LIGHTLIKE HYPERSURFACES OF AN INDEFINITE GENERALIZED SASAKIAN SPACE FORM WITH A SYMMETRIC METRIC CONNECTION OF TYPE (ℓ, m)

Dae Ho Jin

Abstract

We define a new connection on a semi-Riemannian manifold. Its notion contains two well known notions; (1) semi-symmetric connection and (2) quarter-symmetric connection. In this paper, we study the geometry of lightlike hypersurfaces of an indefinite generalized Sasakian space form with a symmetric metric connection of type (ℓ, m).

1. Introduction

A linear connection $\bar{\nabla}$ on a semi-Riemannian manifold (\bar{M}, \bar{g}) is said to be a symmetric connection of type (ℓ, m) if its torsion tensor \bar{T} satisfies

$$
\begin{equation*}
\bar{T}(\bar{X}, \bar{Y})=\ell\{\theta(\bar{Y}) \bar{X}-\theta(\bar{X}) \bar{Y}\}+m\{\theta(\bar{Y}) J \bar{X}-\theta(\bar{X}) J \bar{Y}\} \tag{1.1}
\end{equation*}
$$

where ℓ and m are smooth functions, J is a tensor field of type $(1,1)$ and θ is a 1-form associated with a unit vector field ζ by $\theta(\bar{X})=\bar{g}(\bar{X}, \zeta)$. Moreover, if $\bar{\nabla}$ satisfies $\bar{\nabla} \bar{g}=0$, then it is called a symmetric metric connection of type (ℓ, m). In the following, we denote by \bar{X}, \bar{Y} and \bar{Z} the vector fields on \bar{M}.

In case of $\ell=1$ and $m=0, \bar{\nabla}$ is called a semi-symmetric metric connection. The notion of semi-symmetric metric connection on a Riemannian manifold was introduced by H. A. Hayden [8] and later studied by some authors [18]. In case of $\ell=0$ and $m=1, \bar{\nabla}$ is called a quarter-symmetric metric connection. The notion of quarter-symmetric metric connection was introduced by K. Yano-T. Imai [19], and since then it have been studied by S. C. Rastogi [16, 17], D. Kamilya-U. C. De [11], R. S. Mishra-S. N. Pandey [12], S. Golab [7], N. Pušić [15], J. Nikić-N. Pušić [13] and some others.

The lightlike version of Riemannian manifolds equipped with semi-symmetric or quarter-symmetric metric connections have been studied by several authors. In this paper, we study the geometry of lightlike hypersurface of an indefinite generalized Sasakian space form with a symmetric metric connection of type

[^0](ℓ, m), in which the tensor field J, the 1-form θ and the vector field ζ, defined by (1.1), are identical with the tensor field J, the 1-form θ and the vector field ζ of the indefinite almost contact structure $(J, \zeta, \theta, \bar{g})$ on \bar{M}.

2. Preliminaries

Let (M, g) be a lightlike hypersurface, with a screen distribution $S(T M)$, of a semi-Riemannian manifold (\bar{M}, \bar{g}) with a symmetric metric connection $\bar{\nabla}$ of type (ℓ, m). Then the normal bundle $T M^{\perp}$ of M is a subbundle of the tangent bundle $T M$ of M and satisfies $T M=T M^{\perp} \oplus S(T M)$. Denote by $F(M)$ the algebra of smooth functions on M and by $\Gamma(E)$ the $F(M)$ module of smooth sections of a vector bundle E over M. For any null section ξ of $T M^{\perp}$ on a coordinate neighborhood $\mathcal{U} \subset M$, there exists a unique null section N of a unique vector bundle $\operatorname{tr}(T M)$ in $S(T M)^{\perp}$ satisfying

$$
\bar{g}(\xi, N)=1, \quad \bar{g}(N, N)=\bar{g}(N, X)=0, \quad \forall X \in \Gamma(S(T M))
$$

We call $\operatorname{tr}(T M)$ and N the transversal vector bundle and the null transversal vector field of M with respect to $S(T M)$ respectively. In the following, we denote by X, Y, Z and W the smooth vector fields on M, unless otherwise specified.

As the tangent bundle $T \bar{M}$ of \bar{M} is satisfied $T \bar{M}=T M \oplus \operatorname{tr}(T M)$, the Gauss and Weingarten formulas of M are given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) N \tag{2.1}\\
& \bar{\nabla}_{X} N=-A_{N} X+\tau(X) N \tag{2.2}
\end{align*}
$$

respectively, where ∇ is the linear connection on M, B is the local second fundamental form on $T M, A_{N}$ is its shape operator and τ is a 1-form on $T M$.

We note $T M=T M^{\perp} \oplus S(T M)$ and denote by P the projection morphism of $T M$ on $S(T M)$. Then the Gauss and Weingarten formulas of $S(T M)$ are given by

$$
\begin{align*}
\nabla_{X} P Y & =\nabla_{X}^{*} P Y+C(X, P Y) \xi \tag{2.3}\\
\nabla_{X} \xi & =-A_{\xi}^{*} X-\tau(X) \xi \tag{2.4}
\end{align*}
$$

respectively, where ∇^{*} is the linear connection on $S(T M), C$ is the local screen second fundamental form of $S(T M), A_{\xi}^{*}$ is its shape operator.

Note that B and C are not symmetric. As $B(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, \xi\right)$, we show that B is independent of the choice of $S(T M)$ and satisfies

$$
\begin{equation*}
B(X, \xi)=0 . \tag{2.5}
\end{equation*}
$$

The above second fundamental forms are related to their shape operators by

$$
\begin{align*}
& g\left(A_{\xi}^{*} X, Y\right)=B(X, Y), \quad \bar{g}\left(A_{\xi}^{*} X, N\right)=0 \tag{2.6}\\
& g\left(A_{N} X, P Y\right)=C(X, P Y), \quad \bar{g}\left(A_{N} X, N\right)=0 \tag{2.7}
\end{align*}
$$

Denote by $(2.6)_{i}$ the i-th equation of the two equations in (2.6). We use the same notations for any others.

