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HALF LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN
SPACE FORM WITH A SEMI-SYMMETRIC NON-METRIC

CONNECTION

Dae Ho Jin

Abstract. In this paper, we study screen quasi-conformal irrotational half lightlike

submanifolds M of a semi-Riemannian space form M̃(c) admitting a semi-symmetric
non-metric connection, whose structure vector field ζ is tangent to M . The main
result is a classification theorem for such Einstein half lightlike submanifolds of a
Lorentzian space form admitting a semi-symmetric non-metric connection.

1. Introduction

The theory of lightlike submanifolds is indeed important for both the geometry
of submanifolds to mathematics and its applications to physics. The study of such
notion was initiated by Duggal and Bejancu [3] and later studied by many authors
(see up-to date in [4, 5]). The notion of a semi-symmetric non-metric connection on
a Riemannian manifold was introduced by Ageshe and Chafle [1]. Although now we
have lightlike version of a large variety of Riemannian submanifolds, the geometry
of lightlike submanifolds of semi-Riemannian manifolds admitting semi-symmetric
non-metric connections has been few known. Recently Yasar, Cöken and Yücesan
[15] and Jin [6, 7] studied lightlike hypersurfaces in a semi-Riemannian manifold
admitting a semi-symmetric non-metric connection. Jin [10] and Jin-Lee [11] studied
general lightlike submanifolds and half lightlike submanifolds of a semi-Riemannian
manifold with a semi-symmetric non-metric connection.

The objective of this paper is to study screen quasi-conformal irrotational half
lightlike submanifolds M of a semi-Riemannian space form M̃(c) admitting a semi-
symmetric non-metric connection, whose structure vector field ζ of M̃(c) is tangent
to M but it does not belongs to S(TM). The reason for this geometric restriction on
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M is due to the fact that such a class admits an integrable screen distribution and a
symmetric induced Ricci tensor of M . Our main result is a classification theorem for
such Einstein half lightlike submanifolds M of a Lorentzian space form admitting a
semi-symmetric non-metric connection.

2. Semi-symmetric Non-metric Connection

Let (M̃, g̃) be a semi-Riemannian manifold. A connection ∇̃ on M̃ is called a
semi-symmetric non-metric connection [1] if ∇̃ and its torsion tensor T̃ satisfy

(∇̃X g̃)(Y, Z) = −π(Y )g̃(X, Z)− π(Z)g̃(X, Y ),(2.1)

T̃ (X, Y ) = π(Y )X − π(X)Y,(2.2)

for any vector fields X, Y and Z on M̃ , where π is a 1-form associated with a
non-vanishing vector field ζ, which is called the structure vector field, by

π(X) = g̃(X, ζ).

A submanifold (M, g) of codimension 2 is called half lightlike submanifold if the
radical distribution Rad(TM) = TM ∩ TM⊥ is a vector subbundle of the tangent
bundle TM and the normal bundle TM⊥ of M , with rank 1. In this case, there exists
complementary non-degenerate distributions S(TM) and S(TM⊥) of Rad(TM) in
TM and TM⊥ respectively, which are called the screen and co-screen distributions
on M respectively, such that

(2.3) TM = Rad(TM)⊕orth S(TM), TM⊥ = Rad(TM)⊕orth S(TM⊥),

where ⊕orth denotes the orthogonal direct sum. We denote such a half lightlike
submanifold by M = (M, g, S(TM)). Denote by F (M) the algebra of smooth func-
tions on M , by Γ(E) the F (M) module of smooth sections of a vector bundle E

over M and by (2.3)i the i-th equation of (2.3). We use same notations for any
others. Choose L ∈ Γ(S(TM⊥)) as a spacelike unit vector field, without loss of
generality, i.e., g̃(L,L) = 1. We call L the canonical normal vector field of M .
Consider the orthogonal complementary vector bundle S(TM)⊥ to S(TM) in TM̃ .
Certainly Rad(TM) and S(TM⊥) are vector subbundles of S(TM)⊥. As S(TM⊥)
is non-degenerate, we have

S(TM)⊥ = S(TM⊥)⊕orth S(TM⊥)⊥,

where S(TM⊥)⊥ is the orthogonal complementary to S(TM⊥) in S(TM)⊥. It is
well-known [3] that, for any null section ξ of Rad(TM) on a coordinate neighborhood
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U ⊂ M , there exists a uniquely defined lightlike vector bundle ltr(TM) and a null
vector field N of ltr(TM) on U satisfying

g̃(ξ,N) = 1, g̃(N,N) = g̃(N,X) = g̃(N, L) = 0, ∀X ∈ Γ(S(TM)).

