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LIGHTLIKE HYPERSURFACES OF AN INDEFINITE

GENERALIZED SASAKIAN SPACE FORM WITH A

SYMMETRIC METRIC CONNECTION OF TYPE (ℓ, m)

Dae Ho Jin

Abstract. We define a new connection on a semi-Riemannian manifold.
Its notion contains two well known notions; (1) semi-symmetric connec-
tion and (2) quarter-symmetric connection. In this paper, we study the
geometry of lightlike hypersurfaces of an indefinite generalized Sasakian
space form with a symmetric metric connection of type (ℓ, m).

1. Introduction

A linear connection ∇̄ on a semi-Riemannian manifold (M̄, ḡ) is said to be
a symmetric connection of type (ℓ, m) if its torsion tensor T̄ satisfies

(1.1) T̄ (X̄, Ȳ ) = ℓ{θ(Ȳ )X̄ − θ(X̄)Ȳ }+m{θ(Ȳ )JX̄ − θ(X̄)JȲ },

where ℓ and m are smooth functions, J is a tensor field of type (1, 1) and θ is
a 1-form associated with a unit vector field ζ by θ(X̄) = ḡ(X̄, ζ). Moreover,
if ∇̄ satisfies ∇̄ḡ = 0, then it is called a symmetric metric connection of type

(ℓ, m). In the following, we denote by X̄, Ȳ and Z̄ the vector fields on M̄ .
In case of ℓ = 1 and m = 0, ∇̄ is called a semi-symmetric metric connection.

The notion of semi-symmetric metric connection on a Riemannian manifold was
introduced by H. A. Hayden [8] and later studied by some authors [18]. In case
of ℓ = 0 and m = 1, ∇̄ is called a quarter-symmetric metric connection. The
notion of quarter-symmetric metric connection was introduced by K. Yano-T.
Imai [19], and since then it have been studied by S. C. Rastogi [16, 17], D.
Kamilya-U. C. De [11], R. S. Mishra-S. N. Pandey [12], S. Golab [7], N. Pušić
[15], J. Nikić-N. Pušić [13] and some others.

The lightlike version of Riemannian manifolds equipped with semi-symmetric
or quarter-symmetric metric connections have been studied by several authors.
In this paper, we study the geometry of lightlike hypersurface of an indefinite
generalized Sasakian space form with a symmetric metric connection of type
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(ℓ, m), in which the tensor field J , the 1-form θ and the vector field ζ, defined
by (1.1), are identical with the tensor field J , the 1-form θ and the vector field
ζ of the indefinite almost contact structure (J, ζ, θ, ḡ) on M̄ .

2. Preliminaries

Let (M, g) be a lightlike hypersurface, with a screen distribution S(TM), of
a semi-Riemannian manifold (M̄, ḡ) with a symmetric metric connection ∇̄ of
type (ℓ, m). Then the normal bundle TM⊥ of M is a subbundle of the tangent
bundle TM of M and satisfies TM = TM⊥ ⊕ S(TM). Denote by F (M) the
algebra of smooth functions on M and by Γ(E) the F (M) module of smooth
sections of a vector bundle E over M . For any null section ξ of TM⊥ on a
coordinate neighborhood U ⊂ M , there exists a unique null section N of a
unique vector bundle tr(TM) in S(TM)⊥ satisfying

ḡ(ξ,N) = 1, ḡ(N,N) = ḡ(N,X) = 0, ∀X ∈ Γ(S(TM)).

We call tr(TM) and N the transversal vector bundle and the null transversal

vector field of M with respect to S(TM) respectively. In the following, we
denote by X , Y , Z and W the smooth vector fields on M , unless otherwise
specified.

As the tangent bundle TM̄ of M̄ is satisfied TM̄ = TM ⊕ tr(TM), the
Gauss and Weingarten formulas of M are given by

∇̄XY = ∇XY +B(X,Y )N,(2.1)

∇̄XN = −A
N
X + τ(X)N,(2.2)

respectively, where ∇ is the linear connection on M , B is the local second
fundamental form on TM , A

N
is its shape operator and τ is a 1-form on TM .

