A NOTE ON STRONG REDUCEDNESS IN NEAR-RINGS

Yong Uk Cho

ABSTRACT. Let N be a right near-ring. N is said to be *strongly reduced* if, for $a \in N$, $a^2 \in N_c$ implies $a \in N_c$, or equivalently, for $a \in N$ and any positive integer n, $a^n \in N_c$ implies $a \in N_c$, where N_c denotes the constant part of N.

We will show that strong reducedness is equivalent to condition (ii) of Reddy and Murty's property (*) (cf. [Reddy & Murty: On strongly regular near-rings. Proc. Edinburgh Math. Soc. (2) 27 (1984), no. 1, 61–64]), and that condition (i) of Reddy and Murty's property (*) follows from strong reducedness. Also, we will investigate some characterizations of strongly reduced near-rings and their properties. Using strong reducedness, we characterize left strongly regular near-rings and (P_0) -near-rings.

1. Introduction

Throughout this paper we will work with right near-rings. For notations and basic concepts, we shall refer to Pilz [7].

Let N be a right near-ring. N is said to be *left strongly regular* if for all $a \in N$ there exists $x \in N$ such that $a = xa^2$. Right strong regularity is defined in a symmetric way. Mason [4] introduced these notions and characterized left strongly regular zero-symmetric unital near-rings. Several authors (cf. Hongan [2], Mason [5], Murty [6] and Reddy & Murty [8]) have studied them. In particular, Reddy & Murty [8] extended some results in Mason [4] to the non-zero symmetric case. They observed that every left strongly regular near-ring has an interesting property. In this paper, we consider the property (it is called *Reddy and Murty's property* (*)) in Reddy & Murty [8]:

- (i) For any $a, b \in N$, ab = 0 implies ba = b0.
- (ii) For $a \in N$, $a^3 = a^2$ implies $a^2 = a$.

Received by the editors April 29, 2003 and, in revised form, August 18, 2003.

²⁰⁰⁰ Mathematics Subject Classification. 16Y30.

Key words and phrases. left regular near-rings, strongly reduced near-rings, left π -regular near-rings, (P_0) -near-rings.

Let N_c denote the constant part of N, that is, $N_c = \{a \mid a = a0, a \in N\}$.

Now we define a new concept for near-rings, that is, a near-ring N is said to be strongly reduced if, for $a \in N$, $a^2 \in N_c$ implies $a \in N_c$.

Recall that a near-ring N is reduced if, for $a \in N$, $a^2 = 0$ implies a = 0. As we shall show later, a strongly reduced near-ring N is reduced. We will show that strong reducedness is equivalent to condition (ii) of Reddy and Murty's property (*) and condition (i) of Reddy and Murty's property (*) follows from strong reducedness. Consequently, we see that condition (i) of Reddy and Murty's property (*) is not needed.

Left or right strongly regular near-rings form one of the important classes of strongly reduced near-rings. We will investigate some properties of strongly reduced near-rings. Using strong reducedness, we characterize left strongly regular near-rings and (P_0) -near-rings.

2. Results

A subnear-ring H of a near-ring N is said to be *left invariant* if $NH \subseteq H$, right invariant if $HN \subseteq H$ and invariant if it is both left and right invariant. For a subset S of N,

$$\langle S|, |S\rangle \text{ and } \langle S\rangle$$

(resp.) stand for the left invariant, right invariant and invariant (resp.) subnearings of N generated by S. For any element $a \in N$,

$$\langle a|, |a\rangle \text{ and } \langle a\rangle$$

(resp.) are called the principal left invariant, principal right invariant and principal invariant (resp.) subnear-rings of N generated by a.

There are slightly generalized new concepts of left strong regularity and right strong regularity. A near-ring N is said to be quasi left strongly regular if $a \in \langle a^2 |$ for each $a \in N$, quasi right strongly regular if $a \in |a^2\rangle$ for each $a \in N$.

There are lots of quasi left (resp. right) strongly regular near-rings which are not left (resp. right) strongly regular.

First, we introduce the following lemma.

Lemma 1. We have the following properties.

(1) The direct product of strongly reduced near-rings is strongly reduced.

- (2) Every subnear-ring of a strongly reduced near-ring is strongly reduced.
- (3) Every homomorphic image of a strongly reduced contant near-ring is strongly reduced.

Proof. (3) A constant near-ring is strongly reduced, and the homomorphic image of a contant near-ring is constant.

Now we give some sufficient conditions for quasi left strongly regular near-rings or quasi right strongly regular near-rings to be strongly reduced.

Proposition 1. We have the following properties.

- (1) All quasi left strongly regular near-rings and quasi right strongly regular near-rings are strongly reduced. In particular, right or left strongly regular near-rings are strongly reduced.
- (2) Every integral near-ring N is strongly reduced. Hence a subdirect product of integral near-rings is strongly reduced.