We call N, ltr(TM) and tr(TM) = S(TM⊥)⊕orth ltr(TM) the lightlike transversal
vector field, lightlike transversal vector bundle and transversal vector bundle of M

with respect to S(TM) respectively [11]. Then TM̃ is decomposed as

TM̃ = TM ⊕ tr(TM) = {Rad(TM)⊕ tr(TM)} ⊕orth S(TM)(2.4)

= {Rad(TM)⊕ ltr(TM)} ⊕orth S(TM)⊕orth S(TM⊥).

In the entire discussion of this article, we shall assume that the structure vector
field ζ of M̃ to be spacelike unit tangent vector field of M . In the sequel, we take
X, Y, Z, W ∈ Γ(TM), unless otherwise specified. Let P be the projection morphism
of TM on S(TM) with respect to the decomposition (2.3)1. Then the local Gauss
and Weingartan formulas of M and S(TM) are given respectively by

∇̃XY = ∇XY + B(X, Y )N + D(X, Y )L,(2.5)

∇̃XN = −AN X + τ(X)N + ρ(X)L,(2.6)

∇̃XL = −ALX + φ(X)N ;(2.7)

∇XPY = ∇∗XPY + C(X,PY )ξ,(2.8)

∇Xξ = −A∗ξX − τ(X)ξ,(2.9)

where ∇ and ∇∗ are induced linear connections on TM and S(TM) respectively,
B and D are called the local second fundamental forms of M , C is called the local
second fundamental form on S(TM). AN , A∗ξ and AL are linear operators on TM ,
which are called the shape operators, and τ, ρ and φ are 1-forms on TM . We say
that h(X, Y ) = B(X, Y )N +D(X,Y )L is the global second fundamental form tensor
of M . Using (2.1), (2.2) and (2.5), we have

(∇Xg)(Y, Z) = B(X,Y )η(Z) + B(X,Z)η(Y )(2.10)

− π(Y )g(X, Z)− π(Z)g(X,Y ),

T (X, Y ) = π(Y )X − π(X)Y(2.11)

and B and D are symmetric on TM , where T is the torsion tensor with respect to
the induced connection ∇ and η is a 1-form on TM such that

η(X) = g̃(X, N).
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From the facts B(X,Y ) = g̃(∇̃XY, ξ) and D(X, Y ) = g̃(∇̃XY, L), we know that
B and D are independent of the choice of S(TM) and satisfy

(2.12) B(X, ξ) = 0, D(X, ξ) = −φ(X).

The above three local second fundamental forms M and S(TM) are related to their
shape operators by

g(A∗ξX,Y ) = B(X, Y ), g̃(A∗ξX, N) = 0,(2.13)

g(ALX, Y ) = D(X, Y ) + φ(X)η(Y ), g̃(ALX, N) = ρ(X),(2.14)

g(AN X,PY ) = C(X, PY )− fg(X, PY )− η(X)π(PY ),(2.15)

g̃(AN X,N) = −fη(X),

where f is the smooth function given by f = π(N). From (2.12) and (2.13), we
show that A∗ξ is S(TM)-valued self-adjoint and satisfies

(2.16) A∗ξξ = 0.

