• Title/Summary/Keyword: robust servo

Search Result 253, Processing Time 0.029 seconds

Design of Self Tuning Type Servo Controller for Systems with Known Dusturbance (기지 외란을 가진 시스템의 자기동조형 서보 제어기 설계)

  • Kim, Sang-Bong;Ahn, Hwi-Ung;Yeu, Tae-Kyoung;Suh, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.739-744
    • /
    • 2000
  • A robust control algorithm under disturbance and reference change is developed using a self tuning control method incorporting of the well known internal model principle and the annihilator polynomical. The types of disturbance and reference signal are assumed to be given as known difference polynomials. The algorithm is shown for a minimum phase system with parameters of unknown parameters.

  • PDF

Position Control of Electro-Hydraulic Servo System Using $H_\infty$ ($H_\infty$제어에 의한 전기${\cdot}$유압 서보계의 위치제어)

  • Park K. S.;Kim D. T.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.103-108
    • /
    • 2005
  • In this paper, a controller design procedure for an electro-hydraulic positioning systems have developed using $H_\infty$ control theory. The generalized models and weighting functions for a multiplicative uncertainty modelling error is presented along with $H_\infty$ controller designs in order to investigate the robust stability and performance. The multiplicative uncertainty case is specifically suited for the design of an electro-hydraulic positioning control systems using $H_\infty$ control.

  • PDF

A novel design method for the velocity controller of DC servo motor (새로운 DC 서어보 모우터 속도제어기 설계에 관한 연구)

  • 장태규;변증남
    • 전기의세계
    • /
    • v.30 no.8
    • /
    • pp.501-508
    • /
    • 1981
  • A novel and simple method of designing the current feedback loop for the velocity controller of an armature controlled dc servo motor is presented. Instead of constructing the usual tight current feedback loop, a loose current feedback loop is suggested in this paper. More specifically, the armature current is not limited to a fixed constant value, but instead the upper bound value is allowed to be variable along with the present motor speed. The control system designed in this manner shows that the motor under control is robust to a wide range of loading conditions and yields a more rapid transient characteristics which is verified experimentally by applying the method in the design of the controller for an Industrial robot.

  • PDF

Improvement in Control Performance of a Servo System Compensating Bandwidth Variations at Low Speed

  • Ji, Young-Eun;Park, Je-Wook;Hwang, Seon-Hwan;Baek, Kwang-Ryul;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.382-387
    • /
    • 2010
  • This paper presents a novel design method for determining the PID gains of a speed controller for a servo system compensating variations in bandwidth at a low speed. The variations in bandwidth of a speed controller are measured at a low speed and the relationship between the bandwidth and the damping ratio are verified by determining the location of the closed loop pole. The proposed algorithm uses the z-transform of a plant and speed controller and applies the time-varying sampling method for determining the PID gains of the speed controller at low speed. The magnitude and the phase condition are considered for finding a suitable control gain. The usefulness and effectiveness of the proposed method is demonstrated through experimental results such as low speed control and robust disturbance responses.

Measuring Method of In-plane Position Based On Reference Pattern (레퍼런스 패턴 기반 면내 위치 측정 방법)

  • Jung, Kwang Suk
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.43-48
    • /
    • 2012
  • Generally, in-plane position of moving object is measured referring to the reference pattern attached to the object. From optical camera to magnetic reluctance probe, there are many ways detecting a variation of the periodical pattern. In this paper, the various operating principles developed for in-plane positioning are reviewed and compared each other. And, a novel method measuring large rotation as well as x, y linear displacements is suggested, including a detailed description of the overall system layout. It is a modified version of the surface encoder, which is a robust digital measuring method. From the surface encoder, the rotation of an object is measured indirectly through a compensated input of optical servo and independently of linear displacements. So, the operating range can be extended simply by enlarging the reference pattern, without magnifying the decoding units.