Proof. (1) Note that the constant part N_c is an invariant subnear-ring of N. Suppose N is a quasi left strongly regular near-ring. Then $a \in \langle a^2 |$ for each $a \in N$. If $a^2 \in N_c$ then $a \in \langle a^2 | \subseteq N_c$. Hence N is strongly reduced. Similarly, all quasi right strongly regular near-rings are strongly reduced.

(2) Let $a \in N$ with $a^2 \in N_c$. Then $(a - a^2)a = 0$, and hence $a = a^2 \in N_c$.

Proposition 2. If N is a unital quasi left strongly regular near-ring, then every completely prime ideal is maximal.

Proof. Let P be a completely prime ideal which is not maximal, so suppose that $P \subseteq M$ for some maximal M. Let $a \in M \setminus P$. Since N is quasi-left strongly regular, we see that $a = a^2$ or $a = xa^2$ for some $x \in N$. Then 0 = (1-a)a or 0 = (1-xa)a. Since P is completely prime, $1 - a \in P \subseteq M$ or $1 - xa \in P \subseteq M$. In any case, $1 \in M$, this is a contradiction.

From now on, we consider on strongly reduced near-rings and left strongly regular near-rings. Now, we state some basic and useful properties of a strongly reduced near-ring.

Proposition 3. Let N be a strongly reduced near-ring and let $a, b \in N$. Then we have the following properties.

(1) N is reduced.

- (2) If $ab^n \in N_c$ for any positive integer n, then $\{ab, ba\} \cup aNb \cup bNa \subseteq N_c$. In particular, $ab \in N_c$ implies $ba \in N_c$, $aNb \subseteq N_c$ and $bNa \subseteq N_c$.
- (3) If $ab^n = 0$ for any positive integer n, then ab = 0 and ba = b0. In particular, ab = 0 implies ba = b0, that is, N has condition (i) of Reddy and Murty's property (*).
- *Proof.* (1) Assume that $a^2 = 0$. Then $a^2 \in N_c$, hence $a \in N_c$. Then we see a = a0 = a0a = aa = 0.
- (2) First, suppose $ab \in N_c$. Then $(ba)^2 = baba = bab0a = bab0 \in N_c$. Since N is strongly reduced, we have $ba \in N_c$. Then we obtain $xba \in N_c$ for each $x \in N$, whence $(axb)^2 \in N_c$. By the strong reducibility of N, we obtain $axb \in N_c$ for each $x \in N$. Since $ba \in N_c$, we also obtain $bNa \subseteq N_c$. Now suppose $ab^n \in N_c$. Then $(ab)^n \in N_c$ by the above argument. Since N is strongly reduced, this implies $ab \in N_c$. Hence by the first paragraph, the claim is proved.
- (3) If $ab^n = 0$ for some $n \ge 1$, then $ab \in N_c$ by (2). Hence $ab = abb^{n-1} = ab^n = 0$. Then $(ba)^2 = baba = b0 \in N_c$. Hence $ba \in N_c$. Therefore $(ba)^2 ba \in N_c$. Then $(ba)^2 ba = \{(ba)^2 ba\}b = babab bab = b0 b0 = 0$. Hence we obtain $ba = (ba)^2 = b0$.

Clearly, if N is a zero-symmetric near-ring, then N is strongly reduced if and only if N is reduced. The following example shows that, in general, a reduced near-ring is not necessarily strongly reduced.

Example 1. Let $N = \{0, 1, 2, 3, 4, 5\}$ be an additive group of integers modulo 6 and multiplication as follows (see Pilz [7] for near-rings of low order; \mathbb{Z}_6 No. 32):

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	4	4	4	1	4	1
2	2	2	2	2	2	2
3	0	0	0	3	0	3
4	4	4	4	4	4	4
5	2	2	2	5	2	5

Clearly, this near-ring N is reduced. The constant part of N is $\{0, 2, 4\}$. We see that this near-ring N is not strongly reduced, because $1^2 = 4$ is a constant element but 1 is not a constant element. On the other hand, this near-ring N is an example of π -regular but not a regular near-ring.

Example 2. Let $V = \{0, a, b, c\}$ be Klein's four group under addition.

(1) We define multiplication as follows (see Pilz [7] near-rings of low order; V No. 20):

•	0	a	b	c
0	0	0	0	0
a	a	a	a	a
b	0	a	b	c
c	a	0	c	b

The constant part of this near-ring is $\{0, a\}$. Clearly, this near-ring is reduced and strongly reduced.

(2) We have multiplication table as follows (see Pilz [7] near-rings of low order; V No. 19):

The constant part of this near-ring is $\{0, a\}$. Obviously, this near-ring is not reduced, for $b^2 = 0$; and it is also not strongly reduced.

