Browse > Article
http://dx.doi.org/10.4134/CKMS.2010.25.3.349

RING ENDOMORPHISMS WITH THE REVERSIBLE CONDITION  

Baser, Muhittin (DEPARTMENT OF MATHEMATICS KOCATEPE UNIVERSITY)
Kaynarca, Fatma (DEPARTMENT OF MATHEMATICS KOCATEPE UNIVERSITY)
Kwak, Tai-Keun (DEPARTMENT OF MATHEMATICS DAEJIN UNIVERSITY)
Publication Information
Communications of the Korean Mathematical Society / v.25, no.3, 2010 , pp. 349-364 More about this Journal
Abstract
P. M. Cohn called a ring R reversible if whenever ab = 0, then ba = 0 for a, $b\;{\in}\;R$. Commutative rings and reduced rings are reversible. In this paper, we extend the reversible condition of a ring as follows: Let R be a ring and $\alpha$ an endomorphism of R, we say that R is right (resp., left) $\alpha$-shifting if whenever $a{\alpha}(b)\;=\;0$ (resp., $\alpha{a)b\;=\;0$) for a, $b\;{\in}\;R$, $b{\alpha}{a)\;=\;0$ (resp., $\alpha(b)a\;=\;0$); and the ring R is called $\alpha$-shifting if it is both left and right $\alpha$-shifting. We investigate characterizations of $\alpha$-shifting rings and their related properties, including the trivial extension, Jordan extension and Dorroh extension. In particular, it is shown that for an automorphism $\alpha$ of a ring R, R is right (resp., left) $\alpha$-shifting if and only if Q(R) is right (resp., left) $\bar{\alpha}$-shifting, whenever there exists the classical right quotient ring Q(R) of R.
Keywords
ring endomorphism; reduced ring; reversible ring; trivial extension; classical right quotient ring;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 A. R. Nasr-Isfahani and A. Moussavi, Ore extensions of skew Armendariz rings, Comm. Algebra 36 (2008), no. 2, 508–522.   DOI   ScienceOn
2 P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298 (2006), no. 1, 134–141.   DOI   ScienceOn
3 M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14–17.   DOI
4 C. Y. Hong, T. K. Kwak, and S. T. Rizvi, Extensions of generalized Armendariz rings, Algebra Colloq. 13 (2006), no. 2, 253–266.   DOI
5 D. A. Jordan, Bijective extensions of injective ring endomorphisms, J. London Math. Soc. (2) 25 (1982), no. 3, 435–448.   DOI
6 E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470–473.   DOI
7 D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847–2852.   DOI   ScienceOn
8 M. Ba¸ser, C. Y. Hong, and T. K. Kwak, On extended reversible rings, Algebra Colloq. 16 (2009), no. 1, 37–48.   DOI
9 M. Ba¸ser, T. K. Kwak, and Y. Lee, The McCoy condition on skew polynomial rings, Comm. Algebra 37 (2009), no. 11, 4026–4037.   DOI   ScienceOn
10 P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641–648.   DOI
11 J. M. Habeb, A note on zero commutative and duo rings, Math. J. Okayama Univ. 32 (1990), 73–76.
12 C. Y. Hong, N. K. Kim, and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), no. 3, 215–226.   DOI   ScienceOn
13 C. Y. Hong, N. K. Kim, and T. K. Kwak, On skew Armendariz rings, Comm. Algebra 31 (2003), no. 1, 103–122.   DOI   ScienceOn
14 G. Y. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43–60.   DOI
15 J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359–368.   DOI
16 N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477–488.   DOI   ScienceOn
17 N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207–223.   DOI   ScienceOn
18 J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (1996), no. 4, 289–300.
19 T. K. Lee and Y. Q. Zhou, Armendariz and reduced rings, Comm. Algebra 32 (2004), no. 6, 2287–2299.   DOI   ScienceOn
20 J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, John Wiley & Sons Ltd., 1987.
21 L. Motais de Narbonne, Anneaux semi-commutatifs et uniseriels; anneaux dont les ideaux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), 71–73, Bib. Nat., Paris, 1982.