We note TM = TM⊥ ⊕ S(TM) and denote by P the projection morphism
of TM on S(TM). Then the Gauss and Weingarten formulas of S(TM) are
given by

∇XPY = ∇∗

XPY + C(X,PY )ξ,(2.3)

∇Xξ = −A∗

ξX − τ(X)ξ,(2.4)

respectively, where ∇∗ is the linear connection on S(TM), C is the local screen
second fundamental form of S(TM), A∗

ξ is its shape operator.

Note that B and C are not symmetric. As B(X,Y ) = ḡ(∇̄XY, ξ), we show
that B is independent of the choice of S(TM) and satisfies

(2.5) B(X, ξ) = 0.

The above second fundamental forms are related to their shape operators by

g(A∗

ξX,Y ) = B(X,Y ), ḡ(A∗

ξX,N) = 0,(2.6)

g(A
N
X,PY ) = C(X,PY ), ḡ(A

N
X,N) = 0.(2.7)

Denote by (2.6)i the i-th equation of the two equations in (2.6). We use the
same notations for any others.
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The induced connection ∇ on M is not a metric one and satisfies

(2.8) (∇Xg)(Y, Z) = B(X,Y )η(Z) +B(X,Z)η(Y ),

where η is a 1-form on TM such that

η(X) = ḡ(X,N).

3. Symmetric metric connection of type (ℓ, m)

The definition of an indefinite trans-Sasakian manifold, with an indefinite
trans-Sasakian structure (J, ζ, θ, ḡ) of type (α, β), was introduced by Oubina
[14]. This definition on indefinite trans-Sasakian manifold was presented in the
author’s paper [10]. We quote Oubina’s definition in itself as follow:

An odd-dimensional semi-Riemannian manifold (M̄, ḡ) is called an indefi-

nite trans-Sasakian manifold if there exists a set {J, ζ, θ, ḡ} and two smooth
functions α and β, where J is a (1, 1)-type tensor field, ζ is a vector field which
is called the structure vector field and θ is a 1-form such that

J2X̄ = −X̄ + θ(X̄)ζ, θ(ζ) = 1, θ ◦ J = 0,(3.1)

θ(X̄) = ǫḡ(X̄, ζ), ḡ(JX̄, JȲ ) = ḡ(X̄, Ȳ )− ǫθ(X̄)θ(Ȳ ),

(∇̄X̄J)Ȳ = α{ḡ(X̄, Ȳ )ζ − ǫθ(Ȳ )X̄}+ β{ḡ(JX̄, Ȳ )ζ − ǫθ(Ȳ )JX̄},(3.2)

where ǫ = 1 or −1 according as ζ is spacelike or timelike. In this case, the set
{J, ζ, θ, ḡ} is called an indefinite trans-Sasakian structure of type (α, β).

Note that [10] if β = 0, then M̄ is called an indefinite α-Sasakian manifold.
Indefinite Sasakian manifold is an example of indefinite α-Sasakian manifold
such that α = 1. If α = 0, then M̄ is called an indefinite β-Kenmotsu manifold.
Indefinite Kenmotsu manifold is an example of indefinite β-Kenmotsu manifold
such that β = 1. Indefinite cosymplectic manifold is an another important kind
of indefinite trans-Sasakian manifold such that α = β = 0.

From (3.1), we see that ζ is a timelike or spacelike unit vector field. In the
sequel, we shall assume that ζ is a spacelike vector field, i.e., ǫ = 1, without
loss generality. From (3.1) and (3.2), we get

(3.3) ∇̄X̄ζ = −αJX̄ + β(X̄ − θ(X̄)ζ), dθ(X̄, Ȳ ) = αg(X̄, JȲ ).

