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A Study on Linear Matrix Inequalities Robust Active
Suspension Control System Design Algorithm

Lot :

Abstract—A robust optimal control system design
algorithm in active suspension equipment adopting
linear matrix inequalities control system design
theory 1s presented. The validity of the linear matrix
inequalities robust control system design in active

suspension system through the numerical examples is
also investigated.

Index Terms—Active Suspension, Bouncing Pitching,
Linear Matrix Inequalities, Robust Control.

I. INTRODUCTION

This paper proposes modeling and design methods in
vehicle suspension system to analyze active suspension
equipment by adopting linear matrix inequalities theory

to design robust A” control system. Recently, in the

field of suspension system designs, it 1s general to adopt

active control scheme for stiffness and damping.
Connection with the other complicate vehicle stability
control equipment is also intricate. It is required for the
control system scheme to design more robust, fast
response and high precision control equipment. It 1is
known that the active suspension system is much better
than passive spring-damper system in designing the
suspension equipment [1]-[5].

In this paper, 1 deal with a design method based upon

robust /” control solution which is obtained by linear
matrix inequalities for improving vehicle performance
and driver’s ride comfort problems. In the problems to
improve ride comfort, it is most important indicator to
control bouncing displacement and pitching angle
vibration on driving vehicle. The method to control
bouncing displacement and pitching angle actively in
this paper assures the robust performance and driver’s
ride comfort to the continuously added road disturbances
under the steady speed driving condition.

The linear matrix inequalities robust /#” controller is
designed based on a 4our Degree of Freedom linear
vehicle system model which represents the bouncing
displacement and pitching angle of a vehicle concerned
with front-rear parts bouncing displacements. The active
suspension system with considering location of front-rear
wheel and driving velocity 1s analyzed and the robust
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control system is also designed. The validity of the linear
matrix inequalities robust control system design in active
suspension system through the numerical examples and

experiments is also investigated.

II. SYSTEM ANALYSIS AND DESIGN
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Fig. 1 4-DOF vehicle system model.

The analysis, modeling and design object used for this
paper is a 4-DOF vehicle system model shown on figure
1 [6]-[7]. In Fig. 1, V denotes the velocity of the driving
direction, i.e. the longitudinal velocity ( x -direction); m

and 7, denote the mass of the vehicle and the pitch

moment of inertia about its mass center in the lateral
direction ( y -direction); # and z denote the pitching

angle and the bouncing displacement, i.e. the upper and
lower motion ( z -direction); U, and U, denote the

control inputs to the front part suspension and rear part
suspension; ., and z,, denote road displacement

disturbances to the front part suspension and rear part
suspension, respectively.

Based on the 4-DOF vehicle system model analysis
frames shown in Fig. 1, the equations of the vehicle
motion can be obtained as follows. The dynamic

equations of the suspension upper part mass can be
defined as

mi=F,+F,, 1,0=1,F;-IF,
212 T 42 (1)
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where Fy = —kfz(zf2 —zﬂ)—cfz(z'f2 —z'fl) denotes
the force transmitted through the front part suspension,
and F, =-k,,(z,, —2,)—Cpr(2,» —2,) denotes the
force transmitted through the rear part suspension; &

and c¢ denote stiffness and damping coefficient. The

dynamic equations of the suspension lower part mass in
the front-rear parts can be also defined as follows.

mfIZfl Z—Ff —kfl(zfl _Zf0)+Uf
mriérl - _Fr _krl(zrl _Zr0)+Ur

)

Assuming that 7, =ml ./, condition, from 2™ term
of the Eq. (1) follows can be obtained.

. mi,
MprZ gy =F, (mfz = 7 )
3)
. mi
M, 2,9 = Fr (er =_"_)

From Egs. (2) and (3), the matrix representations of
the equations of motion are expressed by

Mz, +Cz, +K,z,=Hw+ Fu (4)
where
m, 0 0 0 ErS
0 m 0 0 Z
Mr — f2 b} Zr - f2 »
0 0 m, 0 Z,
i 0 0 0 m,, | Z,)

0 0 Cr2 —Cy2 Ur
i 0 0 —Cpy Cpy |
((kpy+kpy) —kpy 0 0 |
K - —kfz kfz 0 0
t ’
0 0 (krl +kr2) _kr.?.
N 0 0 _er kr2 |
k) | 1 0]
0 0 0 O
Hf = > F} = , W= ZfO
0 k, 0 1 Z,.0
i 0 0 1 _0 O_

In this paper, the control system is designed with the

linear matrix inequalities robust 4™ control to suppress

the effect of the road disturbance. Eq. (4) can be modeled
and expressed by state space equations as

= Ch‘x+D12u (5)
y=Cyx+Dyw

where x and u denote system state variables and
control input; y and z denote measured output and

controlled output, respectively; and w denotes the road
disturbances input. System design variables and matrix
parameters become as follows.