The induced connection ∇ on M is not a metric one and satisfies

$$
\begin{equation*}
\left(\nabla_{X} g\right)(Y, Z)=B(X, Y) \eta(Z)+B(X, Z) \eta(Y) \tag{2.8}
\end{equation*}
$$

where η is a 1 -form on $T M$ such that

$$
\eta(X)=\bar{g}(X, N)
$$

3. Symmetric metric connection of type (ℓ, m)

The definition of an indefinite trans-Sasakian manifold, with an indefinite trans-Sasakian structure $(J, \zeta, \theta, \bar{g})$ of type (α, β), was introduced by Oubina [14]. This definition on indefinite trans-Sasakian manifold was presented in the author's paper [10]. We quote Oubina's definition in itself as follow:

An odd-dimensional semi-Riemannian manifold (\bar{M}, \bar{g}) is called an indefinite trans-Sasakian manifold if there exists a set $\{J, \zeta, \theta, \bar{g}\}$ and two smooth functions α and β, where J is a $(1,1)$-type tensor field, ζ is a vector field which is called the structure vector field and θ is a 1-form such that

$$
\begin{align*}
& J^{2} \bar{X}=-\bar{X}+\theta(\bar{X}) \zeta, \quad \theta(\zeta)=1, \quad \theta \circ J=0, \tag{3.1}\\
& \theta(\bar{X})=\epsilon \bar{g}(\bar{X}, \zeta), \quad \bar{g}(J \bar{X}, J \bar{Y})=\bar{g}(\bar{X}, \bar{Y})-\epsilon \theta(\bar{X}) \theta(\bar{Y}), \\
& \left(\overline{\nabla_{\bar{X}}} J\right) \bar{Y}=\alpha\{\bar{g}(\bar{X}, \bar{Y}) \zeta-\epsilon \theta(\bar{Y}) \bar{X}\}+\beta\{\bar{g}(J \bar{X}, \bar{Y}) \zeta-\epsilon \theta(\bar{Y}) J \bar{X}\}, \tag{3.2}
\end{align*}
$$

where $\epsilon=1$ or -1 according as ζ is spacelike or timelike. In this case, the set $\{J, \zeta, \theta, \bar{g}\}$ is called an indefinite trans-Sasakian structure of type (α, β).

Note that [10] if $\beta=0$, then \bar{M} is called an indefinite α-Sasakian manifold. Indefinite Sasakian manifold is an example of indefinite α-Sasakian manifold such that $\alpha=1$. If $\alpha=0$, then \bar{M} is called an indefinite β-Kenmotsu manifold. Indefinite Kenmotsu manifold is an example of indefinite β-Kenmotsu manifold such that $\beta=1$. Indefinite cosymplectic manifold is an another important kind of indefinite trans-Sasakian manifold such that $\alpha=\beta=0$.

From (3.1), we see that ζ is a timelike or spacelike unit vector field. In the sequel, we shall assume that ζ is a spacelike vector field, i.e., $\epsilon=1$, without loss generality. From (3.1) and (3.2), we get

$$
\begin{equation*}
\bar{\nabla}_{\bar{X}} \zeta=-\alpha J \bar{X}+\beta(\bar{X}-\theta(\bar{X}) \zeta), \quad d \theta(\bar{X}, \bar{Y})=\alpha g(\bar{X}, J \bar{Y}) \tag{3.3}
\end{equation*}
$$

It is known [9] that, for any lightlike hypersurface M of an indefinite almost contact metric manifold $\bar{M}, J\left(T M^{\perp}\right)$ and $J(\operatorname{tr}(T M))$ are subbundles of $S(T M)$, of rank 1. In the entire discussion of this article, we shall assume that ζ is tangent to M. Cǎlin [3] proved that if ζ is tangent to M, then it belongs to $S(T M)$. Then there exist two non-degenerate almost complex distributions D_{o} and D with respect to J, i.e., $J\left(D_{o}\right)=D_{o}$ and $J(D)=D$, such that

$$
\begin{gathered}
S(T M)=J\left(T M^{\perp}\right) \oplus J(\operatorname{tr}(T M)) \oplus_{\text {orth }} D_{o} \\
D=T M^{\perp} \oplus_{\text {orth }} J\left(T M^{\perp}\right) \oplus_{\text {orth }} D_{o}
\end{gathered}
$$

Using these distributions, $T M$ is decomposed as follow:

$$
T M=D \oplus J(\operatorname{tr}(T M))
$$

Consider two null vector fields U and V and their 1-forms u and v such that

$$
\begin{equation*}
U=-J N, \quad V=-J \xi, \quad u(X)=g(X, V), \quad v(X)=g(X, U) . \tag{3.4}
\end{equation*}
$$

Denote by S the projection morphism of $T M$ on D. Any vector field X of M is expressed as $X=S X+u(X) U$. Applying J to this form, we have

$$
\begin{equation*}
J X=F X+u(X) N \tag{3.5}
\end{equation*}
$$

where F is a tensor field of type $(1,1)$ globally defined on M by $F X=J S X$. Applying J to (3.5) and using (3.1) and (3.4), we have

$$
\begin{equation*}
F^{2} X=-X+u(X) U+\theta(X) \zeta \tag{3.6}
\end{equation*}
$$

