Robust Current Control for Permanent Magnet Synchronous Motors by the Inverse LQ Method - An Evaluation of Control Performance Using Servo-Locks at Low Speed -

  • Takami Hiroshi (Dept. of Electrical and Electronic Systems Eng., Graduate School of Information Science and Electrical Eng., Kyushu University)
  • Published : 2004.10.01

Abstract

This paper describes the optimal current-control of a permanent magnet synchronous motor by the use of robust and simple current controllers, based upon the analytical procedure known as the inverse LQ (ILQ) design method. The ILQ design method is a strategy for finding the optimal gains based on pole assignment without solving the Riccati equation. It is very important to keep the motor in robust servo-lock. By experiments and simulations, we will show that the ILQ optimal servo-system with servo-lock is more insensitive at low speeds to variations in armature inductance than the standard PI servo-system. Variations in armature inductance have the greatest influence on the responses of a servo-system.

Keywords

References

  1. T. M. Jahns, G. B. Kliman and T. W. Neumann: ' Interior Permanent-Magnet Synchronous Motors for Adjustable-Speed Drives', IEEE Trans. Ind. Appl., IA-22, (4), pp. 738-747,1986
  2. Y. Takeda and N. Matsui: 'A New Development, Permanent Magnet Motor-I -Permanent Magnet Synchronous Motor and Development of its Control Technology-', J. IEE Japan, Vol.119, No.8/9, pp.503-504, 1999
  3. N. Matsui, K. Kameda and T. Takeshita: 'DSP-Based Software De-coupling Current Control of Brushless Motor', Trans. lEE Japan, VoI.107-D, No.2, pp. 215-222, 1987
  4. Y. Kuroe, T. Maruhashi and K. Okamura: 'Linearizing Control of Synchronous Motors through Decoupling of d-q Axes and its Application to Design of Optimal Speed-Servo Systems', Trans. IEE Japan, VoI.109-D, No.11 ,pp. 817-824, 1989
  5. D. S. Oh, K. Y. Cho and M. J. Youn: 'A Discretized Current Control Technique with Delayed Input Voltage Feedback for a Voltage-Fed PWM Inverter' , IEEE Trans. Power Electronics, PE-7, (2) , pp. 364-373, 1992
  6. K. Kondo, K. Matsuoka and Y. Nakazawa: 'A Designing Method in Current Control System of Permanent Magnet Synchronous Motor for Railway Vehicle Traction', Trans. lEE Japan, Vol.118-D, No.7/8, pp. 900-907, 1998
  7. K. Kondo: 'A Study on Control Systems of Permanent Magnet Synchronous Motors for Railway Vehicle Traction', Railway Technical Research Institute Report, Special No. 40, pp. 1-151,2000
  8. H. Takami: 'An Optimal Current-Control Design for Permanent Magnet Synchronous Motor by ILQ Design Method', Trans. Soc. Instr. Contr. Eng., Vol.38, No.3, pp. 327-329, 2002
  9. H. Takami : 'Design of an Optimal Servo-Controller for Current Control in a Permanent Magnet Synchronous Motor', IEE Proc. -Control Theory Appl., Vol. 149, No.6, pp. 564-572, November 2002
  10. H. Takami: 'An Optimal Current-Control of Permanent Magnet Synchronous Motor by ILQ Design Method', Trans. Soc. Instr. Contr. Eng., Vol.38, No.8, pp. 718-725, 2002
  11. T. Fujii and N. Mizushima: 'A New Approach to LQ Design -Application to the Design of Optimal Servo Systems-',Trans. Soc. Instr. Contr. Eng., Vol.23, No.2, pp. 129-135,1987
  12. T. Fujii: 'A New Approach to the LQ Design from the Viewpoint of the Inverse Regulator Problem', IEEE Trans. Automat. Contr., Vol. AC-32, No. 11 , pp. 995-1004, November 1987
  13. T. Fujii, Y. Nishimura, S. Shimomura and S. Kawarabayashi: 'A Practical Approach to LQ Design and its Application to Engine Control', Proc. IFAC World Congress IFAC’87, Munich Germany, pp. 253-258,1987
  14. T. Fujii and T. Shimomura: 'Generalization of ILQ Method for the Design of Optimal Servo Systems', Trans. Inst. Sys. Contr. Inf. Eng., I, (6), pp. 194-203, 1988
  15. K. Suematsu, K. Nakashima, T. Tsujino and T. Fujii: 'Application of ILQ Design Method to a Multivariable Magnetic Levitation System',Trans. Soc. Instr. Contr. Eng., Vol.31 , No.9, pp. 1471-1480,1995
  16. T. Ooi, F. Nishimura, T. Yanagida, S. Ban and Y. Seki: 'Advanced A. G. C. System for Cold Tandem Mill Based on ILQ Design Theory', Trans. Inst. Syst. Control Inf. Eng., Vol.9, No.6, pp. 274-286, 1996
  17. M. Sakai, Y. Kuroe, K. Nakashima and T. Fujii: 'Design of a Frequency-Shaping ILQ Controller to Supress Vibration in a Magnetic Levitation System', Trans. Inst. Syst. Control Inf. Eng., Vol.11, No.5, pp. 267-276, 1998.
  18. H. Takami :'Optimal Unity Power Factor Control of Permanent Magnet Synchronous Motor with q-axis Field by Inverse LQ Method', J. of Power Electronics, Vol. 1, No.2, pp. 117-126, Oct. 2001
  19. Y. Seki, T. Horikawa and H. Okamoto: 'Development of Multivariable Gauge and Tension Control for Tandem Cold Mills Based on ILQ Design Theory' , Trans. IEE Japan, VoI.122-D, No.11,pp. 1034-1044, 2002.
  20. H. Takami, T. Tsujino and T. Fujii: 'Robust Stability and Performance Evaluation of an ILQ Optimal Current-Control System for Permanent Magnet Synchronous Motor via $\mu$-Analysis' , Trans. Soc. Instr. Contr. Eng.,Vol.39, No.9, pp. 718-725, 2003
  21. T. Fujii: 'Design of Tracking Systems with LQ Optimality and Quadratic Stability', Proc. IFAC World Congress, IFAC’93, Sydney, Australia, pp. 435-442, 1993
  22. H. Kimura, T. Fujii and T. Mori: 'Robust Control' (Corona Publishing Co., Ltd, Tokyo Japan, 1994) 1st edn.
  23. P. Vas: 'Electric Machines and Drives, A Space-Vector Theory Approach', Clarendon Press, Oxford, 1992