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A REMARK ON QF RINGS

FENG FENG AND LIANG SHEN

ABSTRACT. This article mainly concentrates on the open question wheth-
er a right self-injective ring R is necessary QF if R/S; is left Goldie. It
is answered affirmatively under the condition S; C S,, where S; and S,
denote the left socle and right socle of R respectively. And the original
condition “right self-injective” can be weakened to “right CS and right P-
injective”. It is also proved that a semiperfect, left and right mininjective
ring R is QF if S, C¢* Rr and R/S; is left Goldie.

1. Introduction

Let R be an associative ring with identity. We use S, S, J, Z;, Z, to denote
the left socle, right socle, Jacobson radical, left singular ideal, right singular
ideal of R respectively. Let N be a submodule of a module M, write N C¢** M
by showing that N is an essential submodule of M. We use Soc(M) to denote
the socle of M. Let X be a subset of a ring R, 1(X) means the left annihilator
of X in R. The right annihilator of X can be defined similarly. A left ideal I
of R is called a left annihilator ideal if I =1(X) for some subset X of R. Right
annihilator ideals can be obtained similarly.

Quasi-Frobenius (QF) rings were firstly introduced by Nakayama [12]. It is
defined to be an one-sided artinian ring such that for any basic set of primitive
idempotents {e1, ea,...,e,} of R, there exists a permutation o of {1,2,...,n}
satisfying Soc(Rer) = Req(ry/Jeq k) and Soc(e, k) R) = exR/erJ. 1t is always
an interesting topic to characterize QF rings through various chain conditions.
Much work have been done by many algebraists. It is proved that a ring R is
QF if and only if R is right self-injective and satisfies any of the following chain
conditions:

(1) R is right (or left) artinian [7];

(2) R is right (or left) noetherian [7,8];

(3) R satisfies ACC on right (or left) annihilators [8];
(4) R satisfies DCC on essential right (or left) ideals [2];
(5) R satisfies ACC on essential right (or left) ideals [6];
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(6) R/S, is right Goldie [3,11].
Recall that a ring R is called a right Goldie ring if R satisfies ACC on right
annihilators and the right R-module Rp has finite uniform dimension. Left
Goldie rings can be defined similarly. It is obvious that if R is right noetherian,
then R must be right Goldie. It is proved in [6, Lemma 2] that a module M
satisfies ACC on essential submodules if and only if M/Soc(M) is noetherian.
Hence, if R satisfies ACC on essential right ideals, then R/S, is right Goldie.
According to the condition (6), it is natural to ask the following question [4,
Question 2.8]:
Is a right self-injective ring R necessarily QF if R/S; is left Goldie?

In this article, given that R is left mininjective or S; C S,., the question is
answered affirmatively in Theorem 3.6. And the condition “right self-injective”
is weakened to “right CS and right P-injective”. Recall that a ring R is called
left miningjective if every homomorphism from a minimal left ideal of R to R
can be extended from grR to gR. A ring R is called left P-injective if every
homomorphism from a principal left ideal of R to g R can be extended to one
from gR to gR. It is clear that a left P-injective ring must be left mininjective.
A ring R is called a left C1 (left CS) ring if every left ideal is essential in a
direct summand of pR. R is called left C2 if every left ideal that is isomorphic
to a direct summand of zpR is also a direct summand of grR. R is called left
continuous if R is both left C1 and left C2. The right sides of these definitions
can be defined similarly. Before we obtain the main result, some preparation
work on annihilators of R and its quotient rings are discussed. It is also proved

in Theorem 3.11 that a semiperfect, left and right mininjective ring is QF if
S C¢* Rr and R/S; is left Goldie.

2. Annihilators

Let R be a ring and I be a two-sided ideal of R. First we look at some
results on annihilators of R and its quotient ring R = R/I. For any two
nonempty subsets X and Y of R. We use XY and X to denote the sets
0wy |z e X,yi€eY,n>1} and {x + 1 | z € X}, respectively.