The vector field U is called the structure vector field of M. Applying $\bar{\nabla}_{X}$ to (3.4) and (3.5) and using (2.1) $\sim(2.7)$ and (3.1)~(3.5), we get

$$
\begin{align*}
& B(X, U)=C(X, V) \equiv \sigma(X), \tag{3.7}\\
& \nabla_{X} U=F\left(A_{N} X\right)+\tau(X) U-\{\alpha \eta(X)+\beta v(X)\} \zeta, \tag{3.8}\\
& \nabla_{X} V=F\left(A_{\xi}^{*} X\right)-\tau(X) V-\beta u(X) \zeta, \tag{3.9}\\
& \left(\nabla_{X} F\right)(Y)=u(Y) A_{N} X-B(X, Y) U \tag{3.10}\\
& +\alpha\{g(X, Y) \zeta-\theta(Y) X\} \\
& +\beta\{\bar{g}(J X, Y) \zeta-\theta(Y) F X\}, \\
& \left(\nabla_{X} u\right)(Y)=-u(Y) \tau(X)-B(X, F Y)-\beta \theta(Y) u(X), \tag{3.11}\\
& \left(\nabla_{X} v\right)(Y)=v(Y) \tau(X)-g\left(A_{N} X, F Y\right) \tag{3.12}\\
& -\theta(Y)\{\alpha \eta(X)+\beta v(X)\} .
\end{align*}
$$

Let \bar{M} be an indefinite trans-Sasakian manifold with a symmetric metric connection of type (ℓ, m). Substituting (2.1) and (3.5) into (1.1) and then, comparing the tangent and transversal components, we get

$$
\begin{align*}
& T(X, Y)=\ell\{\theta(Y) X-\theta(X) Y\}+m\{\theta(Y) F X-\theta(X) F Y\} \tag{3.13}\\
& B(X, Y)-B(Y, X)=m\{\theta(Y) u(X)-\theta(X) u(Y)\} \tag{3.14}
\end{align*}
$$

where T is the torsion tensor with respect to ∇. From (2.8) and (3.13), we see that ∇ is a symmetric non-metric connection of type (ℓ, m) in M. From (3.14), we also see that the local second fundamental form B of M is symmetric, if and only if, $m=0$. Replacing X by ξ to (3.14) and then, using (2.5), we have

$$
\begin{equation*}
B(\xi, X)=0, \quad A_{\xi}^{*} \xi=0 \tag{3.15}
\end{equation*}
$$

Applying $\bar{\nabla}_{X}$ to $g(\zeta, \xi)=0$ and $\bar{g}(\zeta, N)=0$ by turns, we have

$$
\begin{equation*}
B(X, \zeta)=-\alpha u(X), \quad C(X, \zeta)=-\alpha v(X)+\beta \eta(X) . \tag{3.16}
\end{equation*}
$$

Substituting (3.5) into (3.3) ${ }_{1}$ and using (2.1), we have

$$
\begin{equation*}
\nabla_{X} \zeta=-\alpha F X+\beta(X-\theta(X) \zeta) \tag{3.17}
\end{equation*}
$$

Denote by \bar{R}, R and R^{*} the curvature tensors of the symmetric metric connection $\bar{\nabla}$ of type (ℓ, m) on \bar{M}, and the induced linear connections ∇ and
∇^{*} on M and $S(T M)$, respectively. Using (3.13) and the Gauss-Weingarten formulas, we obtain the Gauss-Codazzi equations for M and $S(T M)$:

$$
\begin{align*}
\bar{R}(X, Y) Z= & R(X, Y) Z+B(X, Z) A_{N} Y-B(Y, Z) A_{N} X \tag{3.18}\\
& +\left\{\left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)\right. \\
& +\tau(X) B(Y, Z)-\tau(Y) B(X, Z) \\
& -\ell[\theta(X) B(Y, Z)-\theta(Y) B(X, Z)] \\
& -m[\theta(X) B(F Y, Z)-\theta(Y) B(F X, Z)]\} N,
\end{align*}
$$

$$
\begin{align*}
\bar{R}(X, Y) N= & -\nabla_{X}\left(A_{N} Y\right)+\nabla_{Y}\left(A_{N} X\right)+A_{N}[X, Y] \tag{3.19}\\
& +\tau(X) A_{N} Y-\tau(Y) A_{N} X \\
& +\left\{B\left(Y, A_{N} X\right)-B\left(X, A_{N} Y\right)+2 d \tau(X, Y)\right\} N,
\end{align*}
$$

$$
\begin{align*}
R(X, Y) P Z= & R^{*}(X, Y) P Z+C(X, P Z) A_{\xi}^{*} Y-C(Y, P Z) A_{\xi}^{*} X \tag{3.20}\\
& +\left\{\left(\nabla_{X} C\right)(Y, P Z)-\left(\nabla_{Y} C\right)(X, P Z)\right. \\
& -\tau(X) C(Y, P Z)+\tau(Y) C(X, P Z) \\
& -\ell[\theta(X) C(Y, P Z)-\theta(Y) C(X, P Z)] \\
& -m[\theta(X) C(F Y, P Z)-\theta(Y) C(F X, P Z)]\} \xi .
\end{align*}
$$

$$
\begin{align*}
R(X, Y) \xi= & -\nabla_{X}^{*}\left(A_{\xi}^{*} Y\right)+\nabla_{Y}^{*}\left(A_{\xi}^{*} X\right)+A_{\xi}^{*}[X, Y] \tag{3.21}\\
& -\tau(X) A_{\xi}^{*} Y+\tau(Y) A_{\xi}^{*} X \\
& +\left\{C\left(Y, A_{\xi}^{*} X\right)-C\left(X, A_{\xi}^{*} Y\right)-2 d \tau(X, Y)\right\} \xi .
\end{align*}
$$