It is known [9] that, for any lightlike hypersurface M of an indefinite al-
most contact metric manifold M̄ , J(TM⊥) and J(tr(TM)) are subbundles of
S(TM), of rank 1. In the entire discussion of this article, we shall assume that
ζ is tangent to M . Cǎlin [3] proved that if ζ is tangent to M , then it belongs
to S(TM). Then there exist two non-degenerate almost complex distributions
Do and D with respect to J , i.e., J(Do) = Do and J(D) = D, such that

S(TM) = J(TM⊥)⊕ J(tr(TM))⊕orth Do,

D = TM⊥ ⊕orth J(TM⊥)⊕orth Do.

Using these distributions, TM is decomposed as follow:

TM = D ⊕ J(tr(TM)).
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Consider two null vector fields U and V and their 1-forms u and v such that

(3.4) U = −JN, V = −Jξ, u(X) = g(X,V ), v(X) = g(X,U).

Denote by S the projection morphism of TM on D. Any vector field X of M
is expressed as X = SX + u(X)U . Applying J to this form, we have

(3.5) JX = FX + u(X)N,

where F is a tensor field of type (1, 1) globally defined on M by FX = JSX .
Applying J to (3.5) and using (3.1) and (3.4), we have

(3.6) F 2X = −X + u(X)U + θ(X)ζ.

The vector field U is called the structure vector field of M . Applying ∇̄X to
(3.4) and (3.5) and using (2.1)∼(2.7) and (3.1)∼(3.5), we get

B(X,U) = C(X,V ) ≡ σ(X),(3.7)

∇XU = F (A
N
X) + τ(X)U − {αη(X) + βv(X)}ζ,(3.8)

∇XV = F (A∗

ξX)− τ(X)V − βu(X)ζ,(3.9)

(∇XF )(Y ) = u(Y )A
N
X −B(X,Y )U(3.10)

+ α{g(X,Y )ζ − θ(Y )X}

+ β{ḡ(JX, Y )ζ − θ(Y )FX},

(∇Xu)(Y ) = −u(Y )τ(X)−B(X,FY )− βθ(Y )u(X),(3.11)

(∇Xv)(Y ) = v(Y )τ(X)− g(A
N
X,FY )(3.12)

− θ(Y ){αη(X) + βv(X)}.

Let M̄ be an indefinite trans-Sasakian manifold with a symmetric metric
connection of type (ℓ, m). Substituting (2.1) and (3.5) into (1.1) and then,
comparing the tangent and transversal components, we get

T (X,Y ) = ℓ{θ(Y )X − θ(X)Y }+m{θ(Y )FX − θ(X)FY },(3.13)

B(X,Y )−B(Y,X) = m{θ(Y )u(X)− θ(X)u(Y )},(3.14)

where T is the torsion tensor with respect to ∇. From (2.8) and (3.13), we see
that ∇ is a symmetric non-metric connection of type (ℓ, m) in M . From (3.14),
we also see that the local second fundamental form B of M is symmetric, if

and only if, m = 0. Replacing X by ξ to (3.14) and then, using (2.5), we have

(3.15) B(ξ,X) = 0, A∗

ξξ = 0.

Applying ∇̄X to g(ζ, ξ) = 0 and ḡ(ζ,N) = 0 by turns, we have

(3.16) B(X, ζ) = −αu(X), C(X, ζ) = −αv(X) + βη(X).

Substituting (3.5) into (3.3)1 and using (2.1), we have

(3.17) ∇Xζ = −αFX + β(X − θ(X)ζ).

Denote by R̄, R and R∗ the curvature tensors of the symmetric metric
connection ∇̄ of type (ℓ, m) on M̄ , and the induced linear connections ∇ and
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∇∗ on M and S(TM), respectively. Using (3.13) and the Gauss-Weingarten
formulas, we obtain the Gauss-Codazzi equations for M and S(TM):

R̄(X,Y )Z = R(X,Y )Z +B(X,Z)A
N
Y −B(Y, Z)A

N
X(3.18)

+ {(∇XB)(Y, Z)− (∇Y B)(X,Z)

+ τ(X)B(Y, Z)− τ(Y )B(X,Z)

