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Abstract

A robust and time optimal control strategy for dual-stage
servo system is presented. The time optimal trajectory for
a mass-damper system is determined and given as a refer-
ence tnput to the servo system. The feedback controller is
constructed so that the fine stage tracks the coarse stage er-
rors and robustly designed as the “perturbation compensated
sliding mode control(PCSMC)” law, a combination of slid-
ing mode controller(SMC) and perturbation observer(PO).
In addition, o null motion controller which regulates the
fine stage at its neutral position is designed based on the
“dynamic consistency”. So, the overall dual-stage servo
system ezhibits the robust and time-optimal performance.
The inherent merit and performance of the dual-stage sys-
tem will be shown.

1 Introduction

As the industrial need for high speed and high accuracy
positioning devices increases, a new concept in servo sys-
tem design appeared: the dual-stage servo system, which
is defined as a combination of coarse/fine{or macro/micro)
actuation stages for fast and precise positioning. In dual-
stage systems, the coarse actuator is used for coarse and
large range motions while the fine actuator for fine and
small range motions.

The conventional actuator(e.g., electrical motor) has the
following limitations: mechanical resonance at high fre-
quencies, and bearing friction increase due to low speed
in low frequency regions. These characteristics limit the
system performance. The fine actuator(e.g., piezo-electric
transducer(PZT)) is a solution to increase the servo band-
width. It is limited in motion range and power but the
high speed characteristic enables high frequency command
following.

The representative examples which adopt the dual ac-
tuation concept are disk drives[l], macro/micro robot
manipulators[2],[3], and X-Y linear positioning tables[4].
In this paper, we consider the robust control problem with
time optimality for the dual-stage system composed of
coarse/fine co-linear actuators.

2 Dual-Stage Model Description

As a dual-stage construction, we consider a system which
is composed of two ball-screw driven linear motion stages
in Fig. 1. We assume that the 2nd stage mounted on the
1st stage has the characteristics of fine actuators, i.e., high
resolution and high bandwidth.

The mathematical model of a ball-screw driven linear stage,
which is in most current use in industry, is described as a
mass-damper system:

Jewm + Bewm = Tm — Tf and “l.j = PWm (1)
~ Jejj + Beyy = p(Tm — 75) (2

where p = 5‘; : the angular to linear motion conversion fac-
tor, £ : lead of screw, J. : effective inertia of linear stage
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Fig. 1: Coordinate definitions of the dual-stage system.

w.r.t. rotary motor shaft B, : effective viscous damping co-
efficient w.r.t. motor shaft 7, : motor torque, 7; : effective
nonlinear friction torque w.r.t. motor shaft.

For a two stage ball-screw driven system, the decoupled
model of the following is available.

5 211+ 5. (o] = g e
-+ Ag+Bg=T ()
y = y1(coarse motion) + y2(fine motion) (5)

Remark: Inertial property (reduced effective iner-
tia). The inherent feature of the dual-stage system is that
the effective inertia in any direction of motion is less than
that of the fine actuator. Applying the theorem in [3] to
tbe dual-stage model of Eq. (3)-(5), the effective inertia is
readily derived as follows, which proves the theorem.

Jegs = ————2 < Je2 (6)

3 Reference Trajectory Generation

The time optimal control is a critical issue in positionin
systems since it is directly associated with productivity. E
lot of applications using the dual-stage system require the
time optimal performance, for example, in track seeking
mode of disk drives, and also in chip mounting device.
Since the time optimal feedback law has no margin on the
plant model and control input, a reasonable “sub-optimal”
strategy is desirable for performance robustness. For this
purpose, we are to determine the time optimal solution for
mass-damper systems in open loop sense and give it as a
reference trajectory for the dual-stage system to robustly
follow rather than directly apply the time optimal feedback
law.
For the nominal model of Eq.(2), § + ay = bu(t), based on
the Pontrygin’s minimum principle [8], the time optimal
feedback law for the target condition, {y,y} = {z1,z2}(ts)
= {0, 0} is readily determined as u{t) = —SGN(s(z)) where
the switching function is
z2 b a 1

s@) ==(0) - azln{l +3 ;m|} +=za(t). (7)
Using the switching function, the open loop reference tra-
jectory for the initial condition {z1,z2}(¢(0)) = {0,0} and
the target condition {z1,z2}(t5) = {z15,0} is derived as:



1) when ¢ < t, (acceleration interval, u = +1)

to=ln{1 - VI=en{-@H)=1}} (®)

z1(t) = (b/a)t + (b/a?) (e7°* - 1) 9)
z2(t) = (b/a) (1 — ™) (10)
yed) = - Sl - Sl = 1z (1)
2) when ¢, < t < t; (deceleration interval, u = —1)
ty =t, + (1/a)In{l + (a/b)z2(t,)} (12)
z:1(t) = z1(t,) — (b/a)(t — ts) (13)

+ (1/a) [z2(ts) + (b/a)] [1 _ e-—a(t—t,)]

za(t) = a(ts)e ™2 7) — g [1 - e_"(t“')] 14)

b 1
Y(@2) =z1s + In{l+ 222} - Sza(t)  (15)
a b a
4 Control strategy for dual-stage systems

Basics of dual-stage servo design

Since the dual-stage system has a redundancy in actua-
tion(see Eq.(5)), each actuator has infinite number of con-
trol solutions for a specified end position. Therefore, to
achieve the purpose of dual-stage system, i.e., fast and fine
positioning with large range of motion, the servo controller
should be carefully designed so that the characteristics of
coarse and fine actuators are fully utilized. The basics of
dual-stage servo design may be remarked as follows.

1) The nominal trajectory should be tracked by the coarse
actuator while, due to the limited motion range, the fine ac-
tuator compensates perturbation including friction effects
using its high resolution and high speed capacity.

2) From the viewpoint of frequency domain, at low fre-
quencies where large motion is dominant, tracking should
be performed primary by coarse actuator. On the con-
trary, the main operation of the fine actuator should be at
high frequencies where perturbations are fast but small in
magnitude and the resonance of coarse actuator limits the
performance.

Dynamically consistent null motion control

To satisfy the above strategy, the dual-stage controlle
should be structured so that the coarse stage error be th:
reference for the fine stage to follow and the fine stage com
pensates the coarse stage tracking errors. Since the mo
tion range of fine actuator is very small(e.g., usually unde
100pum in PZT), the fine stage motion would be easily sat
urated if not properly controlled. While the fine stage i
saturated, it loses its ability to compensate the high fre
quency perturbations. So, it is very important to assig:
the controller the property for the fine stage to restore
its neutral position as quickly as possible while the end po
sition not perturbed due to the null motion. So far, littl
attention has been given to the point in dual-stage systems
In robotics field, the null motion control and the dynami
decoupling between the task space motion and null spac
motion are general topics and well established. For re
dundant manipulators, general form of the relationship be
tween operational force(F) and joint torque(T) is that[3]

r=J"(QF+[I-J"(q)" (@) JT,  (16)

null motion control vector

where J is the Jacobian between joint velocity and end
effector velocity. and T, is an arbitrary generalized joint
torque vector.

Theorem: dynamic consistency([3]: a generalized in-
verse which satisfies the dynamically consistent condi-
tion(i.e., the joint torques not producing the end effector’s
acceleration) is unique and is given by

J#(q) = A" (@)IT (@) As(q) a7

where A is the manipulator inertia matrix and A,(q) =

(J A“JT)—I. Then, the null motion control input which
do not affect the end point motion is determined by

Tn=[I-J7(q)d7*(g) T, (18)

For two degrees of freedom dual-stage system of Eq. (3)-
(5), J =[1 1], and the null motion control input satisfying
the dynamic consistency is readily derived as follows.

i e1t+Je2
Tn = {:::} = 1 _ii('(l.l‘:‘:: :::2_] :)) T, (19)

where the generalized torque for fine stage regulation can
be constructed as a simple PD rule, Ty = kp(y2r — ¥2) -
kay2. This control action would prevent the range satura-
tion of fine stage and so, enhance the overall performance
robustness.

5 A Robust Feedback Controller Design

In general, a robust controller is designed with respect to
the upper limit of model uncertainties. However, too ex-
cessive assumption on the limit will result in a conservative
design with fixed high control gains and, as a result, it may
be troublesome to apply to real plant. So, a smart approach
to reduce the robust controller gains is necessary.
Following the philosophy of reducing the robust control
gains, we propose the Perturbation Compensated Sliding
Mode Control with No Variable Structure(PCSMC) as a
robust control approach for dual-stage systems, This is a
mixed approach of sliding mode control(SMC) and pertur-
bation observer(PO). We can find similar works in [6],[9],
where variable structure type SMC’s were adopted for ro-
bust stability.

SMC of ::1 u Coarse
Coarse Stage [* ,T'\ i} Stage
vl ‘\k
PO of —
SMC of Cosrse stage ¥y

Fine Stage

Reference
Generator

PO of
Fine stage

Null Motion
Controller

¥ =0 +.i:
b2

Fig. 2: The structure of PCSMC with null motion con-
troller.