4. Indefinite generalized Sasakian space forms

Definition. An indefinite trans-Sasakian manifold $(\bar{M}, J, \zeta, \theta, \bar{g})$ is called an indefinite generalized Sasakian space form [1], denoted by $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$, if there exist three smooth functions f_{1}, f_{2} and f_{3} on \bar{M} such that

$$
\begin{align*}
\bar{R}(\bar{X}, \bar{Y}) \bar{Z}= & f_{1}\{\bar{g}(\bar{Y}, \bar{Z}) \bar{X}-\bar{g}(\bar{X}, \bar{Z}) \bar{Y}\} \tag{4.1}\\
& +f_{2}\{\bar{g}(\bar{X}, J \bar{Z}) J \bar{Y}-\bar{g}(\bar{Y}, J \bar{Z}) J \bar{X}+2 \bar{g}(\bar{X}, J \bar{Y}) J \bar{Z}\} \\
& +f_{3}\{\theta(\bar{X}) \theta(\bar{Z}) \bar{Y}-\theta(\bar{Y}) \theta(\bar{Z}) \bar{X} \\
& +\bar{g}(\bar{X}, \bar{Z}) \theta(\bar{Y}) \zeta-\bar{g}(\bar{Y}, \bar{Z}) \theta(\bar{X}) \zeta\} .
\end{align*}
$$

Note that indefinite Sasakian, Kenmotsu and cosymplectic space forms are important kinds of indefinite generalized Sasakian space forms such that
$f_{1}=\frac{c+3}{4}, f_{2}=f_{3}=\frac{c-1}{4} ; \quad f_{1}=\frac{c-3}{4}, f_{2}=f_{3}=\frac{c+1}{4} ; \quad f_{1}=f_{2}=f_{3}=\frac{c}{4}$ respectively, where c is a constant J -sectional curvature of each space forms.

Theorem 4.1. Let M be a lightlike hypersurface of an indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ with a symmetric metric connection of type (ℓ, m). Then the following properties are satisfied
(1) α is a constant,
(2) $\alpha \beta=0$ and $\alpha \ell=\beta m=0$,
(3) $f_{1}-f_{2}=\alpha^{2}-\beta^{2}$ and $f_{1}-f_{3}=\left(\alpha^{2}-\beta^{2}\right)+\alpha m+\beta \ell-\zeta \beta$.

Proof. Comparing the tangential and transversal components of (3.18) and (4.1) and using (3.5) and the fact that ζ is tangent to M, we get

$$
\begin{align*}
R(X, Y) Z= & f_{1}\{g(Y, Z) X-g(X, Z) Y\} \tag{4.2}\\
& +f_{2}\{\bar{g}(X, J Z) F Y-\bar{g}(Y, J Z) F X+2 \bar{g}(X, J Y) F Z\} \\
& +f_{3}\{\theta(X) \theta(Z) Y-\theta(Y) \theta(Z) X+\bar{g}(X, Z) \theta(Y) \zeta \\
& -\bar{g}(Y, Z) \theta(X) \zeta\}+B(Y, Z) A_{N} X-B(X, Z) A_{N} Y,
\end{align*}
$$

$$
\begin{align*}
& \left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)+\tau(X) B(Y, Z)-\tau(Y) B(X, Z) \tag{4.3}\\
& -\ell\{\theta(X) B(Y, Z)-\theta(Y) B(X, Z)\} \\
& -m\{\theta(X) B(F Y, Z)-\theta(Y) B(F X, Z)\} \\
= & f_{2}\{u(Y) \bar{g}(X, J Z)-u(X) \bar{g}(Y, J Z)+2 u(Z) \bar{g}(X, J Y)\} .
\end{align*}
$$

Substituting (3.9) into $R(X, Y) V=\nabla_{X} \nabla_{Y} V-\nabla_{Y} \nabla_{X} V-\nabla_{[X, Y]} V$ and using (2.6), (3.4), (3.5), (3.9)~(3.14), (3.16), (3.17) and (3.21), we have

$$
\begin{aligned}
R(X, Y) V= & B(Y, V) A_{N} X-B(X, V) A_{N} Y-F(R(X, Y) \xi) \\
& +\left(\alpha^{2}-\beta^{2}\right)\{u(Y) X-u(X) Y\} \\
& +2 \alpha \beta\{u(Y) F X-u(X) F Y\} \\
& +\{-(X \beta) u(Y)+(Y \beta) u(X) \\
& +(\alpha m+\beta \ell)[\theta(X) u(Y)-\theta(Y) u(X)]\} \zeta .
\end{aligned}
$$

Substituting (4.2) into the left term of this equation, we have

$$
\begin{align*}
& F(R(X, Y) \xi)+\left(f_{1}-\alpha^{2}+\beta^{2}\right)\{u(Y) X-u(X) Y\} \tag{4.4}\\
& -2 \alpha \beta\{u(Y) F X-u(X) F Y\}+2 f_{2} \bar{g}(X, J Y) \xi \\
& +\{(X \beta) u(Y)-(Y \beta) u(X) \\
& \left.+\left(f_{3}+\alpha m+\beta \ell\right)[u(X) \theta(Y)-u(Y) \theta(X)]\right\} \zeta=0 .
\end{align*}
$$

Taking the scalar product with N to (4.4), we obtain

$$
\begin{aligned}
g(R(X, Y) \xi, U)= & \left(f_{1}-\alpha^{2}+\beta^{2}\right)\{u(X) \eta(Y)-u(Y) \eta(X)\} \\
& +2 \alpha \beta\{u(Y) v(X)-u(X) v(Y)\}-2 f_{2} \bar{g}(X, J Y) .
\end{aligned}
$$