− ℓ[θ(X)B(Y, Z)− θ(Y )B(X,Z)]

− m[θ(X)B(FY,Z)− θ(Y )B(FX,Z)]}N,

R̄(X,Y )N = −∇X(A
N
Y ) +∇Y (AN

X) +A
N
[X,Y ](3.19)

+ τ(X)A
N
Y − τ(Y )A

N
X

+ {B(Y,A
N
X)−B(X,A

N
Y ) + 2dτ(X,Y )}N,

R(X,Y )PZ = R∗(X,Y )PZ + C(X,PZ)A∗

ξY − C(Y, PZ)A∗

ξX(3.20)

+ {(∇XC)(Y, PZ)− (∇Y C)(X,PZ)

− τ(X)C(Y, PZ) + τ(Y )C(X,PZ)

− ℓ[θ(X)C(Y, PZ)− θ(Y )C(X,PZ)]

− m[θ(X)C(FY, PZ)− θ(Y )C(FX,PZ)]}ξ.

R(X,Y )ξ = −∇∗

X(A∗

ξY ) +∇∗

Y (A
∗

ξX) +A∗

ξ [X,Y ](3.21)

− τ(X)A∗

ξY + τ(Y )A∗

ξX

+ {C(Y,A∗

ξX)− C(X,A∗

ξY )− 2dτ(X,Y )}ξ.

4. Indefinite generalized Sasakian space forms

Definition. An indefinite trans-Sasakian manifold (M̄, J, ζ, θ, ḡ) is called an
indefinite generalized Sasakian space form [1], denoted by M̄(f1, f2, f3), if there
exist three smooth functions f1, f2 and f3 on M̄ such that

R̄(X̄, Ȳ )Z̄ = f1{ḡ(Ȳ , Z̄)X̄ − ḡ(X̄, Z̄)Ȳ }(4.1)

+ f2{ḡ(X̄, JZ̄)JȲ − ḡ(Ȳ , JZ̄)JX̄ + 2ḡ(X̄, JȲ )JZ̄}

+ f3{θ(X̄)θ(Z̄)Ȳ − θ(Ȳ )θ(Z̄)X̄

+ ḡ(X̄, Z̄)θ(Ȳ )ζ − ḡ(Ȳ , Z̄)θ(X̄)ζ}.

Note that indefinite Sasakian, Kenmotsu and cosymplectic space forms are
important kinds of indefinite generalized Sasakian space forms such that

f1 = c+3

4
, f2 = f3 = c−1

4
; f1 = c−3

4
, f2 = f3 =

c+1

4
; f1 = f2 = f3 = c

4

respectively, where c is a constant J-sectional curvature of each space forms.

Theorem 4.1. Let M be a lightlike hypersurface of an indefinite generalized

Sasakian space form M̄(f1, f2, f3) with a symmetric metric connection of type

(ℓ, m). Then the following properties are satisfied

(1) α is a constant,



618 DAE HO JIN

(2) αβ = 0 and αℓ = βm = 0,
(3) f1 − f2 = α2 − β2 and f1 − f3 = (α2 − β2) + αm+ βℓ − ζβ.

Proof. Comparing the tangential and transversal components of (3.18) and
(4.1) and using (3.5) and the fact that ζ is tangent to M , we get

R(X,Y )Z = f1{g(Y, Z)X − g(X,Z)Y }(4.2)

+ f2{ḡ(X, JZ)FY − ḡ(Y, JZ)FX + 2ḡ(X, JY )FZ}

+ f3{θ(X)θ(Z)Y − θ(Y )θ(Z)X + ḡ(X,Z)θ(Y )ζ

− ḡ(Y, Z)θ(X)ζ} + B(Y, Z)A
N
X −B(X,Z)A

N
Y,

(∇XB)(Y, Z)− (∇Y B)(X,Z) + τ(X)B(Y, Z)− τ(Y )B(X,Z)(4.3)

− ℓ{θ(X)B(Y, Z)− θ(Y )B(X,Z)}

− m{θ(X)B(FY,Z)− θ(Y )B(FX,Z)}

= f2{u(Y )ḡ(X, JZ)− u(X)ḡ(Y, JZ) + 2u(Z)ḡ(X, JY )}.

