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ASCREEN LIGHTLIKE HYPERSURFACES OF A

SEMI-RIEMANNIAN SPACE FORM WITH A

SEMI-SYMMETRIC NON-METRIC CONNECTION

Dae Ho Jin

Abstract. We study lightlike hypersurfaces of a semi-Riemannian space

form M̃(c) admitting a semi-symmetric non-metric connection. First, we
construct a type of lightlike hypersurfaces according to the form of the

structure vector field of M̃(c), which is called a ascreen lightlike hyper-
surface. Next, we prove a characterization theorem for such an ascreen
lightlike hypersurface endow with a totally geodesic screen distribution.

1. Introduction

The theory of lightlike submanifolds is an important topic of research in dif-
ferential geometry due to its application in mathematical physics, especially in
the electromagnetic field theory. The study of such notion was initiated by Dug-
gal and Bejancu [3] and later studied by many authors (see up-to date results
in two books [4, 5]). The notion of a semi-symmetric non-metric connection
on a Riemannian manifold was introduced by Ageshe and Chafle [1]. Recently
several authors ([9]-[13]) studied lightlike hypersurfaces in a semi-Riemannian
manifold admitting a semi-symmetric non-metric connection. Most of authors
that wrote on either lightlike hypersurfaces M of semi-Riemannian manifolds

M̃ admitting semi-symmetric non-metric connections or lightlike hypersurfaces

M of indefinite almost contact manifolds M̃ fail to treat with the case the struc-
ture vector field ζ of M̃ is not tangent to M , but studied only to the case ζ
is tangent to M (such M is called tangential lightlike submanifold ([9]-[13]) of

M̃). There are few papers on non-tangential lightlike submanifolds of indefinite
almost contact manifolds studied by Jin ([6]-[8]).

In this paper, we study non-tangential lightlike hypersurfaces of a semi-
Riemannian space form admitting a semi-symmetric non-metric connection.
There are several different types of non-tangential lightlike hypersurfaces ac-
cording to the form of the structure vector field of the ambient manifold. We
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study a type of them here, named by ascreen lightlike hypersurfaces. Our main
result is a classification theorem for such an ascreen lightlike hypersurface en-
dow with a totally geodesic screen distribution.

2. Semi-symmetric non-metric connection

Let (M̃, g̃) be a semi-Riemannian manifold. A connection ∇̃ on M̃ is called a

semi-symmetric non-metric connection [1] if ∇̃ and its torsion tensor T̃ satisfy

(∇̃X g̃)(Y, Z) = −π(Y )g̃(X,Z)− π(Z)g̃(X,Y ),(2.1)

T̃ (X,Y ) = π(Y )X − π(X)Y,(2.2)

where π is a 1-form associated with a non-zero vector field ζ by

(2.3) π(X) = g̃(X, ζ),

we say that ζ is the structure vector field of M̃ , for any vector fields X, Y and Z

on M̃ . In the entire discussion of this article we shall assume that the structure

vector field ζ to be unit spacelike unless otherwise specified.

Let (M, g) be a lightlike hypersurface of M̃ . Then the normal bundle TM⊥

of M is a vector subbundle of the tangent bundle TM of rank 1, and coincides
with the radical distribution Rad(TM) = TM ∩ TM⊥ of M . Therefore there
exist a complementary non-degenerate vector bundle S(TM) of Rad(TM) in
TM , which is called a screen distribution on M , such that

(2.4) TM = Rad(TM)⊕orth S(TM),

where ⊕orth denotes the orthogonal direct sum. We denote such a lightlike
hypersurface by M = (M, g, S(TM)). Denote by F (M) the algebra of smooth
functions on M and by Γ(E) the F (M) module of smooth sections of a vector
bundle E over M . It is well-known [3] that, for any null section ξ of Rad(TM)
on a coordinate neighborhood U ⊂ M , there exists a unique null section N of
a unique vector bundle tr(TM) in S(TM)⊥ satisfying

g̃(ξ,N) = 1, g̃(N,N) = g̃(N,X) = 0, ∀X ∈ Γ (S(TM)|U) .

We call tr(TM) and N the transversal vector bundle and the null transversal

vector field of M with respect to S(TM) respectively. Then TM̃ is given by

(2.5) TM̃ = TM ⊕ tr(TM) = {Rad(TM) ⊕ tr(TM)} ⊕orth S(TM).

