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A REMARK ON QF RINGS

Feng Feng and Liang Shen

Abstract. This article mainly concentrates on the open question wheth-

er a right self-injective ring R is necessary QF if R/Sl is left Goldie. It

is answered affirmatively under the condition Sl ⊆ Sr, where Sl and Sr

denote the left socle and right socle of R respectively. And the original

condition “right self-injective” can be weakened to “right CS and right P-
injective”. It is also proved that a semiperfect, left and right mininjective

ring R is QF if Sr ⊆ess RR and R/Sl is left Goldie.

1. Introduction

Let R be an associative ring with identity. We use Sl, Sr, J , Zl, Zr to denote
the left socle, right socle, Jacobson radical, left singular ideal, right singular
ideal of R respectively. Let N be a submodule of a module M , write N ⊆ess M
by showing that N is an essential submodule of M . We use Soc(M) to denote
the socle of M . Let X be a subset of a ring R, l(X) means the left annihilator
of X in R. The right annihilator of X can be defined similarly. A left ideal I
of R is called a left annihilator ideal if I = l(X) for some subset X of R. Right
annihilator ideals can be obtained similarly.

Quasi-Frobenius (QF) rings were firstly introduced by Nakayama [12]. It is
defined to be an one-sided artinian ring such that for any basic set of primitive
idempotents {e1, e2, . . . , en} of R, there exists a permutation σ of {1, 2, . . . , n}
satisfying Soc(Rek) ∼= Reσ(k)/Jeσ(k) and Soc(eσ(k)R) ∼= ekR/ekJ . It is always
an interesting topic to characterize QF rings through various chain conditions.
Much work have been done by many algebraists. It is proved that a ring R is
QF if and only if R is right self-injective and satisfies any of the following chain
conditions:

(1) R is right (or left) artinian [7];
(2) R is right (or left) noetherian [7, 8];
(3) R satisfies ACC on right (or left) annihilators [8];
(4) R satisfies DCC on essential right (or left) ideals [2];
(5) R satisfies ACC on essential right (or left) ideals [6];
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(6) R/Sr is right Goldie [3, 11].

Recall that a ring R is called a right Goldie ring if R satisfies ACC on right
annihilators and the right R-module RR has finite uniform dimension. Left
Goldie rings can be defined similarly. It is obvious that if R is right noetherian,
then R must be right Goldie. It is proved in [6, Lemma 2] that a module M
satisfies ACC on essential submodules if and only if M/Soc(M) is noetherian.
Hence, if R satisfies ACC on essential right ideals, then R/Sr is right Goldie.
According to the condition (6), it is natural to ask the following question [4,
Question 2.8]:

Is a right self-injective ring R necessarily QF if R/Sl is left Goldie?

In this article, given that R is left mininjective or Sl ⊆ Sr, the question is
answered affirmatively in Theorem 3.6. And the condition “right self-injective”
is weakened to “right CS and right P-injective”. Recall that a ring R is called
left mininjective if every homomorphism from a minimal left ideal of R to RR
can be extended from RR to RR. A ring R is called left P-injective if every
homomorphism from a principal left ideal of R to RR can be extended to one
from RR to RR. It is clear that a left P-injective ring must be left mininjective.
A ring R is called a left C1 (left CS ) ring if every left ideal is essential in a
direct summand of RR. R is called left C2 if every left ideal that is isomorphic
to a direct summand of RR is also a direct summand of RR. R is called left
continuous if R is both left C1 and left C2. The right sides of these definitions
can be defined similarly. Before we obtain the main result, some preparation
work on annihilators of R and its quotient rings are discussed. It is also proved
in Theorem 3.11 that a semiperfect, left and right mininjective ring is QF if
Sr ⊆ess RR and R/Sl is left Goldie.

2. Annihilators

Let R be a ring and I be a two-sided ideal of R. First we look at some
results on annihilators of R and its quotient ring R = R/I. For any two
nonempty subsets X and Y of R. We use XY and X to denote the sets
{
∑n
i=1 xiyi | xi ∈ X, yi ∈ Y, n ≥ 1} and {x+ I | x ∈ X}, respectively.

The following lemma appeared in [9], but it was unproved. We will show
the proof and generalize it to Theorem 2.2.