Substituting (3.9) into R(X,Y )V = ∇X∇Y V −∇Y ∇XV −∇[X,Y ]V and using
(2.6), (3.4), (3.5), (3.9)∼(3.14), (3.16), (3.17) and (3.21), we have

R(X,Y )V = B(Y, V )A
N
X −B(X,V )A

N
Y − F (R(X,Y )ξ)

+ (α2 − β2){u(Y )X − u(X)Y }

+ 2αβ{u(Y )FX − u(X)FY }

+ {−(Xβ)u(Y ) + (Y β)u(X)

+ (αm+ βℓ)[θ(X)u(Y )− θ(Y )u(X)]}ζ.

Substituting (4.2) into the left term of this equation, we have

F (R(X,Y )ξ) + (f1 − α2 + β2){u(Y )X − u(X)Y }(4.4)

− 2αβ{u(Y )FX − u(X)FY }+ 2f2ḡ(X, JY )ξ

+ {(Xβ)u(Y )− (Y β)u(X)

+ (f3 + αm+ βℓ)[u(X)θ(Y )− u(Y )θ(X)]}ζ = 0.

Taking the scalar product with N to (4.4), we obtain

g(R(X,Y )ξ, U) = (f1 − α2 + β2){u(X)η(Y )− u(Y )η(X)}

+ 2αβ{u(Y )v(X)− u(X)v(Y )} − 2f2ḡ(X, JY ).

Taking X = U, Y = ξ and X = U, Y = V by turns and using (4.2), we have

(4.5) f1 − f2 = α2 − β2, αβ = 0,

due to the facts that R(U, ξ)ξ = 3f2V and R(U, V )ξ = −f2ξ. Taking the scalar
product with ζ to (4.4) and using the fact that g(FX, ζ) = 0, we have

(Xβ)u(Y )− (Y β)u(X)

+ {f1 − f3 − (α2 − β2)− αm− βℓ}[u(Y )θ(X)− u(X)θ(Y )] = 0.
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Replacing Y by U to this equation and then, taking X = ζ, we have

Xβ + {f1 − f3 − (α2 − β2)− αm− βℓ}θ(X) = (Uβ)u(X),(4.6)

f1 − f3 = (α2 − β2) + αm+ βℓ− ζβ.(4.7)

Substituting (3.17) into R(X,Y )ζ = ∇X∇Y ζ−∇Y∇Xζ−∇[X,Y ]ζ and using
(3.3)2, (3.6), (3.10), (3.13), (3.14), (3.17) and (4.5)2, we have

R(X,Y )ζ = −(Xα)FY + (Y α)FX + (Xβ)Y − (Y β)X

+ α{u(X)A
N
Y − u(Y )A

N
X}

+ (α2 − β2 + αm+ βℓ){θ(Y )X − θ(X)Y }

− (αℓ − βm){θ(Y )FX − θ(X)FY }

− {(Xβ)θ(Y )− (Y β)θ(X)}ζ.

Substituting (4.2) into this equation and using (4.5)1 and (4.7), we have

(Xα)FY − (Y α)FX − (Xβ)Y + (Y β)X

− (ζβ){θ(Y )X − θ(X)Y }+ (αℓ − βm){θ(Y )FX − θ(X)FY }

+ {(Xβ)θ(Y )− (Y β)θ(X)}ζ = 0.

Taking the scalar product with U to this and using g(FX,U) = −η(X), we get

{Xα− (αℓ − βm)θ(X)}η(Y )− {Y α− (αℓ − βm)θ(Y )}η(X)

+ {Xβ − (ζβ)θ(X)}v(Y )− {Y β − (ζβ)θ(Y )}v(X) = 0.

Taking X = U, Y = ξ and X = U, Y = V to this by turns, we obtain

(4.8) Uα = 0, Uβ = 0.

