
product manifold M = C ×M1 ×M2, where C is a null curve tangent
to Rad(TM), M1 is an Euclidean space and M2 is a totally umbilical
Riemannian space.

Proof. From (3.3), (4.2) and the fact A∗ξ is self-adjoint, we show that

R(0, 2) is symmetric and S(TM) is an integrable distribution. As g(A∗ξζ, X)

= B(ζ,X) = 0 and S(TM) is non-degenerate, we have

(4.3) A∗ξζ = 0.

Using (2.12), (3.3), (4.1) and the fact c = 1, from (4.2) we have

(4.4) g(A∗ξX,A
∗
ξY )− αg(A∗ξX,Y ) + ϕ−1(κ−m)g(X,Y ) = 0,

for all X, Y ∈ Γ(TM) due to c = 1, where α = trA∗ξ − fmϕ−1. Taking

X = Y = ζ to (4.4) and using (4.3), we have κ = m. (4.4) becomes

(4.5) g(A∗ξX,A
∗
ξY )− αg(A∗ξX,Y ) = 0.

As M̃ is Lorentzian manifold, S(TM) is a Riemannian vector bundle.
Since ξ is an eigenvector field of A∗ξ corresponding to the eigenvalue 0 due

to (2.14)2 and A∗ξ is S(TM)-valued real self-adjoint operator, A∗ξ have

m real orthonormal eigenvector fields in S(TM) and is diagonalizable.
Consider a frame field of eigenvectors {ξ, E1, . . . , Em} of A∗ξ such that

{E1, . . . , Em} is an orthonormal frame field of S(TM) and A∗ξEi = λiEi.
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Put X = Y = Ei in (4.5), each eigenvalue λi is a solution of the equation

x2 − αx = 0.

As this equation has at most two distinct solutions 0 and α, there exists
p ∈ {0, 1, . . . , m} such that λ1 = · · · = λp = 0 and λp+1 = · · · = λm =
α(6= 0), by renumbering if necessary. As trA∗ξ = 0p+ (m−p )α, we have

(m− p− 1)α = fmϕ−1.

Consider four distributions Do, Dα, D
s
o and Ds

α on S(TM) given by

Do = {X ∈ Γ(TM) | A∗ξX = 0}, Ds
o = Do ∩ S(TM),

Dα = {U ∈ Γ(TM) | A∗ξU = αPU}, Ds
α = Dα ∩ S(TM).

Clearly we show that Do ∩ Dα = Rad(TM), Ds
o ∩ Ds

α = {0} as α 6= 0
and Ds

o = PDo, D
s
α = Dα. In the sequel, we take the vector fields

X, Y ∈ Γ(Do), U, V ∈ Γ(Dα) and Z, W ∈ Γ(TM). Denote X∗ =
PX, Y ∗ = PY, U∗ = PU and V ∗ = PV . Then X∗, Y ∗ ∈ Γ(Ds

o) and
U∗, V ∗ ∈ Γ(Ds

α). Since X∗ and U∗ are eigenvector fields of the real self-
adjoint operator A∗ξ corresponding to the different eigenvalues 0 and α

respectively, X∗⊥U∗ and g(X,U) = g(X∗, U∗) = 0, that is, Do⊥gDα.
Also, since B(X,U) = g(A∗ξX,U) = 0, we show that Dα⊥B Do. Since

{Ei}1≤i≤p and {Ea}p+1≤a≤m are vector fields of Ds
o and Ds

α respectively
and Ds

o and Ds
α are mutually orthogonal, we show that Ds

o and Ds
α are

non-degenerate distributions of rank p and rank (m − p) respectively.
Thus S(TM) is decomposed as S(TM) = Ds

α ⊕orth Ds
o.

From (4.5), we get A∗ξ(A
∗
α − αP ) = 0. Let W ∈ ImA∗ξ . Then there

exists Z ∈ Γ(TM) such that W = A∗ξZ. Then (A∗ξ − αP )W = 0 and

W ∈ Γ(Dα). Thus ImA∗ξ ⊂ Γ(Dα). By duality, Im(A∗ξ −αP ) ⊂ Γ(Do).

Applying ∇X to B(Y,U) = 0 and using (2.12), we obtain

(∇XB)(Y,U) = −g(A∗ξ∇XY, U).

Using this, (2.11), (3.6) and the facts A∗ξX = A∗ξY = 0, we get

g(A∗ξ [X,Y ], U) = 0.

As ImA∗ξ ⊂ Γ(Dα) and Dα is non-degenerate, A∗ξ [X,Y ] = 0. Thus

[X,Y ] ∈ Γ(Do) and Do is integrable. This result implies [X∗, Y ∗] ∈
Γ(Do). On the other hand, since S(TM) is integrable, [X∗, Y ∗] ∈
Γ(S(TM)). Thus [X∗, Y ∗] ∈ Γ(Ds

o). Thus Ds
o is also integrable.