  • PDF

Expert Auto-turning PID Controller for the Speed Control of D.C. Servo Motor (직류 서보 전동기으 속도제어를 위한 전문가 자동동조 PID 제어기)

  • 박왈서
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.9
    • /
    • pp.877-882
    • /
    • 1991
  • The idea of expert control is to incoporate a rule based expert system in a feedback control system. In this paper, We present some heuristic rules about input regulation and supervision and turning for D.C. servo motor speed control. The expert auto-turning PID Controller which Heuristic rules are used as an element of the feedback control system is implemented with the numerical algorithms and Heuristic logics. The robust and accurate control function is confirmed by computer simulation..

  • PDF

Position Control of an Electro-hydraulic Servo System with Sliding Mode (전기유압 서보시스템의 슬라이딩 모드 위치제어)

  • Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.18 no.3
    • /
    • pp.16-22
    • /
    • 2021
  • The variable structure controller has the characteristic that while in sliding mode, the system moves along the switching plane in the vicinity of the switching plane, so it is robust to the parameter fluctuations of the plant. However, a controller based on a variable structure may not meet the desired performance when it is commanded to track any input or exposed to disturbances. To solve this problem, a sliding mode controller based on the IVSC approach excluding an integrator is proposed in this study. The proposed sliding mode control was applied to the position control of a hydraulic cylinder piston. The sliding plane was determined by the pole placement and the control input was designed to ensure the existence of the sliding mode. The feasibility of the modeling and controller was reviewed by comparing it with a conventional proportional control through computer simulation using MATLAB software and experiment in the presence of significant plant parameter fluctuations and disturbances.

Design of SPMSM Robust Speed Servo Controller Switching PD and Sliding Mode Control Strategies (PD-슬라이딩 모드 제어의 절환을 통한 강인한 SPMSM 속도 제어기 설계)

  • Son, Ju-Beom;Seo, Young-Soo;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.249-255
    • /
    • 2010
  • The paper proposes a new type of robust speed control strategy for permanent magnet synchronous motor by using PD-sliding mode hybrid control. The PD control has a good performance in the transient region while the sliding mode controller provides the robustness against system uncertainties. Taking advantages of the two control strategies, the proposed control method utilizes the PD control in the approaching region to the sliding surface and the sliding mode control near at the sliding surfaces. The chattering problem of the sliding mode controller is eliminated by applying the saturation function for the switching function of the sliding mode control. The stability of the sliding mode control is verified by using Lyapunov function with the proper selection of variable gains. It is shown that with this simple switching algorithm, stability of the overall hybrid control system is ensured. Through the simulations, the PD-sliding mode algorithm is shown to have a good performance in the transient response as well as being robust against disturbances. The robustness of the PD-sliding mode algorithm is further demonstrated against various external disturbances in the real experiments of SPMSM motor control.

Simple Al Robust Digital Position Control of PMSM using Neural Network Compensator (신경망 보상기를 이용한 PMSM의 간단한 지능형 강인 위치 제어)

  • Ko, Jong-Sun;Youn, Sung-Koo;Lee, Tae-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.8
    • /
    • pp.557-564
    • /
    • 2000
  • A very simple control approach using neural network for the robust position control of a Permanent Magnet Synchronous Motor(PMSM) is presented. The linear quadratic controller plus feedforward neural network is employed to obtain the robust PMSM system approximately linearized using field-orientation method for an AC servo. The neural network is trained in on-line phases and this neural network is composed by a feedforward recall and error back-propagation training. Since the total number of nodes are only eight, this system can be easily realized by the general microprocessor. During the normal operation, the input-output response is sampled and the weighting value is trained multi-times by error back-propagation method at each sample period to accommodate the possible variations in the parameters or load torque. In addition, the robustness is also obtained without affecting overall system response. This method is realized by a floating-point Digital Signal Processor DS1102 Board (TMS320C31).

  • PDF

Position control of D.C. motor under the disturbances by new sliding mode control

  • Lee, Ju-Jang;Kim, Jong-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.843-847
    • /
    • 1988
  • A new control method for position control of D.C. servo motor based on the variable structure control is presented. The desired trajectory satisfying the given performance requirement is used as the sliding curve. And the control input forcing the system to follow the desired model system is applied. As a result the method is robust to disturbance. The performance of the proposed controller is compared with that of the conventional state feedback controller through digital computer simulation.

  • PDF