• Title/Summary/Keyword: right p.p.-rings

Search Result 34, Processing Time 0.029 seconds

A KUROSH-AMITSUR LEFT JACOBSON RADICAL FOR RIGHT NEAR-RINGS

  • Rao, Ravi Srinivasa;Prasad, K.Siva
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.457-466
    • /
    • 2008
  • Let R be a right near-ring. An R-group of type-5/2 which is a natural generalization of an irreducible (ring) module is introduced in near-rings. An R-group of type-5/2 is an R-group of type-2 and an R-group of type-3 is an R-group of type-5/2. Using it $J_{5/2}$, the Jacobson radical of type-5/2, is introduced in near-rings and it is observed that $J_2(R){\subseteq}J_{5/2}(R){\subseteq}J_3(R)$. It is shown that $J_{5/2}$ is an ideal-hereditary Kurosh-Amitsur radical (KA-radical) in the class of all zero-symmetric near-rings. But $J_{5/2}$ is not a KA-radical in the class of all near-rings. By introducing an R-group of type-(5/2)(0) it is shown that $J_{(5/2)(0)}$, the corresponding Jacobson radical of type-(5/2)(0), is a KA-radical in the class of all near-rings which extends the radical $J_{5/2}$ of zero-symmetric near-rings to the class of all near-rings.

SKEW POLYNOMIAL RINGS OVER σ-QUASI-BAER AND σ-PRINCIPALLY QUASI-BAER RINGS

  • HAN JUNCHEOL
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.53-63
    • /
    • 2005
  • Let R be a ring R and ${\sigma}$ be an endomorphism of R. R is called ${\sigma}$-rigid (resp. reduced) if $a{\sigma}r(a) = 0 (resp{\cdot}a^2 = 0)$ for any $a{\in}R$ implies a = 0. An ideal I of R is called a ${\sigma}$-ideal if ${\sigma}(I){\subseteq}I$. R is called ${\sigma}$-quasi-Baer (resp. right (or left) ${\sigma}$-p.q.-Baer) if the right annihilator of every ${\sigma}$-ideal (resp. right (or left) principal ${\sigma}$-ideal) of R is generated by an idempotent of R. In this paper, a skew polynomial ring A = R[$x;{\sigma}$] of a ring R is investigated as follows: For a ${\sigma}$-rigid ring R, (1) R is ${\sigma}$-quasi-Baer if and only if A is quasi-Baer if and only if A is $\={\sigma}$-quasi-Baer for every extended endomorphism $\={\sigma}$ on A of ${\sigma}$ (2) R is right ${\sigma}$-p.q.-Baer if and only if R is ${\sigma}$-p.q.-Baer if and only if A is right p.q.-Baer if and only if A is p.q.-Baer if and only if A is $\={\sigma}$-p.q.-Baer if and only if A is right $\={\sigma}$-p.q.-Baer for every extended endomorphism $\={\sigma}$ on A of ${\sigma}$.

A NOTE ON STRONG REDUCEDNESS IN NEAR-RINGS

  • Cho, Yong-Uk
    • The Pure and Applied Mathematics
    • /
    • v.10 no.4
    • /
    • pp.199-206
    • /
    • 2003
  • Let N be a right near-ring. N is said to be strongly reduced if, for $a\inN$, $a^2 \in N_{c}$ implies $a\;\in\;N_{c}$, or equivalently, for $a\inN$ and any positive integer n, $a^{n} \in N_{c}$ implies $a\;\in\;N_{c}$, where $N_{c}$ denotes the constant part of N. We will show that strong reducedness is equivalent to condition (ⅱ) of Reddy and Murty's property $(^{\ast})$ (cf. [Reddy & Murty: On strongly regular near-rings. Proc. Edinburgh Math. Soc. (2) 27 (1984), no. 1, 61-64]), and that condition (ⅰ) of Reddy and Murty's property $(^{\ast})$ follows from strong reducedness. Also, we will investigate some characterizations of strongly reduced near-rings and their properties. Using strong reducedness, we characterize left strongly regular near-rings and ($P_{0}$)-near-rings.

  • PDF

A REMARK ON QF RINGS

  • Feng, Feng;Shen, Liang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.179-186
    • /
    • 2019
  • This article mainly concentrates on the open question whether a right self-injective ring R is necessary QF if $R/S_l$ is left Goldie. It is answered affirmatively under the condition $S_l{\subseteq}S_r$, where $S_l$ and $S_r$ denote the left socle and right socle of R respectively. And the original condition "right self-injective" can be weakened to "right CS and right P-injective". It is also proved that a semiperfect, left and right mininjective ring R is QF if $S_r{\subseteq}^{ess}$ $R_R$ and $R/S_l$ is left Goldie.

RINGS WITH A RIGHT DUO FACTOR RING BY AN IDEAL CONTAINED IN THE CENTER

  • Cheon, Jeoung Soo;Kwak, Tai Keun;Lee, Yang;Piao, Zhelin;Yun, Sang Jo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.529-545
    • /
    • 2022
  • This article concerns a ring property that arises from combining one-sided duo factor rings and centers. A ring R is called right CIFD if R/I is right duo by some proper ideal I of R such that I is contained in the center of R. We first see that this property is seated between right duo and right π-duo, and not left-right symmetric. We prove, for a right CIFD ring R, that W(R) coincides with the set of all nilpotent elements of R; that R/P is a right duo domain for every minimal prime ideal P of R; that R/W(R) is strongly right bounded; and that every prime ideal of R is maximal if and only if R/W(R) is strongly regular, where W(R) is the Wedderburn radical of R. It is also proved that a ring R is commutative if and only if D3(R) is right CIFD, where D3(R) is the ring of 3 by 3 upper triangular matrices over R whose diagonals are equal. Furthermore, we show that the right CIFD property does not pass to polynomial rings, and that the polynomial ring over a ring R is right CIFD if and only if R/I is commutative by a proper ideal I of R contained in the center of R.