Denote by R̃, R and R∗ the curvature tensors of the semi-symmetric non-metric
connection ∇̃ of M̃ , the induced connection ∇ on M and the induced connection ∇∗
on S(TM). Using the Gauss -Weingarten formulas for M and S(TM), we obtain
the Gauss-Codazzi equations for M and S(TM) :

R̃(X,Y )Z = R(X,Y )Z + B(X, Z)AN Y −B(Y, Z)AN X(2.17)

+D(X, Z)ALY −D(Y,Z)ALX

+{(∇XB)(Y, Z)− (∇Y B)(X, Z)

+B(Y, Z)[τ(X)− π(X)]−B(X, Z)[τ(Y )− π(Y )]

+D(Y,Z)φ(X)−D(X,Z)φ(Y )}N
+{(∇XD)(Y, Z)− (∇Y D)(X, Z) + B(Y, Z)ρ(X)

−B(X,Z)ρ(Y )−D(Y, Z)π(X) + D(X, Z)π(Y )}L,

R̃(X, Y )N = −∇X(AN Y ) +∇Y (AN X) + AN [X, Y ](2.18)

+ τ(X)AN Y − τ(Y )AN X + ρ(X)ALY − ρ(Y )ALX

+{B(Y, AN X)−B(X,AN Y ) + 2dτ(X,Y )

+φ(X)ρ(Y )− φ(Y )ρ(X)}N
+{D(Y,AN X)−D(X, AN Y ) + 2dρ(X,Y )

+ ρ(X)τ(Y )− ρ(Y )τ(X)}L,
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R̃(X,Y )L = −∇X(ALY ) +∇Y (ALX) + AL [X,Y ](2.19)

+φ(X)AN Y − φ(Y )AN X

+{B(Y, ALX)−B(X, ALY ) + 2dφ(X, Y )

+ τ(X)φ(Y )− τ(Y )φ(X)}N
+{D(Y, ALX)−D(X, ALY ) + ρ(X)φ(Y )− ρ(Y )φ(X)}L ;

R(X, Y )PZ = R∗(X, Y )PZ + C(X,PZ)A∗ξY − C(Y, PZ)AξX(2.20)

+{(∇XC)(Y, PZ)− (∇Y C)(X,PZ)

+C(X,PZ)[τ(Y ) + π(Y )]− C(Y, PZ)[τ(X) + π(X)]}ξ

R(X, Y )ξ = −∇∗X(A∗ξY ) +∇∗Y (A∗ξX) + A∗ξ [X,Y ](2.21)

+ τ(Y )A∗ξX − τ(X)A∗ξY

+ {C(Y, A∗ξX)− C(X, A∗ξY )− 2dτ(X, Y )

+ ρ(X)φ(Y )− ρ(Y )φ(X)}ξ.
A complete simply connected semi-Riemannian manifold M̃ of constant curvature

c is called a semi-Riemannian space form and denote it by M̃(c). For any X, Y, Z ∈
Γ(TM̃), the curvature tensor R̃ of M̃(c) is given by

(2.22) R̃(X, Y )Z = c{g̃(Y, Z)X − g̃(X,Z)Y }.
Taking the scalar product with ξ and L to (2.22), we get

(2.23) g̃(R̃(X, Y )Z, ξ) = g̃(R̃(X, Y )Z, L) = 0, ∀X, Y, Z ∈ Γ(TM).

From this results and (2.17), for all X, Y, Z ∈ Γ(TM), we obtain

R̃(X,Y )Z = R(X,Y )Z + B(X, Z)AN Y −B(Y, Z)AN X(2.24)

+ D(X, Z)ALY −D(Y, Z)ALX.

3. Characterization Theorems

Definition. A half lightlike submanifold M of a semi-Riemannian manifold M̃ is
said to be irrotational [12] if ∇̃Xξ ∈ Γ(TM) for any X ∈ Γ(TM).

From (2.5) and (2.12), we show that the above definition is equivalent to the
condition: D(X, ξ) = 0 = φ(X) for all X ∈ Γ(TM).

Lemma 1 ([8, 11]). Let M be an irrotational half lightlike submanifold of a semi-
Riemannian manifold M̃ admitting a semi-symmetric non-metric connection such
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that the structure vector field ζ of M̃ is tangent to M . Then ζ is conjugate to any
vector field X on M , i.e., ζ satisfies h(X, ζ) = 0.