0 I
4=k —MAC
! f t f

B 0 B = 0
1t — M;le ’ r Mr-lﬁﬂr

Cy =|ET 0 x={zfl

Zy

In order to design linear matrix inequalities robust

h* controller for controlled objective plant represented
by Eq. (5), it is considered that robust controller can be
expressed as follows [8].

x.=Ax.+B.y
¢ coe c (6)

u=C_.x,

The necessary and sufficient conditions for the
existence of the linear matrix 1inequalities robust

h® controller are that there exist X and Y which
satisty the follows.

4 X+XxAT + B, BT -B,BT XCI

L
A
<O

_ Ci X -1
_ T T T
YA + 4 Y+ G, G = CoCor Y8y _ (7)
_ BlY -1
[X 1}
>0
I Y

where
P=AX+x4" + xclc,x+B,B. -B,B <0
Q=Y4,+A"Y+YB,BlYy+Clc,-clc, <0 .

Under the assumptions that Eq. (7) linear matrix
inequalities conditions are satisfied, one of the Eq. (6)
robust controllers can be obtained as follows [9]-[11].

A =4 +BC, -BC, +Y'clc, -y 'ou-x1)" ®
B, =v'cl, c,=B'vy(-xv)"

III. NUMERICAL SIMULATIONS

For the validities of the proposed modeling and design
methods in this paper for vehicle suspension system to
analyze active suspension equipment by adopting linear

matrix inequalities theory to design a robust /2™ control
system, numerical simulations are carried out under the
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condition which continuously added a sinusoidal road JRt . | |
disturbance. Throughout the simulations, the vehicle was
driven at steady speed V=70km/h. In detail numerical o8y S .\ |
simulation specifications, those were set that the vehicle 0.6 A t’ﬁﬁ; -l ;";L )\ {*E‘;_ l
mass m= 1790kg, the suspension front lower part mass oab Iﬁ\ “ NN 1 f o 3 j; %';__
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) . . = i ; ] ' % ,:'- | E ke . i } :
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damping coefficients ¢, =c,,= 118Ns/m, and [ the ael ERt Lf E} \ ﬁ igf i
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wheel base parts are /,=1.27m, /,=1.55m. aal l
Fig. 2 shows the sinusoidal road disturbance which is p , | , ,
continuously added to the vehicle model. On the figures 0 o EDtimE{SEDJSD e =
of throughout the results of simulations, a solid line Fie 4 Road disturbanée esDONSe 2
represents the result of controlled one, and a dotted line & P f2
represents that of uncontrolled one.
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Fig. 2 Sinusoidal road disturbance.

The upper and lower motion displacement response of
the suspension front lower part, the upper and lower
motion displacement response of the suspension front
upper part 1 cases of uncontrolled and controlled are
shown 1n Fig. 3 and Fig. 4, respectively. Fig. 5 shows the

front part actuator control input U , (kgnmy/ 5%).
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Fig. 3 Road disturbance response z ;.

Fig. 6, Fig. 7 and Fig. 8 also show the z -direction
displacements in uncontrolled, controlled cases, and
control input of the rear part, respectively.
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Fig. 6 Road disturbance response z,; .
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Fig. 8 Rear part control input U, .

Fig. 3 to Fig. 8 show that the active suspension 4-DOF
vehicle model with the linear matrix inequalities robust

h” controller exhibit better performances in upper and
lower motion displacement vibration control than those
of the vehicle with uncontrolled passive spring-damper

suspension system. An appropriate robust 4™ control
input solutions designed by the method based upon linear
matrix inequalities are also shown in Fig. 5 and Fig. 8.

Fig. 9 and Fig. 10 show that the control method in this
paper 1s prominent for improving vehicle performance
and driver’s ride comfort problems. In Fig. 9, Road
disturbance bouncing response z about its mass center
becomes smaller after 20 seconds in case of uncontrolled
suspension than response of controlled one. However
from a point of view which is concerned with ride
comfort problem, steady vibration bouncing response (a
solid Ime in Fig. 9; controlled) to the continuous road
disturbances means better performance than irregular
bouncing response to the regularly added sinusoidal road
disturbance (a dotted line in Fig. 9; uncontrolled). Pitch
angle response in Fig. 10 shows the control method in
this paper is prominent for improving ride comfort.

time(sec)

Fig. 10 Road disturbance pitch response 6.

IV. CONCLUSIONS

In this paper, I dealt with a design method based upon

robust 4 control solution which is obtained by linear

matrix inequalities for improving vehicle performance
and driver’s ride comfort problems. The linear matrix

inequalities robust A~ controller was designed based on
a 4our Degree of Freedom linear vehicle system model
which represents the bouncing displacement and pitching
angle of a vehicle concerned with front-rear parts
bouncing displacements. In order to design linear matrix
inequalities robust controller, the necessary and
sufficient conditions for the existence of the linear matrix

inequalities to solve robust % control problem was
investigated. The active suspension system with
considering location of front-rear wheel and driving
velocity was analyzed and the robust control system was
also designed. The wvalidity of the linear matrix
inequalities robust control system design in active
suspension system through the numerical examples and
experiments was investigated.
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