In the sequel, we take X, Y, Z, W ∈ Γ(TM) unless otherwise specified. Let
P be the projection morphism of TM on S(TM). Then the local Gauss and
Weingartan formulas for M and S(TM) are given, respectively, by

∇̃XY = ∇XY +B(X,Y )N,(2.6)

∇̃XN = −A
N
X + τ(X)N ;(2.7)

∇XPY = ∇∗

XPY + C(X,PY )ξ,(2.8)

∇Xξ = −A∗

ξX − σ(X)ξ,(2.9)
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where ∇ and ∇∗ are the induced linear connections on TM and S(TM) respec-
tively, B and C are the local second fundamental forms on TM and S(TM),
respectively, A

N
and A∗

ξ are the shape operators on TM and S(TM), respec-

tively and τ is a 1-form on TM . From (2.1), (2.2) and (2.6), we have

(∇Xg)(Y, Z) = −π(Y )g(X,Z)− π(Z)g(X,Y )(2.10)

+ B(X,Y )η(Z) +B(X,Z)η(Y ),

T (X,Y ) = π(Y )X − π(X)Y,(2.11)

and B is symmetric on TM , where T is the torsion tensor with respect to the
induced connection ∇ and η is a 1-form on TM such that

η(X) = g̃(X,N).

From the fact B(X,Y ) = g̃(∇̃XY, ξ), we know that B is independent of the
choice of a screen distribution. Taking Y = ξ to this and using (2.1), we get

(2.12) B(X, ξ) = 0.

Let a and b be the smooth functions defined by a = π(N) and b = π(ξ). Then
the above second fundamental forms are related to their shape operators by

g(A∗

ξX,Y ) = B(X,Y )− bg(X,Y ), g̃(A∗

ξX,N) = 0,(2.13)

g(A
N
X,PY ) = C(X,PY )− ag(X,PY )− η(X)π(PY ),(2.14)

g̃(A
N
X,N) = −aη(X), σ(X) = τ(X)− bη(X).

By (2.13), we show that A∗

ξ is S(TM)-valued self-adjoint operator and satisfies

(2.15) A∗

ξξ = 0.

Denote by R̃ , R and R∗ the curvature tensors of the semi-symmetric non-

metric connection ∇̃ on M̃ , the induced connection ∇ on M and the induced
connection∇∗ on S(TM), respectively. Using the Gauss -Weingarten equations
for M and S(TM), we obtain the Gauss-Codazzi equations for M and S(TM) :

R̃(X,Y )Z = R(X,Y )Z +B(X,Z)A
N
Y −B(Y, Z)A

N
X(2.16)

+ [(∇XB)(Y, Z)− (∇Y B)(X,Z) +B(Y, Z){τ(X)− π(X)}

− B(X,Z){τ(Y )− π(Y )}]N,

R̃(X,Y )N = −∇X(A
N
Y ) +∇Y (AN

X) +A
N
[X,Y ] + τ(X)A

N
Y(2.17)

− τ(Y )A
N
X + {B(Y,A

N
X)−B(X,A

N
Y ) + 2dτ(X,Y )}N,

R(X,Y )PZ = R∗(X,Y )PZ + C(X,PZ)A∗

ξY − C(Y, PZ)A∗

ξX(2.18)

+ [(∇XC)(Y, PZ)− (∇Y C)(X,PZ) + C(X,PZ){σ(Y ) + π(Y )}

− C(Y, PZ){σ(Y ) + π(Y )}]ξ,

R(X,Y )ξ = −∇∗

X(A∗

ξY ) +∇∗

Y (A
∗

ξX) +A∗

ξ [X,Y ]− σ(X)A∗

ξY(2.19)

+ σ(Y )A∗

ξX + {C(Y,A∗

ξX)− C(X,A∗

ξY )− 2dσ(X,Y )}ξ.

In case R = 0(R∗ = 0), M(the leaf M∗ of S(TM)) is called a flat manifold.
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A complete simply connected semi-Riemannian manifold M̃ of constant cur-

vature c is called a semi-Riemannian space form and denote it by M̃(c). For

any X, Y, Z ∈ Γ(TM̃), the curvature tensor R̃ of M̃(c) is given by

(2.20) R̃(X,Y )Z = c{g̃(Y, Z)X − g̃(X,Z)Y }.