The following lemma appeared in [9], but it was unproved. We will show
the proof and generalize it to Theorem 2.2.

Lemma 2.1 ([9, Sublemmal). Let R be a ring and I = 1(X) be a two-sided

ideal of R, where X C R. Set R = R/I. Then for any left annihilator 15(Y")
of R, where Y C R. We have
(V) = 1a(Y X)/1.

Proof. Firstly, we show that I C 1g(YX). If r € I, then rX = {0}. Since I
is a right ideal, rY C I. So rYX = {0}. Hence r € 1z(Y X). Now for any
T=r+1€lz(Y), we have 7Y = {0}. This means rY C I. So rYX = {0}.
Thus r € 1p(YX). Therefore, 15(Y) C 1g(Y X)/I. The converse can also be
verified directly. (I
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Let L be a left ideal of a ring R. We denote L° = R and L* = LF'L,
k > 1. Then for any integer m > 0, I(L™) is a two-sided ideal of R. Set
R,, = R/I(L™). Then for any 0 < k < m, it is clear that 1(L¥) C 1(L™).
So there is a natural ring homomorphism fg,, : Rx — R,, such that for any
x+1(L*) € Ry, fum(z +1(LF)) = x +1(L™). Using these symbols, we have:

Theorem 2.2. Let L be a left ideal of a ring R. For any 0 < k <m, if T is a
left annihilator ideal in R,,, then ff_ (T) is also a left annihilator ideal in Ry.

Proof. Assume T is a left annihilator ideal in R,,. Then there exists a left
ideal M D 1(L™) of R such T = M/1(L™). Thus ff, (T) = M/1(L*). Next we
show that M /1(LF) is also a left annihilator in Ry,. Since T is a left annihilator
ideal in R,,, there is a subset A in R such that M/I(L™) = 1g, (A), where
A={a+1(I™) | a € A}. We only need to show that

M/A(L¥) = 1, (AL™*), where AL™—F = {b+ 1(L*) | b e AL™ *}.
By Lemma 2.1, M =1zr(AL™). Then for any x € M, we have
TAL™ = g AL™FLF = {0}

—

Hence, again by Lemma 2.1, z + 1(L*) € 1, (AL™=*). This informs
M/Y(LF) C 1, (AL™H).
Conversely, let z + 1(LF) € 1g, (Af”:k). By Lemma 2.1,
TAL™FLF = 2 AL™ = {0}.
So z € M. Therefore, -
g, (AL"%) € M/I(LF).
Thus M/1(L*) = 1, (AL™—*). O

By Theorem 2.2, we can easily obtain several results on chain condition of
annihilators of a ring R and its quotient rings Ry, k > 1.

Proposition 2.3. Let L be a left ideal of a ring R. For any 0 < k < m, if Ry,
satisfies ACC (DCC') on left annihilators, then Ry, also satisfies ACC (DCC)
on left annihilators. In particular, if R/1(L) satisfies ACC on left annihilators,
so is R/Y(L™) for any m > 1.

Proof. We only prove the case of ACC, the other case can be obtained by a
similar proof. Let T; C 15 C --- be an ascending chain of left annihilators in
R,,. By Theorem 2.2, ff (Th) C ff,..(T2) C --- is also an ascending chain of
left annihilators in Ry. Since R; satisfies ACC on left annihilators, there exists
n > 1 such that for any i > n, f5 (1) = fi,,(T%). Thus

T = ko(fI;n(TZD = fkm(flé_m(Tn» =T,.
So R,, satisfies ACC on left annihilators. O
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Since a ring satisfies ACC on left annihilators if and only if it satisfies DCC
on right annihilators, by taking k = 0 and m = 1 in the right side of Proposition
2.3, we have:

Corollary 2.4 ([10, Lemma 2]). Let R satisfy the ascending chain condition on
left annihilators, and suppose that r(S) is a two-sided ideal of R. Then R/r(S)
has the ascending chain condition on left annihilators.

