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Abstract

A new control method for position control of D.C. servo
motor based on the variable structure control is presented. The
desired trajectory satisfying the given performance requirement
is used as the sliding curve. And the control input forcing the
system to follow the desired model system is applied. As a
result the method is robust to disturbance.

The performance of the proposed controller is compared
with that of the conventional state feedback controller through
digital computer simulation.

I. Introduction

In many motor control applications, the control engineer
is required to design a system which is insensitive to distur-
bances. This can be a difficult task especially in cases where the
system is under the influence of a wide variation of distru-
bances.

In this system, required system performance
specifications can not be obtained by conventional control
method such as proportional-integral-derivative (PID) and/or
state feedback control method which is generally used.

A method of control, sliding mode control, which has
been a subject of extensive theoretical study in the past,D- 2%
has recently reattracted attention and is suggested to enable the
designer to prescribe the shape of the transient
response.®?: 9 In this method, the representative point of the
system is constrained to move along a predetermined hyper-
plane. In order to achieve such a sliding mode, the control law
is required to have a discontinuous nature, resulting in a vari-
able structure system (VS8S).” If the deviations from the slid-
ing plane (hyperplane) are small, the motion of the system is
completely determined by the chosen plane and consequently
the changes in the distrubances can not affect the behavior.

A number of papers to position control of D.C. motor
using sliding mode control have been reported. The representa-
tive approach can be devided into three part. First approach is a
typical sliding mode control; sliding line is one straight line
through origin point.® This method does not guarantee the
robustness to disturbances through whole interval. Second ap-
proach is adaptive sliding mode control; sliding lines consist of
a number of straight lines through origin point.”> This method
improves the robustness to disturbances a little. Third approach
is new approach; sliding lines are consisted into three (or four)
straight lines and cover whole interval.'® This approach guran-
tees the robustness to disturbances through whole interval but
does not propose criterion how to choose sliding lines.

In this paper, a new sliding mode control which guaran-
tees robustness to disturbances through whole interval and can
propose criterion how to choose sliding curve is described.
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I1. Description of the system

In this paper, a fixed field D.C. motor, controlled by the
armature voltage is considered. The overall block diagram of
the system is shown on Fig. 1. The D.C. motor is modelled as
a first order system neglecting the electrical time constant.
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Fig. 1 Overali block diagram of the system

From Fig. 1, the phase variable state representation of
the system can be written as follows;
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where x; = position error= r - 6
x, = X, = error velocity
¢ = PWM Amp gain
a = (Ky-Kg=BR)JR
b= K¢l/JR
c= 1/1

II1. Description of new sliding mode controller

In linear system, state feedback control method can allo-
cate system poles to desired poles. Also, by the use of optimal
control theory, the control engineer can obtain the desired state
feedback gains which satisfy the required system performance.
Thus, the optimal state feedback controller has been used to
position control of D.C. motor. But the system performance is
lowed with variation of disturbances. The new sliding mode
controller points out to maintain the advantages of optimal state
feedback under the influence of distrubances.

State equation of the system without disturbances can be
rewritten as follows;

X = AX + Bu 2

843 where X :2x1, A :2x2, B :2x1 are matrix.



Let quadratic performance index be as follows;

J= %x’(zf)yxu,) 3

i
+ %J’ XT()yQX () +uT ()R u)dt
o

where

H, Q :real symmetric positive semidefinite matrix.
R : real symmetric positive definite matrix.
@, R : weighting matrix.

The control engineer can obtain optimal input which minimizes
the above performance index and satisfies system performance
specifications by choosing proper Q, R matirx. The optimal
input which minimizes the above performance index is as fol-
lows;

w'(t) = —R7'BTK ()X (1) 4
= F()X ()
where K(t)=-K()A — ATK(t) - Q@ + K(1)BR™'BTK (1)
K(t)=H
Applying the optimal input to the system equation (2),

system equation (2) can be rewritten as follows;

X* = (A + BF)X* (5)

In equation (5), X* represents state variable of the system with
optimal feedback control. From equation (5), the trajectory
pairs of x] (¢), x5 () with respect to time ¢ can be obtained.

Under the distrubances, the system equation is
represented as follows;

X = AX + Bu + Df (6)

where X :2x1, A :2x2, B :2x1 are matrix.

f : disturbance

In this paper, in spite of disturbances, the state trajectorys of
the system equation (6) are guaranteed to follow the state tra-
jectorys of the system equation (5). Let o be sliding curve, the
o is represented as follows;

6 = x5~ x, for xj = x; W)
And control input u is given as follows;
u=u"+ Au (8)
Au*, 6> 0
Au = Au~, o< 0

where u" = Fix{ + Fyx; : optimal input without distur-
bances.