Applying ∇V to B(U, Y ) = 0 and using A∗ξY = 0 and A∗ξU = αPU ,
we get

(∇VB)(U, Y ) = −αg(∇V Y, U).
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Substituting this into (3.6) and using the fact α 6= 0, we obtain

g(∇V Y,U) = g(V,∇UY ).

Applying ∇V to g(Y,U) = 0 and using (2.10), we have

π(Y )g(U, V )−B(V,U)η(Y )− g(∇V Y, U) = g(Y,∇V U).

Taking the skew-symmetric part of this and using (2.11), we have

g([V,U ], Y ) = 0, ∀Y ∈ Γ(Do) and U, V ∈ Γ(Dα).

From this, we get g([V ∗, U∗], Y ∗) = 0 for all Y ∗ ∈ Γ(Ds
o) and U∗, V ∗ ∈

Γ(Ds
α). As Ds

o and Ds
α are mutually orthogonal non-degenerate distri-

butions, we show that [V ∗, U∗] ∈ Γ(DS
α). Thus Ds

α is also integrable.

Applying ∇U to B(X,Y ) = 0 and ∇X to B(U, Y ) = 0, we have

(∇UB)(X,Y ) = 0, (∇XB)(U, Y ) = −αg(∇XY,U).

Substituting these equations into (3.6), we have αg(∇XY, U) = 0. As

g(A∗ξ∇XY, U) = B(∇XY, U) = αg(∇XY, U) = 0

and ImA∗ξ ⊂ Γ(Dα) and Dα is non-degenerate, we get A∗ξ∇XY = 0.

This implies ∇XY ∈ Γ(Do). Thus Do is an auto-parallel distribution on
S(TM). This implies that ∇X∗Y ∗ ∈ Γ(Do) for any X∗, Y ∗ ∈ Γ(Ds

o).
As C(X∗, Y ∗) = ϕB(X∗, Y ∗) + η(X∗)π(Y ∗) = 0, we have ∇X∗Y ∗ =
∇∗X∗Y ∗ ∈ Γ(S(TM)). Thus ∇X∗Y ∗ ∈ Γ(Ds

o) and Ds
o is also an auto-

parallel distribution.

As A∗ξζ = 0, ζ belongs to Do. Thus π(U) = 0 for any U ∈ Γ(Dα).

Applying ∇X to g(U, Y ) = 0 and using (2.10) and the fact Do is auto-
parallel, we get g(∇XU, Y ) = 0. This implies ∇XU ∈ Γ(Dα).

Assume that the mean curvature vector field

µ =
1

m
g(A∗ξEa, Ea) =

m− p
m

α

of M is constant. Then α is a constant. Applying ∇X to B(U, V ) =
αg(U, V ) and ∇U to B(X,V ) = 0, we have

(∇XB)(U, V ) = 0, (∇UB)(X,V ) = −αg(∇UX,V ).

Substituting this two equations into (3.6) and using Do⊥B Dα, we have

g(∇UX, V ) = π(X)g(U, V ).

Applying ∇U to g(X,V ) = 0 and using (2.10), we obtain

g(X,∇UV ) = 0.
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From this, we get g(X∗, ∇U∗V ∗) = 0 for all X∗ ∈ Γ(Ds
o) and U∗, V ∗ ∈

Γ(Ds
α). As Ds

o and Ds
α are mutually orthogonal non-degenerate distri-

butions, ∇U∗V ∗ ∈ Γ(DS
α) and Ds

α is auto-parallel distribution.

Since the leaf M∗ of S(TM) is a Riemannian manifold and S(TM) =
Ds
α ⊕orth Ds

o, where Ds
α and Ds

o are auto-parallel distributions of M∗,
by the decomposition theorem of de Rham [3] we have M∗ = M1 ×M2,
where M1 is a totally geodesic leaf of Ds

o and M2 is a totally umbilical
leaf of Ds

α. Consider the frame field of eigenvectors {ξ, E1, . . . , Em}
of A∗ξ such that {Ei}i is an orthonormal frame field of S(TM), then

B(Ei, Ej) = C(Ei, Ej) = 0 for 1 ≤ i < j ≤ m and B(Ei, Ei) =
C(Ei, Ei) = 0 for 1 ≤ i ≤ m − 1. From (2.15) and (2.19), we have

g̃(R̃(Ei, Ej)Ej , Ei) = g(R∗(Ei, Ej)Ej , Ei) = 0. Thus the sectional cur-

vature K of the leaf M \ of Ds
o is given by

K(Ei, Ej) =
g(R∗(Ei, Ej)Ej , Ei)

g(Ei, Ei)g(Ej , Ej)− g2(Ei, Ej)
= 0.

Thus M is locally a product manifold M = C ×M1 ×M2, where C is a
null curve tangent to Rad(TM), M1 is an Euclidean space and M2 is a
totally umbilical Riemannian space.
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