Now we consider polynomial near-rings over commutative unital rings and polynomial near-rings on groups (cf. Lausch & Nöbauer [3, §8.11 and §9.11], Pilz [7, §7.61]). Let R be a commutative ring with unity 1, G an additive group, x an indeterminate variable, R[x] the set of all polynomials over R and

$$G[x] = \{a_0 + n_1 x + a_1 + n_2 x + a_2 + \dots + a_{t-1} + n_t x + a_t \mid t \in \mathbb{N}_0, a_i \in G, \ n_i \in \mathbb{Z}^* \text{ and } a_1 \neq 0, a_2 \neq 0, \dots, a_{t-1} \neq 0\}.$$

Then $(R[x], +, \circ)$ and $(G[x], +, \circ)$ are near-rings with unity x respectively, where \circ is substitution. In this case, we say that R[x] is a polynomial near-ring over R and G[x] is a polynomial near-ring on G. We see that

$$(R[x])_c = R \text{ and } (R[x])_0 = \Big\{ \sum_{i=1}^n a_i x^i \,|\, i \in \mathbb{Z}^+ \Big\},$$

so that $R[x] = (R[x])_c + (R[x])_0$.

Next, for any $f(x) \in R[x]$, the map $f: R \longrightarrow R$ given by $a \leadsto f(x) \circ a = f(a)$ is called the *polynomial function induced by* f(x). We let $P(R) = \{f \mid f(x) \in R[x]\}$ be the set of all polynomial functions on R. Similarly, one can define f for $f(x) \in G[x]$ and let P(G) be the set of all polynomial functions on G. It is well known that

P(R) and P(G) are subnear-rings of M(R) (resp. M(G)), and they are called the near-rings of polynomial functions on R (resp. on G) (cf. Pilz [7, §7.65 and §7.66]).

Example 3. Consider the group $(\mathbb{Z}_2, +)$ and the commutative ring $(\mathbb{Z}_2, +, \cdot)$. The two kinds of near-rings (see Pilz [7] for near-rings of low order; \mathbb{Z}_2 No. 2 and \mathbb{Z}_2 No. 3) on a group $(\mathbb{Z}_2, +)$ are strongly reduced, and $\mathbb{Z}_2[x]$ and $P(\mathbb{Z}_2) = \{0, 1, x, x + 1\}$ are strongly reduced.

Example 4. The four kinds of near-rings (see Pilz [7] for near-rings of low order; \mathbb{Z}_4 No. 8, \mathbb{Z}_4 No. 9, \mathbb{Z}_4 No. 10 and \mathbb{Z}_4 No. 11) on a group $(\mathbb{Z}_4, +)$ are strongly reduced. However, $\mathbb{Z}_4[x]$ and $P(\mathbb{Z}_4) = \{0, 1, x, 2x, \cdots\}$ are not strongly reduced.

We give equivalent conditions for a near-ring N to be strongly reduced.

Theorem 1. The following statements are equivalent for a near-ring N:

- (1) N is strongly reduced.
- (2) For $a \in N$, $a^3 = a^2$ implies $a^2 = a$, that is, N has condition (ii) of Reddy and Murty's property (*).
- (3) If $a^{n+1} = xa^{n+1}$ for $a, x \in N$ and some nonnegative integer n, then a = xa = ax.

Proof. (1) \Rightarrow (3). Suppose $a^{n+1} = xa^{n+1}$ for some $n \geq 0$. We will show a = xa = ax. If n = 0, then immediately a = xa. Now $(a - ax)a = a^2 - axa = a^2 - a^2 = 0 \in N_c$. Hence $(a - ax)^2 = a(a - ax) - ax(a - ax) \in N_c$ by property (2) of Proposition 3, and so $a - ax \in N_c$. Therefore a - ax = (a - ax)a = 0. If $n \geq 1$, then $(a - xa)a^n = 0$. Hence (a - xa)a = 0 by property (3) of Proposition 3, and so $(a - xa)^2 \in N_c$ by property (2) of Proposition 3. Since N is strongly reduced, we have $a - xa \in N_c$. Then a - xa = (a - xa)a = 0, that is a = xa. Obviously as above a = ax.

- $(3) \Rightarrow (2)$. This is obvious.
- (2) \Rightarrow (1). Assume $a^2 \in N_c$. Then $a^3 = a^2a = a^2$. By condition (2), this implies $a = a^2 \in N_c$.

Left strongly regular near-rings has been studied by several authors (cf. Lausch & Nöbauer [3], Mason [4, 5], Murty [6], Reddy & Murty [8], etc.) Since all left strongly regular near-rings are strongly reduced, the following is a generalization of Reddy & Murty [8, Theorem 3].