Lemma 2.1 ([9, Sublemma]). Let R be a ring and I = l(X) be a two-sided
ideal of R, where X ⊆ R. Set R = R/I. Then for any left annihilator lR(Y )

of R, where Y ⊆ R. We have

lR(Y ) = lR(Y X)/I.

Proof. Firstly, we show that I ⊆ lR(Y X). If r ∈ I, then rX = {0}. Since I
is a right ideal, rY ⊆ I. So rY X = {0}. Hence r ∈ lR(Y X). Now for any
r = r + I ∈ lR(Y ), we have rY = {0}. This means rY ⊆ I. So rY X = {0}.
Thus r ∈ lR(Y X). Therefore, lR(Y ) ⊆ lR(Y X)/I. The converse can also be
verified directly. �
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Let L be a left ideal of a ring R. We denote L0 = R and Lk = Lk−1L,
k ≥ 1. Then for any integer m ≥ 0, l(Lm) is a two-sided ideal of R. Set
Rm = R/l(Lm). Then for any 0 ≤ k < m, it is clear that l(Lk) ⊆ l(Lm).
So there is a natural ring homomorphism fkm : Rk → Rm such that for any
x+ l(Lk) ∈ Rk, fkm(x+ l(Lk)) = x+ l(Lm). Using these symbols, we have:

Theorem 2.2. Let L be a left ideal of a ring R. For any 0 ≤ k < m, if T is a
left annihilator ideal in Rm, then f←km(T ) is also a left annihilator ideal in Rk.

Proof. Assume T is a left annihilator ideal in Rm. Then there exists a left
ideal M ⊇ l(Lm) of R such T = M/l(Lm). Thus f←km(T ) = M/l(Lk). Next we
show that M/l(Lk) is also a left annihilator in Rk. Since T is a left annihilator
ideal in Rm, there is a subset A in R such that M/l(Lm) = lRm

(A), where
A = {a+ l(Im) | a ∈ A}. We only need to show that

M/l(Lk) = lRk
(ÂLm−k), where ÂLm−k = {b+ l(Lk) | b ∈ ALm−k}.

By Lemma 2.1, M = lR(ALm). Then for any x ∈M , we have

xALm = xALm−kLk = {0}.

Hence, again by Lemma 2.1, x+ l(Lk) ∈ lRk
(ÂLm−k). This informs

M/l(Lk) ⊆ lRk
(ÂLm−k).

Conversely, let x+ l(Lk) ∈ lRk
(ÂLm−k). By Lemma 2.1,

xALm−kLk = xALm = {0}.

So x ∈M . Therefore,

lRk
(ÂLm−k) ⊆M/l(Lk).

Thus M/l(Lk) = lRk
(ÂLm−k). �

By Theorem 2.2, we can easily obtain several results on chain condition of
annihilators of a ring R and its quotient rings Rk, k ≥ 1.

Proposition 2.3. Let L be a left ideal of a ring R. For any 0 ≤ k < m, if Rk
satisfies ACC (DCC) on left annihilators, then Rm also satisfies ACC (DCC)
on left annihilators. In particular, if R/l(L) satisfies ACC on left annihilators,
so is R/l(Lm) for any m > 1.

Proof. We only prove the case of ACC, the other case can be obtained by a
similar proof. Let T1 ⊆ T2 ⊆ · · · be an ascending chain of left annihilators in
Rm. By Theorem 2.2, f←km(T1) ⊆ f←km(T2) ⊆ · · · is also an ascending chain of
left annihilators in Rk. Since Rk satisfies ACC on left annihilators, there exists
n ≥ 1 such that for any i ≥ n, f←km(Ti) = f←km(Tn). Thus

Ti = fkm(f←km(Ti)) = fkm(f←km(Tn)) = Tn.

So Rm satisfies ACC on left annihilators. �
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Since a ring satisfies ACC on left annihilators if and only if it satisfies DCC
on right annihilators, by taking k = 0 and m = 1 in the right side of Proposition
2.3, we have:

Corollary 2.4 ([10, Lemma 2]). Let R satisfy the ascending chain condition on
left annihilators, and suppose that r(S) is a two-sided ideal of R. Then R/r(S)
has the ascending chain condition on left annihilators.