Taking $X=U, Y=\xi$ and $X=U, Y=V$ by turns and using (4.2), we have

$$
\begin{equation*}
f_{1}-f_{2}=\alpha^{2}-\beta^{2}, \quad \alpha \beta=0 \tag{4.5}
\end{equation*}
$$

due to the facts that $R(U, \xi) \xi=3 f_{2} V$ and $R(U, V) \xi=-f_{2} \xi$. Taking the scalar product with ζ to (4.4) and using the fact that $g(F X, \zeta)=0$, we have

$$
\begin{aligned}
& (X \beta) u(Y)-(Y \beta) u(X) \\
& +\left\{f_{1}-f_{3}-\left(\alpha^{2}-\beta^{2}\right)-\alpha m-\beta \ell\right\}[u(Y) \theta(X)-u(X) \theta(Y)]=0 .
\end{aligned}
$$

Replacing Y by U to this equation and then, taking $X=\zeta$, we have

$$
\begin{gather*}
X \beta+\left\{f_{1}-f_{3}-\left(\alpha^{2}-\beta^{2}\right)-\alpha m-\beta \ell\right\} \theta(X)=(U \beta) u(X) \tag{4.6}\\
f_{1}-f_{3}=\left(\alpha^{2}-\beta^{2}\right)+\alpha m+\beta \ell-\zeta \beta . \tag{4.7}
\end{gather*}
$$

Substituting (3.17) into $R(X, Y) \zeta=\nabla_{X} \nabla_{Y} \zeta-\nabla_{Y} \nabla_{X} \zeta-\nabla_{[X, Y]} \zeta$ and using $(3.3)_{2},(3.6),(3.10),(3.13),(3.14),(3.17)$ and $(4.5)_{2}$, we have

$$
\begin{aligned}
R(X, Y) \zeta= & -(X \alpha) F Y+(Y \alpha) F X+(X \beta) Y-(Y \beta) X \\
& +\alpha\left\{u(X) A_{N} Y-u(Y) A_{N} X\right\} \\
& +\left(\alpha^{2}-\beta^{2}+\alpha m+\beta \ell\right)\{\theta(Y) X-\theta(X) Y\} \\
& -(\alpha \ell-\beta m)\{\theta(Y) F X-\theta(X) F Y\} \\
& -\{(X \beta) \theta(Y)-(Y \beta) \theta(X)\} \zeta .
\end{aligned}
$$

Substituting (4.2) into this equation and using (4.5) 1_{1} and (4.7), we have

$$
\begin{aligned}
& (X \alpha) F Y-(Y \alpha) F X-(X \beta) Y+(Y \beta) X \\
& -(\zeta \beta)\{\theta(Y) X-\theta(X) Y\}+(\alpha \ell-\beta m)\{\theta(Y) F X-\theta(X) F Y\} \\
& +\{(X \beta) \theta(Y)-(Y \beta) \theta(X)\} \zeta=0 .
\end{aligned}
$$

Taking the scalar product with U to this and using $g(F X, U)=-\eta(X)$, we get

$$
\begin{aligned}
& \{X \alpha-(\alpha \ell-\beta m) \theta(X)\} \eta(Y)-\{Y \alpha-(\alpha \ell-\beta m) \theta(Y)\} \eta(X) \\
& +\{X \beta-(\zeta \beta) \theta(X)\} v(Y)-\{Y \beta-(\zeta \beta) \theta(Y)\} v(X)=0 .
\end{aligned}
$$

Taking $X=U, Y=\xi$ and $X=U, Y=V$ to this by turns, we obtain

$$
\begin{equation*}
U \alpha=0, \quad U \beta=0 . \tag{4.8}
\end{equation*}
$$

From (4.6), (4.7) and (4.8) $)_{2}$, we obtain

$$
\begin{equation*}
X \beta=(\zeta \beta) \theta(X) \tag{4.9}
\end{equation*}
$$

Applying ∇_{Y} to (3.16) $)_{1}$ and using (3.11), (3.16), (3.17) and (4.5) $)_{2}$, we have

$$
\begin{aligned}
\left(\nabla_{X} B\right)(Y, \zeta)= & -(X \alpha) u(Y)-\beta B(Y, X) \\
& +\alpha\{u(Y) \tau(X)+B(X, F Y)+B(Y, F X)\} .
\end{aligned}
$$

Substituting this into (4.3) with $Z=\zeta$ and using (3.14) and (3.16), we have

$$
\{X \alpha-(\alpha \ell-\beta m) \theta(X)\} u(Y)=\{Y \alpha-(\alpha \ell-\beta m) \theta(Y)\} u(X) .
$$

Replacing Y by U to this equation and using (4.8) ${ }_{1}$, we have

$$
\begin{equation*}
X \alpha=\{\alpha \ell-\beta m\} \theta(X) \tag{4.10}
\end{equation*}
$$

Substituting (4.9) into $T(X, Y) \beta=X(Y \beta)-Y(X \beta)-[X, Y] \beta$, we have

$$
T(X, Y) \beta=X(\zeta \beta) \theta(Y)-Y(\zeta \beta) \theta(X)+2(\zeta \beta) d \theta(X, Y)
$$