Note that h(X, ζ) = 0 is equivalent to the following two equations:

(3.1) B(X, ζ) = π(A∗ξX) = 0, D(X, ζ) = π(ALX) = 0, ∀X ∈ Γ(TM).

Definition. A half lightlike submanifold M of a semi-Riemannian manifold M̃

admitting a semi-symmetric non-metric connection is called screen quasi-conformal
[9, 13] if the second fundamental forms B and C satisfy

(3.2) C(X, PY ) = ϕB(X, Y ) + η(X)π(PY ),

where ϕ is a non-vanishing function on a coordinate neighborhood U in M .

Due to (2.13) and (2.15), we show that M is screen quasi-conformal if and only
if the shape operators AN and A∗ξ are related by

(3.3) AN X = ϕA∗ξX − fX.

We quote the following results for irrotational screen quasi-conformal half lightlike
submanifold due to Jin [9]:

Theorem 3.1. Let M be an irrotational screen quasi-conformal half lightlike sub-
manifolds M of a semi-Riemannian space form M̃(c) admitting a semi-symmetric
non-metric connection. If the structure vector field ζ is tangent to M but it does not
belong to S(TM), then we have c = 1.

Let R̃ic be the Ricci curvature tensor of M̃ and R(0, 2) the induced Ricci type
tensor on M given respectively by

R̃ic(X, Y ) = trace{Z → R̃(Z, X)Y }, ∀X, Y ∈ Γ(TM̃),

R(0, 2)(X, Y ) = trace{Z → R(Z, X)Y } , ∀X, Y ∈ Γ(TM).

Consider a quasi-orthonormal frame field {ξ;Wa} on M , where Rad(TM) =
Span{ξ} and S(TM) = Span{Wa} and let E = {ξ, N, Wa} be the corresponding
frame field on M̃ . Using this quasi-orthonormal frame field, we obtain

R(0, 2)(X, Y ) = R̃ic(X,Y ) + B(X,Y )tr AN + D(X,Y )trAL

− g(AN X,A∗ξY )− g(ALX, ALY ) + ρ(X)φ(Y )

− g̃(R̃(ξ, Y )X, N)− g̃(R̃(L,X)Y, L),

This shows that R(0, 2) is not symmetric. The tensor field R(0, 2) is called its induced
Ricci tensor [4, 5], denoted by Ric, of M if it is symmetric. It is known [11] that
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R(0, 2) is an induced Ricci tensor of M if and only if the 1-form τ is closed, i.e.,
dτ = 0, for any coordinate neighborhood U ⊂ M .

Remark 1. If R(0, 2) is symmetric, then there exists a null pair {ξ, N} such that
the corresponding 1-form τ satisfies τ = 0 [11], which called a canonical null pair of
M . Although S(TM) is not unique, it is canonically isomorphic to the factor vector
bundle S(TM)] = TM/Rad(TM) [12]. This implies that all screen distribution
are mutually isomorphic. For this reason, in case dτ = 0 we consider only lightlike
hypersurfaces M endow with the canonical null pair.

We say that M is an Einstein manifold if the Ricci tensor of M satisfies

(3.4) Ric = κg.

It is well-known that if dim M > 2, then κ is a constant. For dim M = 2, any
manifold M is Einstein but κ is not necessarily constant.

In case the ambient manifold M̃ is a space form M̃(c), R(0, 2) is given by

R(0, 2)(X, Y ) = mcg(X, Y ) + B(X, Y )trAN + D(X, Y )trAL(3.5)

− g(AN X,A∗ξY )− g(ALX, ALY ) + ρ(X)φ(Y ).

Taking the scalar product with ξ to (2.17) and using (2.22), we have

(∇XB)(Y, Z)− (∇Y B)(X, Z)(3.6)

= B(Y, Z){π(X)− τ(X)} −B(X, Z){π(Y )− τ(Y )}.

Definition. A vector field X on M̃ is said to be conformal Killing [8] if

L̃X g̃ = −2δ g̃

for any non-vanishing smooth function δ, where L̃ denotes the Lie derivative on M̃ ,
that is, for all Y, Z ∈ Γ(TM̃),

(L̃X g̃)(Y, Z) = X(g̃(Y, Z))− g̃([X, Y ], Z)− g̃(Y, [X,Z]).