RING ENDOMORPHISMS WITH THE REVERSIBLE CONDITION

  • Baser, Muhittin;Kaynarca, Fatma;Kwak, Tai-Keun
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.349-364
    • /
    • 2010
  • P. M. Cohn called a ring R reversible if whenever ab = 0, then ba = 0 for a, $b\;{\in}\;R$. Commutative rings and reduced rings are reversible. In this paper, we extend the reversible condition of a ring as follows: Let R be a ring and $\alpha$ an endomorphism of R, we say that R is right (resp., left) $\alpha$-shifting if whenever $a{\alpha}(b)\;=\;0$ (resp., $\alpha{a)b\;=\;0$) for a, $b\;{\in}\;R$, $b{\alpha}{a)\;=\;0$ (resp., $\alpha(b)a\;=\;0$); and the ring R is called $\alpha$-shifting if it is both left and right $\alpha$-shifting. We investigate characterizations of $\alpha$-shifting rings and their related properties, including the trivial extension, Jordan extension and Dorroh extension. In particular, it is shown that for an automorphism $\alpha$ of a ring R, R is right (resp., left) $\alpha$-shifting if and only if Q(R) is right (resp., left) $\bar{\alpha}$-shifting, whenever there exists the classical right quotient ring Q(R) of R.

ON INJECTIVITY AND P-INJECTIVITY, IV

  • Chi Ming, Roger Yue
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.223-234
    • /
    • 2003
  • This note contains the following results for a ring A : (1) A is simple Artinian if and only if A is a prime right YJ-injective, right and left V-ring with a maximal right annihilator ; (2) if A is a left quasi-duo ring with Jacobson radical J such that $_{A}$A/J is p-injective, then the ring A/J is strongly regular ; (3) A is von Neumann regular with non-zero socle if and only if A is a left p.p.ring containing a finitely generated p-injective maximal left ideal satisfying the following condition : if e is an idempotent in A, then eA is a minimal right ideal if and only if Ae is a minimal left ideal ; (4) If A is left non-singular, left YJ-injective such that each maximal left ideal of A is either injective or a two-sided ideal of A, then A is either left self-injective regular or strongly regular : (5) A is left continuous regular if and only if A is right p-injective such that for every cyclic left A-module M, $_{A}$M/Z(M) is projective. ((5) remains valid if 《continuous》 is replaced by 《self-injective》 and 《cyclic》 is replaced by 《finitely generated》. Finally, we have the following two equivalent properties for A to be von Neumann regula. : (a) A is left non-singular such that every finitely generated left ideal is the left annihilator of an element of A and every principal right ideal of A is the right annihilator of an element of A ; (b) Change 《left non-singular》 into 《right non-singular》in (a).(a).

2-GOOD RINGS AND THEIR EXTENSIONS

  • Wang, Yao;Ren, Yanli
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1711-1723
    • /
    • 2013
  • P. V$\acute{a}$mos called a ring R 2-good if every element is the sum of two units. The ring of all $n{\times}n$ matrices over an elementary divisor ring is 2-good. A (right) self-injective von Neumann regular ring is 2-good provided it has no 2-torsion. Some of the earlier results known to us about 2-good rings (although nobody so called at those times) were due to Ehrlich, Henriksen, Fisher, Snider, Rapharl and Badawi. We continue in this paper the study of 2-good rings by several authors. We give some examples of 2-good rings and their related properties. In particular, it is shown that if R is an exchange ring with Artinian primitive factors and 2 is a unit in R, then R is 2-good. We also investigate various kinds of extensions of 2-good rings, including the polynomial extension, Nagata extension and Dorroh extension.

ADDITIVE MAPS OF SEMIPRIME RINGS SATISFYING AN ENGEL CONDITION

  • Lee, Tsiu-Kwen;Li, Yu;Tang, Gaohua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.659-668
    • /
    • 2021
  • Let R be a semiprime ring with maximal right ring of quotients Qmr(R), and let n1, n2, …, nk be k fixed positive integers. Suppose that R is (n1+n2+⋯+nk)!-torsion free, and that f : 𝜌 → Qmr(R) is an additive map, where 𝜌 is a nonzero right ideal of R. It is proved that if [[…[f(x), xn1], …], xnk] = 0 for all x ∈ 𝜌, then [f(x), x] = 0 for all x ∈ 𝜌. This gives the result of Beidar et al. [2] for semiprime rings. Moreover, it is also proved that if R is p-torsion, where p is a prime integer with p = Σki=1 ni and if f : R → Qmr(R) is an additive map satisfying [[…[f(x), xn1], …], xnk] = 0 for all x ∈ R, then [f(x), x] = 0 for all x ∈ R.

Correction to "On prime near-rings with generalized (σ, τ)- derivations, Kyungpook Math. J., 45(2005), 249-254"

  • Al Hwaeer, Hassan J.;Albkwre, Gbrel;Turgay, Neset Deniz
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.2
    • /
    • pp.415-421
    • /
    • 2020
  • In the proof of Theorem 3 on p.253 in [4], both right and left distributivity are assumed simultaneously which makes the proof invalid. We give a corrected proof for this theorem by introducing an extension of Lemma 2.2 in [2].