Substituting (3.3) $)_{2}$ and (3.13) into this equation and using (4.9), we get

$$
X(\zeta \beta) \theta(Y)-Y(\zeta \beta) \theta(X)+2 \alpha(\zeta \beta) \bar{g}(X, J Y)=0
$$

due to $\theta \circ F=0$. Taking $X=U$ and $Y=\xi$ to this equation, we obtain

$$
\begin{equation*}
\alpha(\zeta \beta)=0 . \tag{4.11}
\end{equation*}
$$

Applying ∇_{X} to $\alpha \beta=0$ and using (4.9), (4.10) and (4.11), we get $\beta m=0$. Substituting (4.10) into $T(X, Y) \alpha=X(Y \alpha)-Y(X \alpha)-[X, Y] \alpha$, we get

$$
T(X, Y) \alpha=\alpha\{X(\ell) \theta(Y)-Y(\ell) \theta(X)\}+2 \alpha \ell d \theta(X, Y)
$$

Substituting (3.3) $)_{2}$ and (3.13) into this equation and using

$$
\alpha\{(X \ell) \theta(Y)-(Y \ell) \theta(X)\}+2 \alpha^{2} \ell \bar{g}(X, J Y)=0
$$

Taking $X=U$ and $Y=\xi$ to this equation, we have $\alpha \ell=0$. As $\alpha \ell=0$ and $\beta m=0$, from (4.10), we see that α is a constant.

Definition. (1) A screen distribution $S(T M)$ is called totally umbilical [4] in M if there exist a smooth function γ such that $A_{N} X=\gamma P X$, or equivalently,

$$
\begin{equation*}
C(X, P Y)=\gamma g(X, Y) \tag{4.12}
\end{equation*}
$$

In case $\gamma=0$, we say that $S(T M)$ is totally geodesic in M.
(2) A lightlike hypersurface M is called screen conformal [2] if there exist a non-vanishing smooth function φ such that $A_{N}=\varphi A_{\xi}^{*}$, or equivalently,

$$
\begin{equation*}
C(X, P Y)=\varphi B(X, Y) \tag{4.13}
\end{equation*}
$$

Theorem 4.2. Let M be a lightlike hypersurfaces of an indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ with a symmetric metric connection of type (ℓ, m). If one of the following four conditions
(1) $S(T M)$ is totally umbilical,
(2) M is screen conformal,
(3) F is parallel with respect to ∇, and
(4) U is parallel with respect to ∇
is satisfied, then $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is a flat manifold with an indefinite cosymplectic structure, i.e., $f_{1}=f_{2}=f_{3}=0$ and $\alpha=\beta=0$. Moreover, in cases (1), (3), M is also flat.

Proof. (1) If $S(T M)$ is totally umbilical, then $(3.16)_{2}$ is reduced to

$$
\gamma \theta(X)=-\alpha v(X)+\beta \eta(X) .
$$

Taking $X=\zeta, X=V$ and $X=\xi$ by turns, we have $\gamma=0, \alpha=0$ and $\beta=0$ respectively. As $\gamma=0, S(T M)$ is totally geodesic in M.

As $\alpha=\beta=0, \bar{M}$ is an indefinite cosymplectic manifold and $f_{1}=f_{2}=f_{3}$ by Theorem 4.1. As $C=A_{N}=0$, using (3.7) and (3.8) we see that

$$
B(X, U)=0, \quad\left(\nabla_{X} B\right)(Y, U)=0
$$

Taking $Z=U$ to (4.3) and using the last equations, we have

$$
f_{2}\{u(Y) \eta(X)-u(X) \eta(Y)+\bar{g}(X, J Y)\}=0 .
$$

Taking $X=\xi$ and $Y=U$ to this equation, we get $f_{2}=0$. Therefore, $f_{1}=f_{2}=$ $f_{3}=0$ and $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is flat. From (4.2) and the facts that $f_{1}=f_{2}=f_{3}=0$ and $A_{N}=0$, we see that $R=0$. Thus M is also flat.
(2) Taking $P Y=\zeta$ to (4.13) and using (3.16), we get

$$
\alpha v(X)-\beta \eta(X)=\alpha \varphi u(X)
$$

Taking $X=V$ and $X=\xi$ by turns, we have $\alpha=0$ and $\beta=0$ respectively. Thus \bar{M} is an indefinite cosymplectic manifold and $f_{1}=f_{2}=f_{3}$. Taking $X=U$ and $Y=V$ to (3.14) and using $\theta \circ J=0$, we show that

$$
B(U, V)=B(V, U)
$$

Taking the scalar product with N to (3.20) and then, substituting (4.2) into the resulting equation, we obtain

$$
\begin{align*}
& \left(\nabla_{X} C\right)(Y, P Z)-\left(\nabla_{Y} C\right)(X, P Z) \tag{4.14}\\
& -\tau(X) C(Y, P Z)+\tau(Y) C(X, P Z) \\
& -\ell\{\theta(X) C(Y, P Z)-\theta(Y) C(X, P Z)\} \\
& -m\{\theta(X) C(F Y, P Z)-\theta(Y) C(F X, P Z)\} \\
= & f_{1}\{g(Y, P Z) \eta(X)-g(X, P Z) \eta(Y)\} \\
& +f_{2}\{v(Y) \bar{g}(X, J P Z)-v(X) \bar{g}(Y, J P Z)+2 v(P Z) \bar{g}(X, J Y)\} \\
& +f_{3}\{\theta(X) \eta(Y)-\theta(Y) \eta(X)\} \theta(P Z) .
\end{align*}
$$

Applying ∇_{X} to $C(Y, P Z)=\varphi B(Y, P Z)$, we have

$$
\left(\nabla_{X} C\right)(Y, P Z)=(X \varphi) B(Y, P Z)+\varphi\left(\nabla_{X} B\right)(Y, P Z) .
$$