Proposition 2.5. Let L be a left ideal of a ring R. If Rk satisfies ACC on
left annihilators for some k ≥ 0, then there exists a positive integer n such that
l(Ln) = l(Ln+1).

Proof. Considering the descending chain f0k(L) ⊇ f0k(L2) ⊇ · · · in Rk, it
is clear that lRk

(f0k(L)) ⊆ lRk
(f0k(L2)) ⊆ · · · is an ascending chain of left

annihilators in Rk. Since Rk satisfies ACC on left annihilators, we have some
positive integer m such that

lRk
(f0k(Lm)) = lRk

(f0k(Lm+1)).

By Lemma 2.1,

lRk
(f0k(Lm)) = l(Lm+k)/l(Lk) and lRk

(f0k(Lm+1)) = l(Lm+1+k)/l(Lk).

We are done by taking n = m+ k. �

Proposition 2.6. Let T be a right ideal of a ring R. If R/r(T ) satisfies ACC
on left annihilators and T ⊆ Zr, then for any k ≥ 2, r(T k) ⊆ess RR.

Proof. We only need to prove that r(T 2) ⊆ess RR. Since R = R/r(T ) satisfies
ACC on left annihilators, it satisfies DCC on right annihilators. If T 2 = 0,
then r(T 2) = R. If T 2 6= 0, T is a nonzero subset of R. Since R satisfies DCC
on right annihilators, there exist nonzero elements a1, a2, . . . , an ∈ T such that

rR(T ) = rR(Ra1 +Ra2 + · · ·+Ran).

By the right side of Lemma 2.1, rR(T ) = rR(T 2)/rR(T ) and

rR(Ra1 +Ra2 + · · ·+Ran) = rR(T (Ra1 +Ra2 + · · ·+Ran))/rR(T ).

Thus

rR(T 2) = rR(T (Ra1 +Ra2 + · · ·+Ran)) = rR(Ta1 + Ta2 + · · ·+ Tan).

So ∩ni=1rR(ai) ⊆ rR(Ta1 + Ta2 + · · ·+ Tan). Since ai ∈ T ⊆ Zr, i = 1, . . . , n,

∩ni=1rR(ai) ⊆ess RR.

We have rR(Ta1 + Ta2 + · · ·+ Tan) ⊆ess RR. Hence rR(T 2) ⊆ess RR. �

The socle series of an R-module M is defined inductively by:

Soc1(M) = Soc(M), Socn+1(M) = Soc(M/Socn(M)).
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Lemma 2.7 ([13, Lemma 3.36]). If R is a semilocal ring for which Sr = Sl,
then

Socn(RR) = Socn(RR) = l(Jn) = r(Jn) for all n ≥ 1.

If a ring R satisfies the condition of the above lemma, we briefly write

Sn = Socn(RR) = Socn(RR), ∀ n ≥ 1.

3. On QF rings

The following lemmas are needed to establish the main result of our paper.

Lemma 3.1 ([13, Theorem 2.21(a)]). Let R be a right mininjective ring. If
kR is a simple right ideal, then Rk is a simple left ideal.

Lemma 3.2 ([13, Proposition 5.10, Theorem 5.14]). If R is a right P-injective
ring, then

(1) R is right C2;
(2) J = Zr.

Recall that a ring R is called orthogonally finite if R has no infinite sets of
orthogonal idempotents.

Lemma 3.3 ([1, Theorem 1.1]). If R is a left continuous ring such that R/Sl
is orthogonally finite, then Sl is left artinian and R is semiperfect.

Lemma 3.4 ([13, Theorem 3.7(1)]). Let R be a semiperfect and right minin-
jective ring. Then Sr is semisimple and artinian as a left R-module.

Lemma 3.5 ([13, Lemma 3.37]). Let R be a semiprimary ring with Sr = Sl.
If S1 is right artinian and S2 is left artinian, then R is left and right artinian.

In the next theorem, we provide the main result of our paper.

Theorem 3.6. Let R be a right CS, right P-injective ring and R/Sl is left
Goldie. Then the following are equivalent:

(1) R is QF.
(2) R is left mininjective.
(3) Sl ⊆ Sr.

