• Title/Summary/Keyword: sample rate converter

Search Result 28, Processing Time 0.027 seconds

Digital Filter Design for the DSD Encoder with Multi-rate PCM Input (PCM 입력의 DSD 인코더를 위한 디지털 필터 설계)

  • Moon, Dong-Wook;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.170-172
    • /
    • 2005
  • The DSD(Direct Stream Digital) encoder, which is a standard for SACD(Super Audio Compact Disc) proposed by Sony and philips, use 1 bit representation with a sampling frequency of 2.8224 MHz (64 $\times$ 44.1 kHz). For multi-rate PCM (Pulse Code Modulation) input like as 48/96/192 kHz, a external sample-rate converter is necessary to the DSD encoder. This paper has been proposed a digital filter structure composed of sample-rate converter and interpolation filter for the DSD encoder with multi-rate (48/96/192 kHz) PCM input. without a external sample-rate converter.

  • PDF

An Improved Digital Filter Design for the DSD Encoder with Multi-rate PCM Input (다중 표본화율의 PCM 입력을 위한 개선된 DSD 인코더용 디지털 필털 설계)

  • Moon, Dong-Wook;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.358-360
    • /
    • 2005
  • The DSD(Direct Stream Digital) encoder, which is a standard for SACD(Super Audio Compact Disc) proposed by Sony and philips, uses 1 bit representation with a sampling frequency of 2.8224MHz (64${\times}$44.1kHz). For multi-rate PCM (Pulse Code Modulation) input such as 8${\sim}$192kHz, a external sample-rate converter is necessary to the DSD encoder. This paper has been proposed a digital mter structure composed of sample-rate converter and interpolaton filter for the DSD encoder with multi-rate (8${\sim}$192kHz) PCM input, without a external sample-rate converter.

  • PDF

A Design of Two-stage Cascaded Polyphase FIR Filters for the Sample Rate Converter (표본화 속도 변환기용 2단 직렬형 다상 FIR 필터의 설계)

  • Baek Je-In;Kim Jin-Up
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8C
    • /
    • pp.806-815
    • /
    • 2006
  • It is studied to design a low pass filter of the SRC(sample rate converter), which is used to change the sampling rate of digital signals such as in digital modulation and demodulation systems. The larger the conversion ratio of the sample rate becomes, the more signal processing is needed for the filter, which corresponds to the more complexity in circuit realization. Thus it is important to reduce the amount of signal processing for the case of high conversion ratio. In this paper it is presented a design method of a two-stage cascaded FIR filter, which proved to have reduced amount of signal processing in comparison with a conventional single-stage one. The reduction effect of signal processing turned out to be more noticeable for larger value of conversion ratio, for instance, giving down to 72% in complexity for the conversion ratio of 32. It has been shown that the reduction effect is dependent to specific combination of conversion ratios of the cascaded filters. So an exhaustive search has been performed in order to obtain the optimal combination for various values of the total conversion ratio. In this paper every filter is considered to be implemented in the form of a polyphase FIR filter, and its coefficients are determined by use of the Parks-McCllelan algorithm.

The Telemetry Transmitter with Variable Data rate Transmission (가변 데이터 전송 가능한 텔레메트리(Telemetry) 송신기)

  • Kim, Jang-Hee;Hong, Seung-Hyun;Park, Byong-Kwan;Kim, Bok-ki;Kim, Hyo-Jong
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.1
    • /
    • pp.53-60
    • /
    • 2020
  • In this paper, We have studied the structure of a Telemetry Transmitter capable of transmitting variable data rates. This paper proposed a structure combining variable pre-modulation filter with cutoff characteristic with variable input sample rate converter. Variable pre-modulation filter has the same characteristics as pre-modulation filter and is converted to a constant sampling rate without structural changes according to the variable input data rate. We propose a software program that actively controls variable pre-modulation filter and variable input sample rate converter to respond to real-time changing data.

Computational Efficiency of Resamplers in Multi-Stage Structure (재표본화에서 다단계 구현의 계산 효율성)

  • Kim Rin-Chul
    • Journal of Broadcast Engineering
    • /
    • v.11 no.1 s.30
    • /
    • pp.138-141
    • /
    • 2006
  • This paper evaluates the computational efficiency of sample-rate converters with rational factors in multi-stage structure in terms of memory requirement and multiplications per second. We describe resolution preserving and mutual prime conditions, and then present a method for designing the converter from which optimal rational-valued conversion factors for each stage can be yielded directly. As an example, we show an implementation of the 44.1-to-48KHz sample-rate converter in 2-stage structure.

