• Title/Summary/Keyword: robust optimal

Search Result 793, Processing Time 0.032 seconds

Robust and Optimal Attitude Control Law Design for Spacecraft with Inertia Uncertainties

  • Park, Yon-Mook;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.1-12
    • /
    • 2002
  • This paper considers the robust and optimal three-axis attitude stabilization of rigid spacecraft with inertia uncertainties. The attitude motion of rigid spacecraft described in terms of either the Cayley-Rodrigues parameters or the Modified Rodrigues parameters is considered. A class of robust nonlinear control laws with relaxed feedback gain structures is proposed for attitude stabilization of rigid spacecraft with inertia uncertainties. Global asymptotic stability of the proposed control laws is shown by using the LaSalle Invariance Principle. The optimality properties of the proposed control laws are also investigated by using the Hamilton-Jacobi theory. A numerical example is given to illustrate the theoretical results presented in this paper.

Robust Optimal Control of Robot Manipulators with a Weighting Matrix Determination Algorithm

  • Kim, Mi-Kyung;Kang, Hee-Jun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.77-84
    • /
    • 2004
  • A robust optimal control design is proposed in this study for rigid robotic systems under the unknown loads and the other uncertainties. The uncertainties are reflected in the performance index, where the uncertainties are bounded for the quadratic square of the states with a positive definite weighting matrix. An iterative algorithm is presented for the determination of the weighting matrix required for necessary robustness. Computer simulations have been done for a weight-lifting operation of a two-link manipulator and the simulation results shows that the proposed algorithm is very effective for a robust control of robotic systems.

Design and its Application of Robust Degital Optimal Model Following Servo System (강인한 디지털 최적모델 추종형 서보시스템의 구성과 그 적용)

  • 이양우;김정택;황창선
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1186-1192
    • /
    • 1994
  • This paper presents an algorithm to design a robust digital model following servo control system in which optimal linear quadratic regulator problem is used to design the control system that make the step/ramp response of the plant kept close to a specified ideal step/ramp response of the model. The quadratic criterion function for a continuous system is used to design the robust digital servo control system. The feasibility of the design technique is shown by the simulation and the proposed method is applied to the speed control of DC servo motor.

  • PDF

Robust Time-Optimal Control for Coarse/Fine Dual-Stage Systems

  • Kwon, Sang-Joo;Chung, Wan-Kyun;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.317-320
    • /
    • 1999
  • A robust end time optimal conかof strategy for dual-stage servo system is presented. The time optimal trajectory for a mass-damper system is determined and given os a reference input to the servo system. The feedback controller is constructed so that the fine stage tracks the coarse stage errors and robustly designed as the“perturbation compensated sliding mode control(PCSMC)”law, a combination of slid-ing mode controller(SMC) and perturbation observer(PO). In addition, a null motion controller which regulates the fine stage at its neutral position is designed based on the“dynamic consistency”So, the overall dual-stage servo system exhibits the robust and time-optimal performance. The inherent merit and performance of the dual-stage system will be shown.

  • PDF

Optimal Linearization-Based Robust Controller Design for Underwater Glider (수중글라이더의 최적선형화 모델기반 강인제어기 설계)

  • Moon, Ji Hyun;Lee, Ho Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2023-2029
    • /
    • 2016
  • This paper addresses a robust controller design technique for a nonlinear underwater glider with disturbances. We consider the buoyancy and pitching moment as control inputs, which generate additional nonlinearity on the plant dynamics. To deal with the nonlinearity, we utilize the optimal linearization technique. The conditions for the optimal linearization and the controller design are formulated in terms of matrix inequalities. The effectiveness of the proposed method is demonstrated through a simulation.

Robust Current Control for Permanent Magnet Synchronous Motors by the Inverse LQ Method - An Evaluation of Control Performance Using Servo-Locks at Low Speed -

  • Takami Hiroshi
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.228-236
    • /
    • 2004
  • This paper describes the optimal current-control of a permanent magnet synchronous motor by the use of robust and simple current controllers, based upon the analytical procedure known as the inverse LQ (ILQ) design method. The ILQ design method is a strategy for finding the optimal gains based on pole assignment without solving the Riccati equation. It is very important to keep the motor in robust servo-lock. By experiments and simulations, we will show that the ILQ optimal servo-system with servo-lock is more insensitive at low speeds to variations in armature inductance than the standard PI servo-system. Variations in armature inductance have the greatest influence on the responses of a servo-system.

DETERMINATION OF OPTIMAL ROBUST ESTIMATION IN SELF CALIBRATING BUNDLE ADJUSTMENT (자체검정 번들조정법에 있어서 최적 ROBUST추정법의 결정)

  • 유환희
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.1
    • /
    • pp.75-82
    • /
    • 1991
  • The objective of this paper is to investigate the optimal Robust estimation and scale estimator that could be used to treat the gross errors in a self calibrating bundle adjustment. In order to test the variability in performance of the different weighting schemes in accurately detecting gross error, five robust estimation methods and three types of scale estimators were used. And also, two difference control point patterns(high density control, sparse density control) and three types of gross errors(4$\sigma o$, 20$\sigma o$, 50$\sigma o$) were used for comparison analysis. As a result, Anscombe's robust estimation produced the best results in accuracy among the robust estimation methods considered. when considering the scale estimator about control point patterns, It can be seen that Type II scale estimator provided the best accuracy in high density control pattern. On the other hand, In the case of sparse density control pattern, Type III scale estimator showed the best results in accuracy. Therefore it is expected to apply to robustified bundle adjustment using the optimal scale estimator which can be used for eliminating the gross error in precise structure analysis.

  • PDF

A Study on Linear Matrix Inequalities Robust Active Suspension Control System Design Algorithm

  • Park, Jung-Hyen
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.105-109
    • /
    • 2008
  • A robust optimal control system design algorithm in active suspension equipment adopting linear matrix inequalities control system design theory is presented. The validity of the linear matrix inequalities robust control system design in active suspension system through the numerical examples is also investigated.

A Study on the Robust Optimal Supporting Positions of TFT-LCD Glass Panel (TFT-LCD 용 유리기판의 강건 최적 지지 위치의 선정에 관한 연구)

  • Huh Jae-Sung;Jung Byung-Chang;Lee Tae-Yoon;Kwak Byung-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.1001-1007
    • /
    • 2006
  • In this paper we present robust optimal supporting positions for large glass panels used for TFT-LCD monitors when they are stored in a cassette during manufacturing process. The criterion taken is to minimize their maximum deflection. Since they are supported by some supports and have large deformations, contact analysis with a geometrically nonlinear effect is necessary. In addition, the center of a panel can not be positioned exactly as intended and should be considered as uncertainties. To take into account of these effects, the mean and the standard deviation of system response functions, particularly the deflection of the panels, need be calculated. A function approximation moment method (FAMM) is utilized to estimate them. It is a special type of response surface methodology for structural reliability analysis and can be efficiently used to estimate the two stochastic properties, that is, the system performance and the perturbations caused by uncertainties. For a design purpose, they are to be minimized simultaneously by some optimization algorithm to obtain robust optimal supporting positions.