In general, S(TM) is not necessarily integrable. The following result gives
equivalent conditions for the integrability of S(TM) [9]:

Theorem 2.1. Let M be a lightlike hypersurface of a semi-Riemannian man-

ifold M̃ admitting a semi-symmetric metric connection. Then the following

assertions are equivalent:
(1) The screen distribution S(TM) is an integrable distribution.

(2) C is symmetric, i.e., C(X,Y ) = C(Y,X) for all X,Y ∈ Γ(S(TM)).
(3) The shape operator A

N
is self-adjoint with respect to g, i.e.,

g(A
N
X,Y ) = g(X,A

N
Y ), ∀X, Y ∈ Γ(S(TM)).

3. Ascreen lightlike hypersurfaces

Definition. A lightlike hypersurface M of a semi-Riemannian manifold M̃
admitting a semi-symmetric non-metric connection is called an ascreen lightlike

hypersurface [7, 8] if ζ belongs to S(TM)⊥ = Rad(TM)⊕ tr(TM).

If M is an ascreen lightlike hypersurface of M̃ , then ζ is expressed as

(3.1) ζ = aξ + bN.

As g̃(ζ, ζ) = 1, we have 2ab = 1. This implies that a 6= 0 and b 6= 0. Taking
the scaler product with X to (3.1), we have π(X) = bη(X) for all X ∈ Γ(TM).
Comparing this with the third equation of (2.14), we obtain

(3.2) τ(X) = π(X) + σ(X), ∀X ∈ Γ(TM).

Theorem 3.1. Let M be an ascreen lightlike hypersurface of a semi-Riemann-

ian manifold M̃ admitting a semi-symmetric non-metric connection. Then the

screen distribution S(TM) is an integrable distribution.

Proof. Taking the scalar product with ξ to (2.17) and N to (2.16) such that
Z = ξ by turns and using (2.12) and (2.19), we obtain

g̃(R̃(X,Y )ξ, N) = B(X,A
N
Y )−B(Y,A

N
X)− 2dτ(X,Y )

= C(Y,A∗

ξX)− C(X,A∗

ξY )− 2dσ(X,Y ).

Substituting (2.13) and (2.14) into the last equation and using (3.2) and the
facts π(A∗

ξX) = 0 for any X ∈ Γ(TM) and A∗

ξ is self-adjoint, we have

(3.3) 2dπ(X,Y ) = b{g(X,A
N
Y )− g(A

N
X,Y )}, ∀X, Y ∈ Γ(TM).

As π = 0 on S(TM), we show that dπ = 0 on S(TM). Thus we obtain

g(A
N
X,Y ) = g(X,A

N
Y ), ∀X, Y ∈ Γ(S(TM)).

It follows from Theorem 2.1 that S(TM) is an integrable distribution. �
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Definition. (1) A lightlike hypersurfaceM is called totally umbilical [3] if there
exist a smooth function β on a coordinate neighborhood U in M such that

B(X,Y ) = βg(X,Y ), ∀X, Y ∈ Γ(TM).

In case β = 0 on U , we say that M is totally geodesic.
(2) A screen distribution S(TM) is called totally geodesic [3] in M if C = 0

on a coordinate neighborhood U in M .

Due to (2.14), we show that S(TM) is totally geodesic in M if and only if
the shape operators A

N
of S(TM) satisfies

(3.4) A
N
X = −aX, ∀X ∈ Γ(TM).

Theorem 3.2. Let M be an ascreen lightlike hypersurface of a semi-Riemann-

ian space form M̃(c) admitting a semi-symmetric non-metric connection. If

S(TM) is totally geodesic in M , then c = 0 and M is flat, totally geodesic and

locally a product manifold M = C × M∗, where C is a null curve tangent to

Rad(TM) and M∗ is a flat leaf of the integrable distribution S(TM).

Proof. As S(TM) is totally geodesic in M , from (2.8), (2.9) and (2.15), we
show that Rad(TM) and S(TM) are auto-parallel distributions of M . By de
Rham’s decomposition theorem [2], M is locally a product manifold C × M∗

where C is a null curve tangent to Rad(TM) and M∗ is a leaf of S(TM).