Substituting this into (4.14) and using (4.3), we have

$$
\begin{aligned}
& \{X \varphi-2 \varphi \tau(X)\} B(Y, P Z)-\{Y \varphi-2 \varphi \tau(Y)\} B(X, P Z) \\
= & f_{1}\{g(Y, P Z) \eta(X)-g(X, P Z) \eta(Y)\} \\
& +f_{2}\{[v(Y)-\varphi u(Y)] \bar{g}(X, J P Z)-[v(X)-\varphi u(X)] \bar{g}(Y, J P Z) \\
& +2[v(P Z)-\varphi u(P Z)] \bar{g}(X, J Y)\} \\
& +f_{3}\{\theta(X) \eta(Y)-\theta(Y) \eta(X)\} \theta(P Z) .
\end{aligned}
$$

Replacing Y by ξ to the last equation and using (3.15), we obtain

$$
\begin{aligned}
& \{\xi \varphi-2 \varphi \tau(\xi)\} B(X, Y) \\
= & f_{1} g(X, Y)+f_{2}\{v(X)-\varphi u(X)\} u(Y) \\
& +2 f_{2}\{v(Y)-\varphi u(Y)\} u(X)-f_{3} \theta(X) \theta(Y) .
\end{aligned}
$$

Taking $X=V, Y=U$ and then, $X=U, Y=V$ by turns, we have

$$
\begin{aligned}
& \{\xi \varphi-2 \varphi \tau(\xi)\} B(V, U)=f_{1}+f_{2}, \\
& \{\xi \varphi-2 \varphi \tau(\xi)\} B(U, V)=f_{1}+2 f_{2}
\end{aligned}
$$

respectively. From these two equations we show that $f_{2}=0$. Thus $f_{1}=f_{2}=$ $f_{3}=0$ and $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is flat.
(3) If F is parallel with respect to ∇, then (3.10) is reduced to

$$
\begin{align*}
& u(Y) A_{N} X-B(X, Y) U \tag{4.15}\\
& +\alpha\{g(X, Y) \zeta-\theta(Y) X\}+\beta\{\bar{g}(J X, Y) \zeta-\theta(Y) F X\}=0
\end{align*}
$$

Taking the scalar product with N to (4.15), we get $\alpha \eta(X)+\beta v(X)=0$. From this equation, we obtain $\alpha=0$ and $\beta=0$ respectively. Thus \bar{M} is an indefinite cosymplectic manifold and $f_{1}=f_{2}=f_{3}$ by Theorem 4.1.

Replacing Y by U to (4.15) such that $\alpha=\beta=0$ and using (3.7), we get

$$
\begin{equation*}
A_{N} X=\sigma(X) U \tag{4.16}
\end{equation*}
$$

Taking the scalar product with V to (4.15), we get $g\left(A_{\xi}^{*} X, Y\right)=g(\sigma(X) V, Y)$. As $A_{\xi}^{*} X$ and V belong to $S(T M)$, and $S(T M)$ is non-degenerate, we get

$$
\begin{equation*}
A_{\xi}^{*} X=\sigma(X) V . \tag{4.17}
\end{equation*}
$$

Taking the scalar product with U to (4.16) and using (2.7), we get

$$
C(X, U)=0 .
$$

Applying ∇_{X} to $C(Y, U)=0$ and using (3.8), (4.16) and $F U=0$, we get

$$
\left(\nabla_{X} C\right)(Y, U)=0
$$

Substituting the last two equation into (4.14) with $P Z=U$, we have

$$
\left(f_{1}+f_{2}\right)\{v(Y) \eta(X)-v(X) \eta(Y)\}=0
$$

Taking $X=V$ and $Y=\xi$ to this equation, we obtain $f_{1}+f_{2}=0$. Therefore, $f_{1}=f_{2}=f_{3}=0$ and $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is flat. Substituting (4.16) and (4.17) into (4.2) and using the fact that $f_{1}=f_{2}=f_{3}=0$, we have

$$
R(X, Y) Z=\{\sigma(Y) \sigma(X)-\sigma(X) \sigma(Y)\} u(Z) U=0
$$

for all $X, Y, Z \in \Gamma(T M)$. Therefore $R=0$ and M is also flat.
(4) If U is parallel with respect to ∇, then, from (3.5) and (3.8), we have

$$
\begin{equation*}
J\left(A_{N} X\right)-u\left(A_{N} X\right) N+\tau(X) U-\{\alpha \eta(X)+\beta v(X)\} \zeta . \tag{4.18}
\end{equation*}
$$

Taking the scalar product with ζ and V by turns, we get $\alpha \eta(X)+\beta v(X)=0$ and $\tau=0$. Taking $X=\xi$ and $X=V$ to the first result by turns, we have $\alpha=0$ and $\beta=0$ respectively. Thus \bar{M} is an indefinite cosymplectic manifold and $f_{1}=f_{2}=f_{3}$ by Theorem 4.1.

Applying J to (4.18) and using (2.1), (3.7) and (3.16) $)_{2}$, we obtain

$$
\begin{equation*}
A_{N} X=\sigma(X) U \tag{4.19}
\end{equation*}
$$

Taking the scalar product with U to (4.19), we get

$$
C(X, U)=0 .
$$

Applying ∇_{X} to $C(Y, U)=0$ and using (3.8) and (4.19), we obtain

$$
\left(\nabla_{X} C\right)(Y, U)=0 .
$$

Substituting the last two equation into (4.14) with $P Z=U$, we have

$$
\left(f_{1}+f_{2}\right)\{v(Y) \eta(X)-v(X) \eta(Y)\}=0
$$

Taking $X=V$ and $Y=\xi$ to this equation, we obtain $f_{1}+f_{2}=0$. Therefore, $f_{1}=f_{2}=f_{3}=0$ and $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is flat.