Lemma 2. Let N be a strongly reduced near-ring and let $a, x \in N$. If $a^n = xa^{n+1}$ for some positive integer n, then $a = xa^2 = axa$ and ax = xa.

Proof. Assume that $a^n = xa^{n+1}$ for some $n \ge 1$. By condition (3) of Theorem 1, $a = xa^2 = axa$. Then (ax - xa)a = 0. Hence, by property (2) of Proposition 3, $(ax - xa)^2 = ax(ax - xa) - xa(ax - xa) \in N_c$. Since N is strongly reduced, $ax - xa \in N_c$. Hence ax - xa = (ax - xa)a = 0.

A near-ring N is said to be *left strongly* π -regular if, for each $a \in N$, there exists a positive integer n and an element $x \in N$ such that $a^n = xa^{n+1}$. This equation is equivalent to $a^n = ya^{2n}$, for some $y \in N$. Here we give some characterizations of left strongly regular near-rings.

Theorem 2. Let N be a near-ring. Then the following statements are equivalent:

- (1) N is left strongly regular.
- (2) N is strongly reduced and left strongly π -regular.
- (3) For each $a \in N$, there exists $x, y \in N$ such that $a = xa^2ya$.
- (4) For each $a \in N$, $a \in \langle a^2 \rangle \cap aNa$.

Proof. (1) \Rightarrow (2), (1) \Rightarrow (3), (1) \Rightarrow (4) and (2) \Rightarrow (1) follow easily from property (1) of Proposition 1 and Lemma 2.

- $(3) \Rightarrow (1)$. The hypothesis implies N is strongly reduced. If $a = xa^2ya$, then $ya = yxa^2(ya)$. By Theorem 1, $ya = yayxa^2$. Thus $a = xa^2yayxa^2$. This implies that N is left strongly regular.
- (4) \Rightarrow (3). Since $a \in \langle a^2 \rangle$ for each $a \in N$, N is strongly reduced by an argument similar to that in the proof for property (1) of Proposition 1. Hence N satisfies (3) in Theorem 1. Since $a \in aNa$, there exists $x \in N$ such that a = axa. Hence $a = (ax)a = a(ax) = a^2x$. Then we have $a = axa = (a^2x)xa = a^2x^2a = a^2x^2a^2x^2a$. (3) holds.

A near-ring is said to be *periodic* if, for each $a \in N$, there exist distinct positive integers m, n such that $a^m = a^n$. A near-ring N is called a (P_0) -near-ring if, for each $a \in N$, there exists an integer $n \ge 1$ such that $a = a^n$ (see [7, §9.4, p. 289]). Obviously a (P_0) -near-ring is strongly reduced. Hence the proof of the following corollary follows directly from Lemma 2.

Corollary 1. Let N be a near-ring. Then the following statements are equivalent:

- (1) N is periodic and strongly reduced.
- (2) N is a (P_0) -near-ring.

As a special case of this corollary, we have

Corollary 2. Let N be a finite near-ring. Then the following statements are equivalent:

- (1) N is strongly reduced.
- (2) N is left strongly regular.
- (3) N is a (P_0) -near-ring.

ACKNOWLEDGMENTS

The author gratefully acknowledges the kind hospitality he enjoyed at Okayama University in 1999.

REFERENCES

- J. R. Clay: The near-rings on groups of low order. Math. Z. 104 (1968), 364–371. MR 37#258
- 2. M. Hongan: Note on strongly regular near-rings. Proc. Edinburgh Math. Soc.(2) 29 (1986), no. 3, 379-381. MR 87k:16040
- H. Lausch & W. Nöbauer: Algebra of Polynomials, North-Holland Mathematical Library, Vol. 5. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. MR 50#2037
- 4. G. Mason: Strongly regular near-rings. Proc. Edinburgh Math. Soc.(2) 23 (1980), no. 1, 27-35. MR 81i:16047
- 5. _____: A note on strong forms of regularity for nearrings. *Indian J. Math.* 40 (1998), no. 2, 149-153. MR 2000a:16088
- C. V. L. N. Murty: Generalized near-fields. Proc. Edinburgh Math. Soc. (2) 27 (1984), no. 1, 21-24. MR 85c:16054
- G. Pilz: Near-rings, The theory and its applications, Second edition, North-Holland Mathematics Studies, 23. North-Holland Publishing Co., Amsterdam, 1983. MR 85b:16046
- 8. Y. V. Reddy & C. V. L. N. Murty: On strongly regular near-rings. *Proc. Edinburgh Math. Soc.*(2) 27 (1984), no. 1, 61-64. MR 85c:16055

Department of Mathematics, Silla University, San 1-1, Gwaebeop-dong, Sasang-gu, Busan 617-736, Korea

Email address: yucho@silla.ac.kr