• Title/Summary/Keyword: resonance circuit

Search Result 493, Processing Time 0.04 seconds

Simple Synthetic Testing Facility Using LC Resonance Circuit (LC 공진회로를 이용한 간이 합성시험설비)

  • Park, J.H.;Shin, Y.J.;Park, K.Y.;Ryu, H.G.;Kim, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.631-635
    • /
    • 1993
  • This paper shows the procedure to determine the physical variables of the simple synthetic testing facility using LC resonance circuit and presents the calculated results of those variables for the LC resonance circuit which can be used to test circuit breakers up to 36kV 40kA class. Attention has also been paid to the advantages of the LC resonance circuit compared with the method adopting short-circuit generator for the development of circuit breakers.

  • PDF

Measurement and Control of the Resonance Frequency for the Transcutaneous Energy Transmission System (TET) Using the Phase Locked Loop Circuit (PLL) (PLL을 이용한 무선 전력전송 장치의 공진 주파수의 계측 및 주파수 제어)

  • Choi, S.W.;Shim, E.B.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1613-1616
    • /
    • 2008
  • A Transcutaneous Energy Transmission System (TET) has been developed for the wireless energy transmission with two magnetically coupled coils. A resonance circuit is used to raise the induced voltage and current of the secondary coil. Its resonance frequency depends on the internal resistance of circuit and the transferred energy. Because the transferred energy usually changes in wide range, the output voltage is unstable and the energy transferring efficiency decrease. A push-pull class E amplifier is usedto generate high frequency AC voltage. To maintain proper resonance frequency, the voltage output of the amplifier was continuously monitored and adjusted to the optimized resonance frequency. Because of its high frequency (370 kHz), a phase lockedloop circuit and a comparator are used to monitor the output waveform. The results of experimentaldata show that the PLL circuit can increase the transmission efficiency and stabilize the output voltage of TET.

  • PDF

Proposed Equivalent Circuit and Parameter Identification Method for Electro-Magnetic Resonance Based Wireless Power Transfer

  • Kawamura, Atsuo;Kim, Tae-Woong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.799-807
    • /
    • 2013
  • The proper equivalent circuit is newly presented for electro-magnetic resonance based wireless power transfer. Based on the proposed equivalent circuit of open-ended helical antennas, the parameter identification of helical antennas can be well derived for highly efficient wireless power transfer. The well-established equivalent circuit in high frequency ranges is developed for analyzing a resonance enhanced-electromagnetic coupling helical antennas and the unknown parameters for helical antennas are identified by experiments. The effectiveness based on the proposed equivalent circuit is verified through experiments.

Integrated Circuit(IC) Package Analysis, Modeling, and Design for Resonance Reduction (공진현상 감소를 위한 집적회로 패키지 설계 및 모델링)

  • 안덕근;어영선;심종인
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.133-136
    • /
    • 2001
  • A new package design method to reduce resonance effect due to an IC package is represented. Frequency-variant circuit model of the power/ground plane was developed to accurately reflect the resonance. The circuit model is benchmarked with a full wave simulation, thereby verifying its accuracy. Then it was shown that the proposed technique can efficiently reduce the resonance due to the IC package.

  • PDF

Operation Characteristic of Transless type Grid-connected Inverter using Multi-level Switching circuit (멀티레벨 스위칭 회로를 이용한 트렌스리스형 계통 연계 인버터의 동작 특성)

  • Kim, Ju-Yong;No, Kwae-Hyeop;Jung, Tae-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.916-917
    • /
    • 2008
  • In this paper, Switching damage of switches that is used to proposed power conversion system is reduced by soft switching way. dissipation by part resonance and my resonance stress for resonance of resonance circuit are decreased. Is acted by conversion system high effectiveness. Have following characteristic. Design snubber circuit that is used by switch protection in existent hard work rate Topology by resonant circuit for sogt switching, circuit structure was simple and control system is easy. Also, Can generate free output voltage by multi level Tuesday of output that use individuation Power Cell's Phase Shift PWM, and Low-end switching frequency the harmonic is few.