From (4.6), (4.7) and (4.8)2, we obtain

(4.9) Xβ = (ζβ)θ(X).

Applying ∇Y to (3.16)1 and using (3.11), (3.16), (3.17) and (4.5)2, we have

(∇XB)(Y, ζ) = − (Xα)u(Y )− βB(Y,X)

+ α{u(Y )τ(X) +B(X,FY ) +B(Y, FX)}.

Substituting this into (4.3) with Z = ζ and using (3.14) and (3.16), we have

{Xα− (αℓ − βm)θ(X)}u(Y ) = {Y α− (αℓ − βm)θ(Y )}u(X).

Replacing Y by U to this equation and using (4.8)1, we have

(4.10) Xα = {αℓ− βm}θ(X).

Substituting (4.9) into T (X,Y )β = X(Y β)− Y (Xβ)− [X,Y ]β, we have

T (X,Y )β = X(ζβ)θ(Y )− Y (ζβ)θ(X) + 2(ζβ)dθ(X,Y ).

Substituting (3.3)2 and (3.13) into this equation and using (4.9), we get

X(ζβ)θ(Y )− Y (ζβ)θ(X) + 2α(ζβ)ḡ(X, JY ) = 0,
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due to θ ◦ F = 0. Taking X = U and Y = ξ to this equation, we obtain

(4.11) α(ζβ) = 0.

Applying ∇X to αβ = 0 and using (4.9), (4.10) and (4.11), we get βm = 0.
Substituting (4.10) into T (X,Y )α = X(Y α)− Y (Xα)− [X,Y ]α, we get

T (X,Y )α = α{X(ℓ)θ(Y )− Y (ℓ)θ(X)}+ 2αℓdθ(X,Y ).

Substituting (3.3)2 and (3.13) into this equation and using

α{(Xℓ)θ(Y )− (Y ℓ)θ(X)}+ 2α2ℓḡ(X, JY ) = 0.

Taking X = U and Y = ξ to this equation, we have αℓ = 0. As αℓ = 0 and
βm = 0, from (4.10), we see that α is a constant. �

Definition. (1) A screen distribution S(TM) is called totally umbilical [4] in
M if there exist a smooth function γ such that A

N
X = γPX , or equivalently,

(4.12) C(X,PY ) = γg(X,Y ).

In case γ = 0, we say that S(TM) is totally geodesic in M .
(2) A lightlike hypersurface M is called screen conformal [2] if there exist a

non-vanishing smooth function ϕ such that A
N
= ϕA∗

ξ , or equivalently,

(4.13) C(X,PY ) = ϕB(X,Y ).

Theorem 4.2. Let M be a lightlike hypersurfaces of an indefinite generalized

Sasakian space form M̄(f1, f2, f3) with a symmetric metric connection of type

(ℓ, m). If one of the following four conditions

(1) S(TM) is totally umbilical,

(2) M is screen conformal,

(3) F is parallel with respect to ∇, and

(4) U is parallel with respect to ∇
is satisfied, then M̄(f1, f2, f3) is a flat manifold with an indefinite cosymplectic

structure, i.e., f1 = f2 = f3 = 0 and α = β = 0. Moreover, in cases (1), (3),
M is also flat.

Proof. (1) If S(TM) is totally umbilical, then (3.16)2 is reduced to

γθ(X) = −αv(X) + βη(X).

Taking X = ζ, X = V and X = ξ by turns, we have γ = 0, α = 0 and β = 0
respectively. As γ = 0, S(TM) is totally geodesic in M .

As α = β = 0, M̄ is an indefinite cosymplectic manifold and f1 = f2 = f3
by Theorem 4.1. As C = A

N
= 0, using (3.7) and (3.8) we see that

B(X,U) = 0, (∇XB)(Y, U) = 0.