Proof. It is clear (1) ⇒ (2). By the left side of Lemma 3.1, (2) ⇒ (3). For
(3)⇒ (1), since R is right P-injective, by Lemma 3.2, R is right C2 and J = Zr.
As R is a right CS ring, R is right continuous. Again since R is right P-injective,
R is right mininjective, by Lemma 3.1, Sr ⊆ Sl. Thus, Sl = Sr = S1. According
to the assumption, R/S1 is an orthogonally finite ring. By the right side of
Lemma 3.3, R is a semiperfect ring and S1 is artinian as a right R-module.
Then by Lemma 2.7, Sn = l(Jn) = r(Jn) for all n ≥ 1. Next we show that
J is nilpotent. Since R/l(J) = R/S1 satisfies ACC on left annihilators, by
Proposition 2.5, there exists a positive integer n ≥ 2 such that l(Jn) = l(J2n).
Let

R = R/l(Jn) = R/l(J2n).
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Assume that J is not nilpotent, then Jn 6= 0. So R is nonzero. By Proposition
2.3, R satisfies ACC on left annihilators. Thus the nonempty set {lR(a) | 0 6=
a ∈ R} has a maximal element lR(x). Since

r(Jn) = l(Jn) = l(J2n) = r(J2n),

0 6= Jnx /∈ r(Jn). Thus there exists b ∈ Jn such that bx /∈ r(Jn). So b /∈ lR(x).
SinceR/l(J) satisfies ACC on left annihilators and l(J) = r(J), R/r(J) satisfies
ACC on left annihilators, by Proposition 2.6, r(J2) ⊆ess RR, so is r(Jn). As
bx 6= 0, bxR ∩ r(Jn) 6= 0. Hence there exists y ∈ R such that 0 6= bxy ∈ r(Jn).
Now let x′ = xy. Then x′ 6= 0, if not, x′ ∈ r(Jn). So bx′ = 0. It is a
contradiction. Hence we have lR(x′) ⊇ lR(x) and b ∈ lR(x′)\lR(x). This is
a contradiction to the fact that lR(x) is a maximal element. Therefore, J
is nilpotent. So R is a semiprimary ring. Since R is right mininjective, by
Lemma 3.4, S1 is artinian as a left R-module. As R/S1 is left Goldie, S2/S1

is left artinian. So S2 is artinian as a left R-module. Since we have showed
that S1 is artinian as a right R-module, by Lemma 3.5, R is two-sided artinian.
Followed by [5, Theorem 10], R is QF. �

With an argument similar to the one used in the proof of Theorem 3.6, we
can establish the next proposition.

Proposition 3.7. Let R be a semilocal ring with Sl = Sr and J ⊆ Zr. If R/Sl
satisfies ACC on left annihilators, then R is a semiprimary ring.

Corollary 3.8. Let R be a right self-injective ring and R/Sl be left Goldie.
Then the following are equivalent:

(1) R is QF.
(2) R is left mininjective.
(3) Sl ⊆ Sr.

Since a von Neumann regular ring is P-injective, the following example shows
that the condition “ right CS and right P-injective” is weaker than the condition
“right self-injective”.

Example 3.9 ([13, Lemma 1.34(4)]). If Fi is a field and Ki ⊆ Fi is a proper
subfield for i ≥ 1, let R denote the set of all sequences in

∏
Fi with almost all

entries in Ki. Then R is a regular continuous ring that is not self-injective.

Recall that a ring R is called semiregular if R/J is von Neumann regular
and idempotents lift modulo J . It is clear that a semiperfect ring must be
semiregular.

Lemma 3.10 ([13, Proposition 2.27]). If R is a right mininjective, semiregular
ring in which Sr ⊆ess RR, then J = Zr.

Theorem 3.11. Let R be a semiperfect, left and right mininjective ring,
Sr ⊆ess RR and R/Sl is left Goldie. Then R is QF.
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Proof. Since R is mininjective, by Lemma 3.1, Sl = Sr = S1. We obtain
J = Zr from Lemma 3.10. And by Lemma 3.4, S1 is artinian as a left and
right R-module. Since S1 is artinian as a left R-module and S2/S1 is left
artinian, we have that S2 is artinian as a left R-module. By Proposition 3.7, R
is a semiprimary ring. Then Lemma 3.5 implies that R is two-sided artinian.
Hence R is QF by [14, Theorem 2.5]. �
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