Taking the scalar product with N to (2.18), we obtain

g̃(R(X,Y )PZ, N) = 0, ∀X, Y, Z ∈ Γ(TM),

due to C = 0. Taking the scalar product with N to (2.16) such that Z = PZ
and using (2.14)2, (2.20) and the last equation, we get

c{g(Y, PZ)η(X)− g(X,PZ)η(Y )} = a{B(Y, PZ)η(X)−B(X,PZ)η(Y )}.

Replacing X by ξ to this and using (2.12), we have

cg(X,PY ) = aB(X,PY ), ∀X, Y ∈ Γ(TM).

Using (2.12) and the fact a 6= 0, we obtain

(3.5) B(X,Y ) = βg(X,Y ), ∀X, Y ∈ Γ(TM),

where β = c/a. It follows that M is totally umbilical.
Taking the scalar product with ξ to (2.16) and using (2.20), we have

(∇XB)(Y, Z)− (∇Y B)(X,Z)(3.6)

= {π(X)− τ(X)}B(Y, Z)− {π(Y )− τ(Y )}B(X,Z).

Substituting (3.4)∼(3.6) into (2.16) and using (2.20) and aβ = c, we have

R(X,Y )Z = 0, ∀X, Y, Z ∈ Γ(TM).

Thus M is a flat manifold. From this, (2.18) and the fact C = 0, we also have

R∗(X,Y )Z = 0, ∀X, Y, Z ∈ Γ(S(TM)).
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Thus M∗ is also a flat manifold.
Taking the scalar product with PZ to (2.17), we have

g̃(R̃(X,Y )N, PZ) = g(−∇X(A
N
Y ) +∇Y (AN

X) +A
N
[X,Y ], PZ)

+ τ(X)g(A
N
Y, PZ)− τ(Y )g(A

N
X,PZ)

for any X, Y, Z ∈ Γ(TM). Using this, (2.20) and (3.4), we have

c{g(Y, PZ)η(X)− g(X,PZ)η(Y )}(3.7)

= g(∇X(A
N
Y )−∇Y (AN

X)−A
N
[X,Y ], PZ)

+ a{τ(X)g(Y, PZ)− τ(Y )g(X,PZ)}

for any X, Y, Z ∈ Γ(TM). Applying ∇X to A
N
Y = −aY , we have

∇X(A
N
Y ) = −X [a]Y − a∇XY.

Substituting this into (3.7), we have

{X [a]− aπ(X)− aτ(X) + cη(X)}g(Y, Z)(3.8)

= {Y [a]− aπ(Y )− aτ(Y ) + cη(Y )}g(X,Z).

Applying ∇X to B(Y, Z) = βg(Y, Z) and using (2.10) and (3.5), we have

(∇XB)(Y, Z) = X [β]g(Y, Z)− {βπ(Y )− β2η(Y )}g(X,Z)

− {βπ(Z)− β2η(Z)}g(X,Y ).

Substituting this equation into (3.6), we get

{X [β] + βτ(X) − β2η(X)}g(Y, Z) = {Y [β] + βτ(Y )− β2η(Y )}g(X,Z).

Replacing β by c/a to this equation and using the fact a 6= 0, we have

c{X [a]− aτ(X) + cη(X)}g(Y, Z) = c{Y [a]− aτ(Y ) + cη(Y )}g(X,Z).

Now we assume that c 6= 0. Then, for any X, Y, Z ∈ Γ(TM), we have

(3.9) {X [a]− aτ(X) + cη(X)}g(Y, Z) = {Y [a]− aτ(Y ) + cη(Y )}g(X,Z).

Comparing (3.8) and (3.9) and using the fact a 6= 0, we have

π(X)g(Y, Z) = π(Y )g(X,Z), ∀X, Y, Z ∈ Γ(TM).

Taking Y = Z = PW such that g(PW,PW ) 6= 0 on U and by using the fact
π(PW ) = 0, we obtain π(X) = 0 for all X ∈ Γ(TM). It is a contradiction to
π(ξ) = b 6= 0. It follows that c = 0. Therefore β = 0. By (3.5), we show that
M is totally geodesic. Thus we have our assertion. �
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