In particular, if δ = 0, then X is called a Killing vector field on M̃ .

Theorem 3.2 ([8, 11]). Let M be a half lightlike submanifold of M̃ admitting a
semi-symmetric non-metric connection. If the canonical normal vector field L is
conformal Killing, then L is a Killing vector field.

Proof. Using (2.1) and (2.2), for any X, Y, Z ∈ Γ(TM̃), we have

(L̃X g̃)(Y, Z) = g̃(∇̃Y X,Z) + g̃(Y, ∇̃ZX)− 2π(X)g̃(Y, Z).
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As L is conformal Killing, we have g̃(∇̃XL, Y ) = −D(X,Y ) by (2.9) and (2.16).
This implies (L̃L g̃)(X, Y ) = −2D(X, Y ) for any X, Y ∈ Γ(TM). Thus we have

D(X, Y ) = δg(X, Y ), ∀X, Y ∈ Γ(TM).

Taking X = Y = ζ to this and using (3.1)2, we get δ = 0 and L is Killing. ¤

Theorem 3.3 ([11]). Let M be a half lightlike submanifold of a semi-Riemannian
manifold M̃ admitting a semi-symmetric metric connection. Then the following
assertions are equivalent :

(1) The screen distribution S(TM) is an integrable distribution.
(2) C is symmetric, i.e., C(X, Y ) = C(Y, X) for all X, Y ∈ Γ(S(TM)).
(3) The shape operator AN is self-adjoint with respect to g, i.e.,

g(AN X, Y ) = g(X, AN Y ), ∀X, Y ∈ Γ(S(TM)).

Remark 2. Just as in the well-known case of locally product Riemannian or semi-
Riemannian manifolds [3, 4, 5, 14], if S(TM) is an integrable distribution, then M

is locally a product manifold C ×M∗ where C is a null curve tangent to Rad(TM)
and M∗ is a leaf of the integrable distribution S(TM).

Theorem 3.4. Let M be a screen quasi-conformal irrotational Einstein half lightlike
submanifold of a Lorentzian space form M̃(c) with a semi-symmetric non-metric
connection. If ζ is tangent to M but it does not belong to S(TM), the canonical
normal vector field is conformal Killing and the mean curvature of M is constant,
then M is locally a product manifold M = C ×M1 ×M2, where C is a null curve,
M1 is an Euclidean space and M2 is a totally umbilical Riemannian space.

Proof. As L is Killing, we get D = φ = 0 and g(ALX, Y ) = 0 for any X, Y ∈
Γ(TM). From (3.3), (3.5) and the fact A∗ξ is self-adjoint, we show that R(0, 2) is a
symmetric induced Ricci tensor Ric and S(TM) is an integrable distribution. As
g(A∗ξζ, X) = B(ζ, X) = 0 and S(TM) is non-degenerate, we have

(3.7) A∗ξζ = 0.

Using (2.13), (3.3), (3.4) and the fact c = 1, from (3.5) we have

(3.8) g(A∗ξX, A∗ξY )− αg(A∗ξX, Y ) + ϕ−1(κ−m)g(X,Y ) = 0,

for all X, Y ∈ Γ(TM) due to c = 1, where α = trA∗ξ − fmϕ−1. Taking X = Y = ζ

to (3.8) and using (3.7), we have κ = m. Thus (3.8) becomes

(3.9) g(A∗ξX, A∗ξY )− αg(A∗ξX, Y ) = 0.
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As M̃ is Lorentzian manifold, S(TM) is a Riemannian. Since ξ is an eigenvector
field of A∗ξ corresponding to the eigenvalue 0 due to (2.16) and A∗ξ is S(TM)-valued
real self-adjoint operator, A∗ξ have m real orthonormal eigenvector fields in S(TM)
and is diagonalizable. Consider a frame field of eigenvectors {ξ, E1, . . . , Em} of A∗ξ
such that {E1, . . . , Em} is an orthonormal frame field of S(TM) and A∗ξEi = λiEi.
Put X = Y = Ei in (3.9), each eigenvalue λi is a solution of the equation

x2 − αx = 0.