The overall controller structure for the dual-stage system is
shown in Fig. 2 where the reference generator produces the
time-optimal trajectory of Eq.’s (8)-(15) for coarse stage
model.

Considering the coordinate relationships, yr = y1r, ¥ =
y1+Y2, € = Yr—Y, €1 = Y1r—Y1, and as aresult, e = e1 - 2.
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So, the direct feedback of end position error to the fine stage
controller is the same as the situation that the fine stage
controller accepts the coarse stage tracking error(e;) as the
reference input with the feedback of relative position(yz).
This means that the fine stage naturally tracks the coarse
stage error and it maintains the neutral position in aver-
age(i.e., y2 = 0), since e, e;1 — 0 means y2 — 0. However,
an independent null motion controller is necessary to in-
crease the bandwidth of the restoring action.

Perturbation observer design

First of all, we'd like to define the “perturbation” as the
total internal and external uncertainties which perturbs a
plant from the nominal model.

Recently, as a robust control approach, there were much re-
ports associated with signal-based perturbation observers.
For example, “disturbance observer(DOB)”[10], “time de-
lay control{(TDC)"{7], “perturbation observer” [6] belong
to this family. These are similar approaches from the view-
point that they estimates the effective perturbations using
plant input/output signals without relying on the pertur-
bation model.

To derive the perturbation estimation signal, let’s rewrite
the dual-stage system model of Eq. (3)-(5) in the form:

U5 +aig; = bi (u;(t) +945(8)), (1=1,2) (20)

where u; is the normalized control input such that |u;| <1
and ; is the normalized effective perturbation to nomi-
nal dynamics, which includes the modeling errors, dynamic
couplings, external disturbances, and nonlinear frictions.
Basically, all perturbation estimation algorithm is imple-
mented in the following form where f; = —aiy;, (=1,2),
and L is usually the control frequency.

Pi(t) = §jj(t — L) — f(t — L) — bju;(t — L)  (21)

As shown, the concept of perturbation observer is physi-
cally intuitive and easy to implement. A notable fact is
that it does not require any disturbance model. Under the
assumption that the rate of change of perturbation is not
so sharp, which is the most cases, the algorithm works well.
The perturbation estimation signal is phisically an accel-
eration. So, when only output measure is available, the
estimation signals must be smoothened through a low pass
filter(LPF) as ¥;(s) = Q(s)¥;(8). This signal adaptively
compensates the perturbations in real time and the closed
loop approximately behaves as the nominal model and, as
a result, the performance robustness increases. Therefore,
this approach can be interpreted as a variable gain integral
control or a signal-based adaptive control.

Design of sliding mode controller with no variable
structure
First of all, the nominal dynamics in Eq. (20) can be ar-

ranged as
i1 _ h b1 0 U1
{ﬁz}_{f1+f2}+[blb2}{“2} (22)
— 9y =F+ Bu (23)
where fi = —a1% and f; = —a2y2.

Next, the sliding surface, 8(t) = {s1(¢), s(t)} for coarse(y)
and coarse/fine end point(y) motion are defined as proper
systems, 8(t) = é+Ae, where y = {y1, y}, € = y—v,, and
A = diag{\;, A} denotes the desired bandwidth of coarse
and end point motion respectively, on the sliding surface.
Considering the actuator bandwidth and structural limit,
it should be A >> Ay,
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The conventional sliding control law is composed of con-
tinuous equivalent control and discrete switching control[5].
For the nominal model of Eq.(23), the equivalent control
input is determined in the following manner.

st)=é+Ae=Ff+Bu—-9, +Ae=0 (24)
S ue) =B~ (-} +i, - Ae)  (29)

On the other hand, the switching control action gives rise
to the approaching mode to the sliding surface for any ini-
tial conditions and it gives robustness property to the sys-
tem by keeping 8(t) = 0 in spite of model uncertainty and
external disturbances.

The discrete switching input is of variable structure type
such that u,, = —kSGN(8). Usually, the switching
gain(k) is designed based on Lyapunov design approach so
that it sufficiently guarantees the asymptotic stability for
the upper bound of perturbations. However, the sufficiency
requires the fixed high control gain and also the chattering
problem due to the high frequency switching has been a
critical issue.