Taking Z = U to (4.3) and using the last equations, we have

f2{u(Y )η(X)− u(X)η(Y ) + ḡ(X, JY )} = 0.
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Taking X = ξ and Y = U to this equation, we get f2 = 0. Therefore, f1 = f2 =
f3 = 0 and M̄(f1, f2, f3) is flat. From (4.2) and the facts that f1 = f2 = f3 = 0
and A

N
= 0, we see that R = 0. Thus M is also flat.

(2) Taking PY = ζ to (4.13) and using (3.16), we get

αv(X)− βη(X) = αϕu(X).

Taking X = V and X = ξ by turns, we have α = 0 and β = 0 respectively.
Thus M̄ is an indefinite cosymplectic manifold and f1 = f2 = f3. Taking
X = U and Y = V to (3.14) and using θ ◦ J = 0, we show that

B(U, V ) = B(V, U).

Taking the scalar product with N to (3.20) and then, substituting (4.2) into
the resulting equation, we obtain

(∇XC)(Y, PZ)− (∇Y C)(X,PZ)(4.14)

− τ(X)C(Y, PZ) + τ(Y )C(X,PZ)

− ℓ{θ(X)C(Y, PZ)− θ(Y )C(X,PZ)}

− m{θ(X)C(FY, PZ)− θ(Y )C(FX,PZ)}

= f1{g(Y, PZ)η(X)− g(X,PZ)η(Y )}

+ f2{v(Y )ḡ(X, JPZ)− v(X)ḡ(Y, JPZ) + 2v(PZ)ḡ(X, JY )}

+ f3{θ(X)η(Y )− θ(Y )η(X)}θ(PZ).

Applying ∇X to C(Y, PZ) = ϕB(Y, PZ), we have

(∇XC)(Y, PZ) = (Xϕ)B(Y, PZ) + ϕ(∇XB)(Y, PZ).

Substituting this into (4.14) and using (4.3), we have

{Xϕ− 2ϕτ(X)}B(Y, PZ)− {Y ϕ− 2ϕτ(Y )}B(X,PZ)

= f1{g(Y, PZ)η(X)− g(X,PZ)η(Y )}

+ f2{[v(Y )− ϕu(Y )]ḡ(X, JPZ)− [v(X)− ϕu(X)]ḡ(Y, JPZ)

+ 2[v(PZ)− ϕu(PZ)]ḡ(X, JY )}

+ f3{θ(X)η(Y )− θ(Y )η(X)}θ(PZ).

Replacing Y by ξ to the last equation and using (3.15), we obtain

{ξϕ− 2ϕτ(ξ)}B(X,Y )

= f1g(X,Y ) + f2{v(X)− ϕu(X)}u(Y )

+ 2f2{v(Y )− ϕu(Y )}u(X)− f3θ(X)θ(Y ).

Taking X = V, Y = U and then, X = U, Y = V by turns, we have

{ξϕ− 2ϕτ(ξ)}B(V, U) = f1 + f2,

{ξϕ− 2ϕτ(ξ)}B(U, V ) = f1 + 2f2,

respectively. From these two equations we show that f2 = 0. Thus f1 = f2 =
f3 = 0 and M̄(f1, f2, f3) is flat.
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(3) If F is parallel with respect to ∇, then (3.10) is reduced to

u(Y )A
N
X −B(X,Y )U(4.15)

+ α{g(X,Y )ζ − θ(Y )X}+ β{ḡ(JX, Y )ζ − θ(Y )FX} = 0.

Taking the scalar product with N to (4.15), we get αη(X) + βv(X) = 0. From
this equation, we obtain α = 0 and β = 0 respectively. Thus M̄ is an indefinite
cosymplectic manifold and f1 = f2 = f3 by Theorem 4.1.

Replacing Y by U to (4.15) such that α = β = 0 and using (3.7), we get

(4.16) A
N
X = σ(X)U.

Taking the scalar product with V to (4.15), we get g(A∗

ξX,Y ) = g(σ(X)V, Y ).

As A∗

ξX and V belong to S(TM), and S(TM) is non-degenerate, we get

(4.17) A∗

ξX = σ(X)V.

Taking the scalar product with U to (4.16) and using (2.7), we get

C(X,U) = 0.