The magnitude of Au depends on the maximum magnitude of
disturbances. If the magnitude of Au is large, the magnitude
of switching ripple is large. Fig. 2 is the phase trajectory of the
proposed sliding mode control.

For example, consider following second order system.

Xy =x;

9

Xy= X3~ U+ f
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Fig. 2 Phase Plane trajectory

The eigenvalues of the above system are located at — 1, 0. By
state feedback, the eigenvalues of the system (9) are located -1,
-2 by state feedback input 4, where u = 2x; + 2x,. Thus, the
desired system equation without disturbance f is represented as
follows;

i = x3

i3 = —2x] — 3x; (10)
Let o be sliding curve, and ¥ be control input, then

O =x; — x5, for xj = x;

u=2x]+ 2x; + Au (11)

To show existence condition, the derivative of ¢ must be calcu-
lated.

G =1y — dy=—2x{-3x3+x,+2x]+2x+Au—f
= —(x3=xy) + (Au—f)
= -0+ (Au—f) (12)
GG = 6 (—0+(Au-f))
= ~o%0(Au—f) (13)

If the following condition (14) is satisfied, then od is always
negative.

>0

o< 0

{A" < |f Jmaxs 14
(14)

Au > |f lnaxs

Thus, the existence condition is satisfied. Summerizing the
above results, the following algorithm can be obtained.

Algorithm ; i) with initial value x,(0), x,(0),
calculate the trajectory pairs of x](¢), x3(¢)

if) for x1(), x,(¢), find x} (), x5(¢)
trajectory pairs such that x(t) = x}(¢)

i) calculate 6 = x5(t) — x,(¢)
iv) determine u = u* + Au
(u" = Fx] + Fyxj ; Fy, Fy : optimal
ft:edback gain)
(Ak can be obtained by equation (14))



IV. Computer Simulation

In this section, the performance of the proposed scheme
is shown by means of simulation results, and compared with
that of conventional optimal state feedback control scheme.
The parameters of D.C. motor are as follows;

0.75HP, 100V, 2500 rpm PMDC MOTOR

R = 0.67Q
J = 024 kg.m?
B = 0.7 N.m.sec/rad

Ky = 04519 N.m/A
Kg = 0.4519 V.sec/rad

Thus, the pahse variable state equation is as follows;

i= [8 410 ]" + [—3909 ]" + [427 ]F (15)

Let weighting matrix Q, R be as follows;
o- [ 2] w-os

Then, the optimal input «" is as follows;
w" () =[775 1.621x(1)

For optimal state feedback control without disturbances,
the following state equation is obtained.

. .
X = xy

%y = —23.95x] — 9.2x; (16)

The sliding curve o is represented as follows:
o =2x; - x, for x} =x,
& = %3 ~ %y= —23.95x1-9.2x3+4.19x,
+3.09(7.75x ]+ 1.62x 3+ Au )+ 4.17f
= —4.19(x3~x,) + (3.09Au + 4.17f)
—4.190 + (3.09Auk+4.17f)
66 = -4.196% + (3.09Au+4.17f)c 17

Thus, equation (17) is always negative, if the following condi-
tion is satisfied ;

Au < 135|f Iy o> 0
(18)

Au > 135(f lp», 0< 0

Computer simulation results are shown in Fi.g 3 - Fig. 14. In
case of Fig. 3 - Fig. 6, the 2N.m step disturbance is applied
when x,(¢) is smaller than the half of x,(0), and the initial
values of x,(t), x,(t) are 5, O respectively. These results show
that the steady-state error of x| exist in case of state feedback
control, and that the desired method guarantees the state trajec-
torys of the system to follow the desired trajectorys in spite of
disturbances. In case of Fig. 7 - Fig. 10, the 2N.m sinusoidal
disturbance with 2H:z is applied and the initial valees of
xy(t), x,(t) are 5, O respectively.

From these results, it is shown that the proposed con-
troller guarantees the rejection of disturbances, but state feed-
back controller does not.

In case of Fig. 11 - Fig. 14, the 2N.m step disturbance is
applied when x,(¢) is smaller than the halt of x,(0), and the
initial values of x (1), x,(¢) are 5, 2 respectively.

These results are similiar to the results of Fig. 3 - Fig. 6.
From the simulation results, it is shown that the performance
of the optimal state feedback controller is lowed by the
influence of disturbances, but that of the proposed controller is
relatively good in spite of disturbances.
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V. Conclusions

In this paper, it is shown that the system is made insen-
sitive to disturbances by the proposed controller. And, using
the proposed controller, the control engineer can obtain easily
the desired trajectory from optimal state feedback control
theory neglecting the influence of disturbances.

The proposed controller guarantee to follow the desired
trajectory in spite of the influence of disturbances.
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