As this equation has at most two distinct solutions 0 and α, there exists p ∈
{0, 1, . . . , m} such that λ1 = · · · = λp = 0 and λp+1 = · · · = λm = α(6= 0), by
renumbering if necessary. As trA∗ξ = 0p + (m− p )α, we have

(m− p− 1)α = fmϕ−1.

Consider four distributions Do, Dα, Ds
o and Ds

α on S(TM) given by

Do = {X ∈ Γ(TM) | A∗ξX = 0}, Ds
o = Do ∩ S(TM),

Dα = {U ∈ Γ(TM) | A∗ξU = αPU}, Ds
α = Dα ∩ S(TM).

Clearly we show that Do ∩ Dα = Rad(TM), Ds
o ∩ Ds

α = {0} as α 6= 0 and Ds
o =

PDo, Ds
α = Dα. In the sequel, we take the vector fields X, Y ∈ Γ(Do), U, V ∈

Γ(Dα) and Z, W ∈ Γ(TM). Denote X∗ = PX, Y ∗ = PY, U∗ = PU and V ∗ = PV .
Then X∗, Y ∗ ∈ Γ(Ds

o) and U∗, V ∗ ∈ Γ(Ds
α). Since X∗ and U∗ are eigenvector

fields of the real self-adjoint operator A∗ξ corresponding to the different eigenvalues
0 and α respectively, X∗⊥U∗ and g(X, U) = g(X∗, U∗) = 0, that is, Do⊥g Dα.
Also, since B(X,U) = g(A∗ξX, U) = 0, we show that Dα⊥B Do. Since {Ei}1≤i≤p

and {Ea}p+1≤a≤m are vector fields of Ds
o and Ds

α respectively and Ds
o and Ds

α are
mutually orthogonal, Ds

o and Ds
α are non-degenerate distributions of rank p and

rank (m− p) respectively. Thus S(TM) is decomposed as S(TM) = Ds
α ⊕orth Ds

o.
From (3.9), we get A∗ξ(A

∗
α − αP ) = 0. Let W ∈ ImA∗ξ . Then there exists

Z ∈ Γ(TM) such that W = A∗ξZ. Then (A∗ξ − αP )W = 0 and W ∈ Γ(Dα). Thus
ImA∗ξ ⊂ Γ(Dα). By duality, we have Im(A∗ξ − αP ) ⊂ Γ(Do).

Applying ∇X to B(Y, U) = 0 and using (2.13) and A∗ξY = 0, we obtain

(∇XB)(Y,U) = −g(A∗ξ∇XY, U).

Substituting this into (3.6) and using (2.11) and A∗ξX = A∗ξY = 0, we get

g(A∗ξ [X,Y ], U) = 0.
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As Im A∗ξ ⊂ Γ(Dα) and Dα is non-degenerate, we get A∗ξ [X, Y ] = 0. Thus [X,Y ] ∈
Γ(Do) and Do is integrable. This result implies [X∗, Y ∗] ∈ Γ(Do). On the other
hand, since S(TM) is integrable, [X∗, Y ∗] ∈ Γ(S(TM)). Thus [X∗, Y ∗] ∈ Γ(Ds

o).
Thus Ds

o is also an integrable distribution.
Applying ∇V to B(U, Y ) = 0 and using A∗ξY = 0 and A∗ξU = αPU , we get

(∇V B)(U, Y ) = −αg(∇V Y, U).

Substituting this into (3.6) and using the fact α 6= 0, we obtain

g(∇V Y, U) = g(V,∇UY ).

Applying ∇V to g(Y, U) = 0 and using (2.10), we have

π(Y )g(U, V )−B(V,U)η(Y )− g(∇V Y,U) = g(Y,∇V U).

Taking the skew-symmetric part of this equation and using (2.11), we have

g([V,U ], Y ) = 0, ∀Y ∈ Γ(Do) and U, V ∈ Γ(Dα).