A 6bit 800MSample/s A/D Converter Design for Hard Disk Drive Read Channel (하드디스크 드라이브 읽기 채널용 6bit 800MSample/s 아날로그/디지털 변환기의 설계)

  • 정대영;장흥석;신경민;정강민
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.164-167
    • /
    • 2000
  • This paper introduces the design of high-speed analog-to-digital converter for hard disk drive (HDD) read channel. This is based on autozero technique for low-error rate, and Double Speed Dual ADC(DSDA) technique lot efficiently increasing the conversion speed of A/D converter. This An is designed by 6bit resolution, 800M sample/s maximum conversion rate, 390㎽ power dissipation, one clock cycle latency in 0.65 $\mu\textrm{m}$ CMOS technology.

  • PDF

A Low-Power 2-Step 8-bit 10-MHz CMOS A/D Converter (저전력 2-Step 8-bit 10-MHz CMOS A/D 변환기)

  • 박창선;손주호;김영랄;김동용
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.201-204
    • /
    • 2000
  • In this paper, an A/D converter is implemented to obtain 8bit resolution at a conversion rate of 10Msample/s. This architecture is proposed using the 2-step architecture for high speed conversion rate. It is consisted of sample/hold circuit, low power comparator, voltage reference circuit and DAC of binary weighted capacitor array. Proposed A/D converter is designed using 0.2$\mu\textrm{m}$ CMOS technology. The SNR is 45.3dB at a sampling rate of 10MHz with 1.95MHz sine input signal. When an 8bit 10Msample/s A/D converter is simulated, the Differential Nonlinearity / Integral Nonlinearity (DNL/ INL) error are ${\pm}$1 / ${\pm}$2 LSB, respectively. The power consumption is 13㎽ at single +2.5V supply voltage.

  • PDF

A 8-bit 10-MHz CMOS A/D Converter (8-bit 10-MHz CMOS A/D 변환기)

  • 박창선;손주호;이준호;김종민;김동용
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.263-266
    • /
    • 1999
  • In this work, a A/D converter is implemented to obtain 8bit resolution at a conversion rate of 10MS/s for video applications. This architecture is proposed using the Pipelined architecture for high speed conversion rate and the Successive - Approximation architecture for low power consumption, and consists of two identical stages that consist of sample/hold circuit, low power comparator, voltage reference circuit and MDAC of binary weighted capacitor array. Proposed A/D converter is designed using 0.25${\mu}{\textrm}{m}$ CMOS technology The SNR is 80㏈ at a sampling rate of 10MHz with 1.95MHz sine input signal. When an 8bit 10MS/s A/D converter is simulated, the Differential Nonlinearity / Integral Nonlinearity (DNL/ INL) error are $\pm$0.5 / $\pm$2 LSB, respectively. The power consumption is 13㎽ at 10MS/s.

  • PDF

8-bit 10-MHz A/D Converter for Video Signal Processing (영상 신호 처리용 8-bit 10-MHz A/D 변환기)

  • Park Chang-Sun;Son Ju-Ho;Lee Jun-Ho;Kim Chong-Min;Kim Dong-Yong
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.173-176
    • /
    • 1999
  • In this work, a A/D converter is implemented to obtain 8bit resolution at a conversion rate of 10Msample/s for video applications. Proposed architecture is designed low power A/D converter that pipelined architecture consists of flash A/D converter. This architecture consists of two identical stages that consist of sample/hold circuit, low power comparator, voltage reference circuit and MDAC of binary weighted capacitor array. Proposed A/D converter is designed using $0.25{\mu}m$ CMOS technology The SNR is 76.3dB at a sampling rate of 10MHz with 3.9MHz sine input signal. When an 8bit 10Msample/s A/D converter is simulated, the Differential Nonlinearity / Integral Nonlinearity (DNL/ INL) error are ${\pm}0.5/{\pm}2$ LSB, respectively. The power consumption is 13mW at 10Msample/s.

  • PDF

12-bit 10-MS/s CMOS Pipeline Analog-to-Digital Converter (12-비트 10-MS/s CMOS 파이프라인 아날로그-디지털 변환기)

  • Cho, Se-Hyeon;Jung, Ho-yong;Do, Won-Kyu;Lee, Han-Yeol;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.302-308
    • /
    • 2021
  • A 12-bit 10-MS/s pipeline analog-to-digital converter (ADC) is proposed for image processing applications. The proposed pipeline ADC consists of a sample and hold amplifier, three stages, a 3-bit flash analog-to-digital converter, and a digital error corrector. Each stage is operated by using a 4-bit flash ADC (FADC) and a multiplying digital-to-analog converter (MDAC). The proposed sample and hold amplifier increases the voltage gain using gain boosting for the ADC with high resolution. The proposed pipelined ADC is designed using a 180-nm CMOS process with a supply voltage of 1.8 and it has an effective number of bit (ENOB) of 10.52 bits at sampling rate of 10MS/s for a 1-Vpp differential sinusoidal analog input with frequency of 1 MHz. The measured ENOB is 10.12 bits when the frequency of the sinusoidal analog input signal is a Nyquist frequency of approximately 5 MHz.