  • PDF

Analysis of Magnetic Permeability Spectra of Metamaterials Composed of Cut Wire Pairs by Circuit Theory

  • Lim, Jun-Hee;Kim, Sung-Soo
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.187-191
    • /
    • 2016
  • Retrieving the equivalent electromagnetic parameters (permittivity and permeability) plays an important role in the research and application of metamaterials. Frequency dispersion of magnetic permeability has been theoretically predicted in a metamaterial composed of cut wire pairs (CWP) separated by dielectric substrate on the basis of circuit theory. Magnetic resonance resulting from antiparallel currents between the CWP is observed at the frequency of minimum reflection loss (corresponding to absorption peak) and effective resonator size can be determined. Having calculated the circuit parameters (inductance L, capacitance C) and resonance frequency from CWP dimension, the frequency dispersion of permeability of Lorentz like magnetic response can be predicted. The simulated resonance frequency and permeability spectra can be explained well on the basis of the circuit theory of an RLC resonator.

Examination of Efficiency Based on Air Gap and Characteristic Impedance Variations for Magnetic Resonance Coupling Wireless Energy Transfer

  • Agcal, Ali;Bekiroglu, Nur;Ozcira, Selin
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.57-61
    • /
    • 2015
  • In this paper wireless power transmission system based on magnetic resonance coupling circuit was carried out. With the research objectives based on the mutual coupling model, mathematical expressions of optimal coupling coefficients are examined. Equivalent circuit parameters are calculated by Maxwell software, and the equivalent circuit was solved by Matlab software. The power transfer efficiency of the system was derived by using the electrical parameters of the equivalent circuit. System efficiency was analyzed depending on the different air gap values for various characteristic impedances. Hence, magnetic resonance coupling involves creating a resonance and transferring the power without radiating electromagnetic waves. As the air gap between the coils increased the coupling between the coils were weakened. The impedance of circuit varied as the air gap changed, affecting the power transfer efficiency.

The Electronic Ballast Design of Acoustic Resonance Free and Transient Over Current Limit for High Power MHL (음향 공명 제거 및 과도 상태 전류를 제한시킨 고출력 메탈 헬라이드 램프용 전자식 안정기 설계)

  • Kim, Ki-Nam;Park, Jong-Yun;Choi, Young-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.904-911
    • /
    • 2010
  • This paper presents the design of acoustic resonance free and over current limit during transient state consideration electronic ballast for 1.5kW Metal-Halide Lamp(MHL) that employs frequency modulation (FM) technique. The proposed ballast consists of a Full-Bridge(FB) rectifier, a passive power factor correction (PFC) circuit, a full-bridge inverter, an ignitor using LC resonance and a control circuit for frequency modulation. The frequency modulation technique is the most effective solution to eliminate acoustic resonance among other technique. It spreads power spectrum of lamp to reduce the supplied power spectrum under the energy level of eigen-value frequency. Moreover, the proposed ballast is simple and cost effective above conventional ballast. A new PFC circuit is proposed which combines with LCD type and PCSR filter. A new PFC circuit has higher PF and lower THD than conventional LCD type and secure high reliability. Finally, to protected switching components in transient state, the surge current into ballast is limited by increase the switching frequency. Performance of the proposed ballast was validated through computer simulation using Pspice, experimentation and by applying it to an electronic ballast for a prototype 1.5kW MHL.

Design of the Protection circuit for Electric ballast with $LC_SC_P$ resonance type Half-bridge Inverter ($LC_SC_P$ 공진 타입의 하프 브리지 인버터 구조를 가지는 전자식 안정기 보호회로 설계)

  • Choe, Hyeon-Hui;Park, Chong-Yun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1538-1543
    • /
    • 2009
  • The electric ballast for ceramic metal halide lamp needs a protection circuit to prevent from over voltage and over current in the case that the lamp or the electric ballast are in faults. In this paper, cost-effective and high performance protection circuit is proposed for the electric ballast. The proposed protection circuit is adapted to the electric ballast with $LC_SC_P$ resonance type half bridge inverter. The experimental results demonstrate that the proposed circuit can protect effectively under open and short fault conditions.

Steady-State Analysis of Reactance Oscillators having Multiple Oscillations

  • Matsuo, K.;Matsuda, T.;Nishio, Y.;Yamagami, Y.;Ushida, A.
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.203-206
    • /
    • 2000
  • In this paper, we discuss an efficient steady-state analysis of reactance oscillators having multiple oscillations. Our oscillator is consisted of the Cauer or Foster reactance sub-circuit and a negative resistor such as tunnel diode. The reactance circuit has many resonance and antiresonance points on the frequency response curve. Such a circuit having the specified resonance and anti-resonance points can be easily synthesized with the fundamental circuit theory. In this case, the multiple oscillations may occur near at the anti-resonance points. We have developed a user friendly simulator for getting the exact steady state responses using the SPICE.

  • PDF