Proposition 2.5. Let L be a left ideal of a ring R. If Ry satisfies ACC on
left annihilators for some k > 0, then there exists a positive integer n such that
1(L") = 1(L" ).

Proof. Considering the descending chain for(L) DO fox(L?) D --- in Ry, it
is clear that lg, (for(L)) C lg, (for(L?)) C --- is an ascending chain of left

annihilators in Ry. Since Rj satisfies ACC on left annihilators, we have some
positive integer m such that

Ir,, (for (L™)) = 1r, (for (L™ F1)).
By Lemma 2.1,
Ir, (for(L™)) = (L™*%) /I(L*) and 1g, (for (L)) = (L™ HHF) /1(LF).
We are done by taking n = m + k. O

Proposition 2.6. Let T be a right ideal of a ring R. If R/v(T) satisfies ACC
on left annihilators and T C Z,, then for any k > 2, r(T*) C®* Rp.

Proof. We only need to prove that r(7?) C®* Rg. Since R = R/r(T) satisfies
ACC on left annihilators, it satisfies DCC on right annihilators. If T2 = 0,
then r(T?) = R. If T? # 0, T is a nonzero subset of R. Since R satisfies DCC
on right annihilators, there exist nonzero elements ai,as,...,a, € T such that

r5(T) = rg(Rai + Ras + - - - + Ray,).
By the right side of Lemma 2.1, r5(T) = rg(T?)/rr(T) and

rg(Rai + Raz + -+ -+ Ray,) = rg(T(Rai + Raz + - - + Ray,)) /rr(T).
Thus
rr(T?) = rgr(T(Ra1 + Rag + - - - + Ray)) =rp(Tay + Tas + -+ + Tay).
So N _yrr(a;) Crr(Tay +Tag + -+ Tay). Sincea, €T C Z,,i=1,...,n,
Ni_irr(a;) C°° Rp.
We have rg(Tay + Tag + -+ + Tay,) C°° Rg. Hence rr(T?) C*° Rp. O

The socle series of an R-module M is defined inductively by:
Soci (M) = Soc(M), Socp41(M) = Soc(M/Soc,(M)).
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Lemma 2.7 ([13, Lemma 3.36]). If R is a semilocal ring for which S, = S,
then
Soc,(Rg) = Socpy(rR) =1J") =r(J") for alln > 1.

If a ring R satisfies the condition of the above lemma, we briefly write
Sp = Soc,(Rg) = Soc,(rR), Vn > 1.

3. On QF rings
The following lemmas are needed to establish the main result of our paper.

Lemma 3.1 ([13, Theorem 2.21(a)]). Let R be a right mininjective ring. If
kR is a stimple right ideal, then Rk is a simple left ideal.

Lemma 3.2 ([13, Proposition 5.10, Theorem 5.14]). If R is a right P-injective

ring, then
(1) R is right C2,
(2) J=2,.

Recall that a ring R is called orthogonally finite if R has no infinite sets of
orthogonal idempotents.

Lemma 3.3 ([1, Theorem 1.1]). If R is a left continuous ring such that R/S)
is orthogonally finite, then S; is left artinian and R is semiperfect.

Lemma 3.4 ([13, Theorem 3.7(1)]). Let R be a semiperfect and right minin-
jective ring. Then S, is semisimple and artinian as a left R-module.

Lemma 3.5 ([13, Lemma 3.37]). Let R be a semiprimary ring with S, = Sj.
If Sy is right artinian and So is left artinian, then R is left and right artinian.

In the next theorem, we provide the main result of our paper.

Theorem 3.6. Let R be a right CS, right P-injective ring and R/S; is left
Goldie. Then the following are equivalent:

(1) R is QF.

(2) R is left mininjective.

(3) S; CS,.