From this, we get g([V ∗, U∗], Y ∗) = 0 for all Y ∗ ∈ Γ(Ds
o) and U∗, V ∗ ∈ Γ(Ds

α).
As Ds

o and Ds
α are mutually orthogonal non-degenerate distributions, we show that

[V ∗, U∗] ∈ Γ(DS
α). Thus Ds

α is also an integrable distribution.
Applying ∇U to B(X,Y ) = 0 and ∇X to B(U, Y ) = 0, we have

(∇UB)(X, Y ) = 0, (∇XB)(U, Y ) = −αg(∇XY,U).

Substituting this two equations into (3.6), we have αg(∇XY, U) = 0. As

g(A∗ξ∇XY, U) = B(∇XY, U) = αg(∇XY, U) = 0

and Im A∗ξ ⊂ Γ(Dα) and Dα is non-degenerate, we get A∗ξ∇XY = 0. This implies
∇XY ∈ Γ(Do). Thus Do is an auto-parallel distribution on S(TM). This implies
that ∇X∗Y ∗ ∈ Γ(Do) for any X∗, Y ∗ ∈ Γ(Ds

o). As C(X∗, Y ∗) = ϕB(X∗, Y ∗) +
η(X∗)π(Y ∗) = 0, we have ∇X∗Y ∗ = ∇∗X∗Y ∗ ∈ Γ(S(TM)). Thus ∇X∗Y ∗ ∈ Γ(Ds

o)
and Ds

o is also an auto-parallel distribution.
As A∗ξζ = 0, ζ belongs to Do. Thus π(U) = 0 for any U ∈ Γ(Dα). Applying∇X to

g(U, Y ) = 0 and using (2.10) and the fact Do is auto-parallel, we get g(∇XU, Y ) = 0.
This implies ∇XU ∈ Γ(Dα).

Assume that the mean curvature vector field

µ =
1
m

g(A∗ξEa, Ea) =
m− p

m
α
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of M is constant. Then α is a constant. Applying ∇X to B(U, V ) = αg(U, V ) and
∇U to B(X,V ) = 0 and using the fact α is constant, we have

(∇XB)(U, V ) = 0, (∇UB)(X, V ) = −αg(∇UX,V ).

Substituting this two equations into (3.6) and using Do⊥B Dα, we have

g(∇UX, V ) = π(X)g(U, V ).

Applying ∇U to g(X, V ) = 0 and using (2.10), we obtain

g(X,∇UV ) = 0.

From this, we get g(X∗, ∇U∗V
∗) = 0 for all X∗ ∈ Γ(Ds

o) and U∗, V ∗ ∈ Γ(Ds
α).

As Ds
o and Ds

α are mutually orthogonal non-degenerate distributions, we show that
∇U∗V

∗ ∈ Γ(DS
α). Thus Ds

α is auto-parallel distribution.
Since the leaf M∗ of S(TM) is a Riemannian manifold and S(TM) = Ds

α ⊕orth

Ds
o, where Ds

α and Ds
o are auto-parallel distributions of M∗, by the decomposition

theorem of de Rham [2] we have M∗ = M1×M2, where M1 is a totally geodesic leaf of
Ds

o and M2 is a totally umbilical leaf of Ds
α. Consider the frame field of eigenvectors

{ξ, E1, . . . , Em} of A∗ξ such that {Ei}i is an orthonormal frame field of S(TM),
then B(Ei, Ej) = C(Ei, Ej) = 0 for 1 ≤ i < j ≤ m and B(Ei, Ei) = C(Ei, Ei) =
0 for 1 ≤ i ≤ m − 1. From (2.17) and (2.20), we have g̃(R̃(Ei, Ej)Ej , Ei) =
g(R∗(Ei, Ej)Ej , Ei) = 0. Thus the sectional curvature K of M2 is given by

K(Ei, Ej) =
g(R∗(Ei, Ej)Ej , Ei)

g(Ei, Ei)g(Ej , Ej)− g2(Ei, Ej)
= 0.

Thus M is a locally product C×M1×M2, where C is a null curve, M1 is an Euclidean
space and M2 is a totally umbilical Riemannian space. ¤
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