To avoid this problem, in PCSMC, the approaching mode
to the sliding surface is attained by the input, #sw = — K3,
which can be regarded as a continuous switching input. By
applying this input, due to the dynamic property of slid-
ing surface(8), a low frequency switching will be occurred
around the sliding surface. This approach is equivalent to
the case that the “boundary layer”[5] of sliding surface is
expanded to the maximum. Then, the sliding control law
with no variable structure is

Usme = Ueqg + Usw = B! (‘}"‘ﬂr - Ae —Ps) (26)

After all, it is a PD control type with feedforward terms.
However, the merits of the SMC frame are fully utilized in
controller design step. That is, the closed loop bandwidth
for coarse motion and coarse/fine end point motion can
be considered explicitly through the sliding mode gains,
A = {X\1, A} and reaching phase gains, P = {P;, P}. In
simple PD control, this is not the case. O

Now, the PCSMC law is obtained by combining the per-
turbation compensation signal and the SMC law as

uPcamc(t) = Usmc — 'i’(t) (27)

Then, from Eq.’s, (23),(26),and (27), the closed loop error
dynamics under the PCSMC input is

e+ (P+Ae+PAé=¥() (28)

where ¥ = ¥ — §. As shown, the perturbation signal to
the nominal error dynamics is reduced from ¥ to ¥ with
the action of perturbation observer, which directly means
the performance robustness has been increased.

From the error dynamics of Eq.(28), the closed loop band-
widths are approximately wpw, = /P11 for coarse mo-
tion and wsw = Vv PA for coarse/fine motion. If the PC-
SMC gains are selected as P = ), under the assumption
that the perturbation observer loop works well, the closed
loop bandwidth is equal to the sling mode bandwidth and
reaching phase bandwidth, wsw = P = A and the response
is critically damped. This relationships make the gain tun-
ing process clear since the closed loop performance is ex-
pected in advance, which explains the merit of PCSMC for
dual-stage servo design.

Finally, the overall control input for dual-stage system in-
cluding the null motion control vector of Eq. (19) is

u(t) = Usme — T(t) + un (29)

With the time-optimal reference trajectory, this input
would achieve the robust time-optimal performance of
dual-stage systems.



6 Simulations

The plant parameters in Eq.’s (3) and (20) used in simu-
lations are: for coarse stage, a1 = Be1/Jer = 2.146, b1 =
pT1/Je1 = 10.93, and, for fine stage, az = Bea2/Je2 = 2.695,
by = pT3/Je2 = 40.97, where T and T are the rate torques
of coarse and fine actuators.

The selected gains of PCSMC law are: A1 = P = 100,
A = P = 500. So, the closed loop bandwidth is expected
as: for coarse motion, wpw, = 100 rad/s (16 Hz) and for
coarse/fine end point motion, wew = 500 rad/s (80 Hz).
That is, the fine stage is about five times faster than the
coarse stage.

As mentioned before, the fundamental role of fine stage
is to compensate the coarse stage tracking errors and so,
increases the overall positioning bandwidth. The step re-
sponse in Fig. 3 proves this fact.

To verify the performance robustness of PCSMC with the
null motion controller, the effective friction torques and the
arbitrary large external input disturbances have been ap-
plied as the perturbations to both stages (normalized values
in Fig. 4). Fig. 5 shows the performance variations, when
the time-optimal trajectory is applied with 5 mm moving
range, according as the perturbation observer(PO) is work-
ing or not. It demonstrates the adaptive performances of
perturbation observer.

When comparing the ‘with PO case’ of Fig. 5 with Fig. 6,
with the action of the null motion controller, the relative
motion of fine stage has nearly kept the neutral position
while the compound motion error(e) and the total control
inout level almost not affected.
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Fig. 3: Step response
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Fig. 4: Normalized perturbation inputs(¥;(j = 1,2)): ef-
fective friction and external disturbance

7 Concluding Remarks

We have proposed the “perturbation compensated sliding
mode control{PCSMC) law” as a robust control strategy.
Within this control frame, the merit of SMC is available
and the perturbation observer guarantees the robust per-
formance. Also, the null motion controller satisfying the
dynamic consistency has been designed to avoid the range
saturation of fine stage. In addition, the time optimal
solution has been determined with respect to the coarse
stage(mass-damper model) and applied as a reference tra-
jectory so that the overall closed loop system achieves the
“robust time optimal performance”.
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Fig. 5: Performance of PCSMC (without null motion
control).
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Fig. 6: Performance of PCSMC with PO and null motion
control.

Through simulations, the performance robustness has been
demonstrated and the action of null motion controller made
it possible for the fine stage to maintain its neutral po-
sition in spite of its compensating action for the coarse
stage errors. Conclusively, with the addition of time op-
timal reference generator and null motion controller, the
PCSMC framework provides an efficient control environ-
ment for coarse/fine dual-stage servo systems.
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