Applying ∇X to C(Y, U) = 0 and using (3.8), (4.16) and FU = 0, we get

(∇XC)(Y, U) = 0.

Substituting the last two equation into (4.14) with PZ = U , we have

(f1 + f2){v(Y )η(X)− v(X)η(Y )} = 0.

Taking X = V and Y = ξ to this equation, we obtain f1 + f2 = 0. Therefore,
f1 = f2 = f3 = 0 and M̄(f1, f2, f3) is flat. Substituting (4.16) and (4.17) into
(4.2) and using the fact that f1 = f2 = f3 = 0, we have

R(X,Y )Z = {σ(Y )σ(X) − σ(X)σ(Y )}u(Z)U = 0

for all X, Y, Z ∈ Γ(TM). Therefore R = 0 and M is also flat.
(4) If U is parallel with respect to ∇, then, from (3.5) and (3.8), we have

(4.18) J(A
N
X)− u(A

N
X)N + τ(X)U − {αη(X) + βv(X)}ζ.

Taking the scalar product with ζ and V by turns, we get αη(X) + βv(X) = 0
and τ = 0. Taking X = ξ and X = V to the first result by turns, we have
α = 0 and β = 0 respectively. Thus M̄ is an indefinite cosymplectic manifold
and f1 = f2 = f3 by Theorem 4.1.

Applying J to (4.18) and using (2.1), (3.7) and (3.16)2, we obtain

(4.19) A
N
X = σ(X)U.

Taking the scalar product with U to (4.19), we get

C(X,U) = 0.

Applying ∇X to C(Y, U) = 0 and using (3.8) and (4.19), we obtain

(∇XC)(Y, U) = 0.
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Substituting the last two equation into (4.14) with PZ = U , we have

(f1 + f2){v(Y )η(X)− v(X)η(Y )} = 0.

Taking X = V and Y = ξ to this equation, we obtain f1 + f2 = 0. Therefore,
f1 = f2 = f3 = 0 and M̄(f1, f2, f3) is flat. �

Theorem 4.3. Let M be a lightlike hypersurfaces of an indefinite generalized

Sasakian space form M̄(f1, f2, f3) with a symmetric metric connection of type

(ℓ, m). If V is parallel with respect to ∇, then M̄(f1, f2, f3) is a space form

with an indefinite α-Sasakian structure such that α = −m and

f1 = f3 =
2

3
α2, f2 = −

1

3
α2.

Proof. If V is parallel with respect ∇, then, from (3.5) and (3.9), we have

(4.20) J(A∗

ξX)− u(A∗

ξX)N − τ(X)V − βu(X)ζ = 0.

Taking the scalar product with ζ and U to (4.20) by turns, we have β = 0 and
τ = 0 respectively. Applying J to (4.20) and using (3.1) and (3.16)1, we obtain

(4.21) A∗

ξX = −αu(X)ζ + u(A∗

ξX)U.

Taking the scalar product with U to this equation, we obtain

(4.22) B(X,U) = 0.

Replacing Y by U to (3.14) and using the fact that B(X,U) = 0, we have

(4.23) B(U,X) = mθ(X).

Taking X = U to (3.16)1 and using (4.23), we get

α = αu(U) = −B(U, ζ) = −mθ(ζ) = −m.

Thus M̄ is an indefinite α-Sasakian manifold such that α = −m.
Applying ∇Y to (4.22) and using (3.8), (3.16)1 and (4.21), we have

(∇XB)(Y, U) = −α2η(X)u(Y ).

Substituting the last equation and (4.22) into (4.3) with Z = U , we obtain

α2{u(X)η(Y )− u(Y )η(X)} = f2{u(Y )η(X)− u(X)η(Y ) + 2ḡ(X, JY )}.

Taking X = ξ and Y = U , we obtain 3f2 = −α2. From this result and the first
two equations of (3) in Theorem 4.1, we get

f1 = f3 =
2

3
α2, f2 = −

1

3
α2.

�
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