Theorem 4.3. Let M be a lightlike hypersurfaces of an indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ with a symmetric metric connection of type (ℓ, m). If V is parallel with respect to ∇, then $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is a space form with an indefinite α-Sasakian structure such that $\alpha=-m$ and

$$
f_{1}=f_{3}=\frac{2}{3} \alpha^{2}, \quad f_{2}=-\frac{1}{3} \alpha^{2} .
$$

Proof. If V is parallel with respect ∇, then, from (3.5) and (3.9), we have

$$
\begin{equation*}
J\left(A_{\xi}^{*} X\right)-u\left(A_{\xi}^{*} X\right) N-\tau(X) V-\beta u(X) \zeta=0 \tag{4.20}
\end{equation*}
$$

Taking the scalar product with ζ and U to (4.20) by turns, we have $\beta=0$ and $\tau=0$ respectively. Applying J to (4.20) and using (3.1) and (3.16) ${ }_{1}$, we obtain

$$
\begin{equation*}
A_{\xi}^{*} X=-\alpha u(X) \zeta+u\left(A_{\xi}^{*} X\right) U \tag{4.21}
\end{equation*}
$$

Taking the scalar product with U to this equation, we obtain

$$
\begin{equation*}
B(X, U)=0 \tag{4.22}
\end{equation*}
$$

Replacing Y by U to (3.14) and using the fact that $B(X, U)=0$, we have

$$
\begin{equation*}
B(U, X)=m \theta(X) \tag{4.23}
\end{equation*}
$$

Taking $X=U$ to (3.16) $)_{1}$ and using (4.23), we get

$$
\alpha=\alpha u(U)=-B(U, \zeta)=-m \theta(\zeta)=-m
$$

Thus \bar{M} is an indefinite α-Sasakian manifold such that $\alpha=-m$.
Applying ∇_{Y} to (4.22) and using (3.8), (3.16) $)_{1}$ and (4.21), we have

$$
\left(\nabla_{X} B\right)(Y, U)=-\alpha^{2} \eta(X) u(Y)
$$

Substituting the last equation and (4.22) into (4.3) with $Z=U$, we obtain

$$
\alpha^{2}\{u(X) \eta(Y)-u(Y) \eta(X)\}=f_{2}\{u(Y) \eta(X)-u(X) \eta(Y)+2 \bar{g}(X, J Y)\} .
$$

Taking $X=\xi$ and $Y=U$, we obtain $3 f_{2}=-\alpha^{2}$. From this result and the first two equations of (3) in Theorem 4.1, we get

$$
f_{1}=f_{3}=\frac{2}{3} \alpha^{2}, \quad f_{2}=-\frac{1}{3} \alpha^{2} .
$$

References

[1] P. Alegre, D. E. Blair, and A. Carriazo, Generalized Sasakian space form, Israel J. Math. 141 (2004), 157-183.
[2] C. Atindogbe and K. L. Duggal, Conformal screen on lightlike hypersurfaces, Int. J. Pure Appl. Math. 11 (2004), no. 4, 421-442.
[3] C. Cǎlin, Contributions to geometry of CR-submanifold, Thesis, University of Iasi, Romania, 1998.
[4] K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, 1996.
[5] K. L. Duggal and D. H. Jin, Null curves and Hypersurfaces of Semi-Riemannian Manifolds, World Scientific, 2007.
[6] K. L. Duggal and B. Sahin, Differential geometry of lightlike submanifolds, Frontiers in Mathematics, Birkhäuser, 2010.
[7] S. Golab, On semi-symmetric and quarter-symmetric linear connections, Tensor (N.S.) 29 (1975), no. 3, 249-254.
[8] H. A. Hayden, Subspace of a space with torsion, Proc. London Math. Soc. 34 (1932), 27-50.
[9] D. H. Jin, Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold, Indian J. Pure Appl. Math. 41 (2010), no. 4, 569-581.
[10] _, Half lightlike submanifold of an indefinite generalized Sasakian space form with a quarter-symmetric metric connection, Internat. Math. Forum 10 (2015), no. 3, 127142.
[11] D. Kamilya and U. C. De, Some properties of a Ricci quarter-symmetric metric connection in a Riemannian manifold, Indian J. Pure Appl. Math. 26 (1995), no. 1, 29-34.
[12] R. S. Mishra and S. N. Pandey, On quarter symmetric metric F-connections, Tensor (N.S.) 34 (1980), no. 1, 1-7.
[13] J. Nikić and N. Pušić, A remakable class of natural metric quarter-symmetric connection on a hyperbolic Kaehler space, Conference "Applied Differential Geometry: General Relativity"-Workshop "Global Analysis, Differential Geometry, Lie Algebras", 96-101, BSG Proc., 11, Geom. Balkan Press, Bucharest, 2004.
[14] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), no. 3-4, 187-193.
[15] N. Pušić, On quarter-symmetric metric connections on a hyperbolic Kaehlerian space, Publ. Inst. Math. (Beograd) (N.S.) 73(87) (2003), 73-80.
[16] S. C. Rastogi, On quarter-symmetric metric connections, C. R. Acad Sci. Bulgare Sci. 31 (1978), no. 7, 811-814.
[17] , On quarter-symmetric metric connections, Tensor (N.S.) 44 (1987), no. 2, 133141.
[18] K. Yano, On semi-symmetric metric connections, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.
[19] K. Yano and T. Imai, Quarter-symmetric metric connection and their curvature tensors, Tensor (N.S.) 38 (1982), 13-18.

Dae Ho Jin
Department of Mathematics
Dongguk University
Kyonguu 780-714, Korea
E-mail address: jindh@dongguk.ac.kr

[^0]: Received July 22, 2015.
 2010 Mathematics Subject Classification. Primary 53C25, 53C40, 53C50.
 Key words and phrases. symmetric connection of type (ℓ, m), metric connection, lightlike hypersurface.