Proof. It is clear (1) = (2). By the left side of Lemma 3.1, (2) = (3). For
(3) = (1), since R is right P-injective, by Lemma 3.2, R is right C2 and J = Z,.
As Ris aright CSring, R is right continuous. Again since R is right P-injective,
R is right mininjective, by Lemma 3.1, S,. € S;. Thus, S; = S, = S1. According
to the assumption, R/S; is an orthogonally finite ring. By the right side of
Lemma 3.3, R is a semiperfect ring and S; is artinian as a right R-module.
Then by Lemma 2.7, S, = 1(J") = r(J") for all n > 1. Next we show that
J is nilpotent. Since R/1(J) = R/S; satisfies ACC on left annihilators, by
Proposition 2.5, there exists a positive integer n > 2 such that 1(J™) = 1(.J?").
Let
R = R/1(J") = R/1(J?").
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Assume that J is not nilpotent, then J" # 0. So R is nonzero. By Proposition
2.3, R satisfies ACC on left annihilators. Thus the nonempty set {lz(a) | 0 #
@ € R} has a maximal element 1z(Z). Since

I‘(Jn) _ I(Jn) — I(JQ”) _ I‘(JQn),

0% J"z ¢ r(J"). Thus there exists b € J" such that bz ¢ r(J"). So b ¢ I().
Since R/1(.J) satisfies ACC on left annihilators and 1(J) = r(.J), R/r(J) satisfies
ACC on left annihilators, by Proposition 2.6, r(J?) C®* Rpg, so is r(J"). As
br # 0, brRNr(J") # 0. Hence there exists y € R such that 0 # bxy € r(J").
Now let ' = zy. Then 2/ # 0, if not, 2’ € r(J"). So bz’ = 0. It is a
contradiction. Hence we have l5(2) D 15(Z) and b € 1z(2/)\l5(z). This is
a contradiction to the fact that 17(Z) is a maximal element. Therefore, J
is nilpotent. So R is a semiprimary ring. Since R is right mininjective, by
Lemma 3.4, S is artinian as a left R-module. As R/S; is left Goldie, S3/5;
is left artinian. So S is artinian as a left R-module. Since we have showed
that Sp is artinian as a right R-module, by Lemma 3.5, R is two-sided artinian.
Followed by [5, Theorem 10], R is QF. O

With an argument similar to the one used in the proof of Theorem 3.6, we
can establish the next proposition.

Proposition 3.7. Let R be a semilocal ring with S; = S, and J C Z,.. If R/ S,
satisfies ACC on left annihilators, then R is a semiprimary ring.

Corollary 3.8. Let R be a right self-injective ring and R/S; be left Goldie.
Then the following are equivalent:

(1) R is QF.

(2) R is left mininjective.

(3) Sl C S’r'-

Since a von Neumann regular ring is P-injective, the following example shows
that the condition “right CS and right P-injective” is weaker than the condition
“right self-injective”.

Example 3.9 ([13, Lemma 1.34(4)]). If F; is a field and K; C F; is a proper
subfield for i > 1, let R denote the set of all sequences in [] F; with almost all
entries in K;. Then R is a regular continuous ring that is not self-injective.

Recall that a ring R is called semiregular if R/J is von Neumann regular
and idempotents lift modulo J. It is clear that a semiperfect ring must be
semiregular.

Lemma 3.10 ([13, Proposition 2.27]). If R is a right mininjective, semiregular
ring in which S, C°° Rg, then J = Z,.

Theorem 3.11. Let R be a semiperfect, left and right mininjective ring,
S C¢% Rr and R/S; is left Goldie. Then R is QF.
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Proof. Since R is mininjective, by Lemma 3.1, S; = S, = 5;. We obtain
J = Z, from Lemma 3.10. And by Lemma 3.4, S; is artinian as a left and
right R-module. Since S is artinian as a left R-module and S3/S; is left
artinian, we have that Ss is artinian as a left R-module. By Proposition 3.7, R
is a semiprimary ring. Then Lemma 3.5 implies that R is two-sided artinian.
Hence R is QF by [14, Theorem 2.5]. O
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