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Abstract: In this paper, we discuss an efficient
steady-state analysis of reactance oscillators hav-
ing multiple oscillations. Our oscillator is con-
sisted of the Cauer or Foster reactance sub-circuit
and a negative resistor such as tunnel diode. The
reactance circuit has many resonance and anti-
resonance points on the frequency response curve.
Such a circuit having the specified resonance and
anti-resonance points can be easily synthesized
with the fundamental circuit theory [6]. In this
case, the multiple oscillations may occur near at
the anti-resonance points. We have developed a
user friendly simulator for getting the exact steady-
state responses using the SPICE.

1. Introduction

Analysis of oscillator circuits is very important
to design the modulators and mixers which have
two signals of the signal input and a local oscilla-
tor. There have been published many papers for
the analysis of steady-state responses of commu-
nication circuits driven by multiple inputs [1-3,7],
where they have many frequency components be-
cause of the intermodulations. On the other hand,
some papers discuss the steady-state analysis of os-
cillator circuits [4,5,7]. There are two fundamental
techniques of the time-domain and the frequency-
domain relaxation methods. Of course, if the tran-
sient term does not continue for a long period, we
can easily calculate the steady-state response us-
ing the transient analysis of SPICE. However, there
are many types of high Q oscillators such as crys-
tal oscillators and Hartley, which are widely used
because of the frequency stability. Unfortunately,

the attenuation in the transient response is usually
very small, which causes very difficult to calculate
the steady-state response by the transient analysis.
In this paper, we propose an efficient method for
calculating the steady-state multiple oscillations,
which is based on the circuit partitioning in the
frequency domain techniques. We have developed
a simulator combining both C-program and SPICE
fundamental tools.
The multiple reactance oscillators are consisted of
a ladder reactance sub-circuit such as the Cauer
or Foster circuit and a negative resistor element.
The reactance sub-circuit may have many reso-
nance and anti-resonance points on the frequency
response curve. We found that the periodic oscilla-
tions may be happened near at the anti-resonance
points, where the energy consumption of the reac-
tance circuit becomes smallest [9-10]. It is some-
times happened the quasi-periodic oscillation at
one of the multiple oscillations, where the steady-
state oscillation seems to become unstable depend-
ing on the Hopf bifurcation [11].

2. Basic Algorithm

To focus on the main ideas of our algorithm, con-
sider a circuit shown in Fig.l. Assume that the
reactance circuit consists of the Cauer or Foster
circuit, where it may contain small parasitic resis-
tances in series to the inductors, and the nonlin-
ear circuit has a negative resistance characteristic.
Suppose that the driving point impedance has p
resonance and the same number of anti-resonance
frequencies excluding zero and infinity frequencies.
Then, the oscillator may happen to oscillate near
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at the p anti-resonance frequency points.
fundamental frequencies wg, & = 1,2,...
a function of the nonlinear characteristic, whose
frequencies can be decided in our iteration algo-
rithm. Since the oscillator is autonomous system,
we can arbitrarily choose time axis in the analysis
[8]. Thus, the waveform can be described by

N
vi(t) = Vio + Vi1 coswit + Z {Vk 2n—1 cos nwit

n=2

+Vionsinnwit}, k=1,2,...,p (1)
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(a) Reactance oscillator (b) Circuit partition

Fig.1 Circuit partitioning technique

The original circuit shown in Fig.1(a) may have
many types of the steady-state oscillations, and de-
scribe one of them by (1). Then, the substitution
theorem says that the steady-state solution (%)
satisfies the following determining equation:
Fi(ve(t)) = i,p(t) + kN (t) =0, k=1,2,...,p
(2)
at the partitioning point, where it 1(t) and i n(2)
are responses of the linear reactance sub-circuit
and the nonlinear resistive circuit, respectively.

Let us solve it by an iteration method, and as-
sume the waveform at the jth iteration by

N
vi(t) = Vo + Vi | coswit + Z {Vi 3n_1 cosmuwjt
n=2
+ W 3 sin met} (3)
To get the solution at (j + 1)st iteration, set
o (1) = v1(t) + Aui(t) (4)
where

Avg(t) = AVk,o + AVk’l cos wi'Ht

N
+ Z {AV 251 cos nw{c“t + AV 9p sin m"iﬂt}

n=2
_ . (5.1)
wi™ =l + Aw (5.2)
. Substituting (4) into (2), we have
dir 1 N 8iy ik, N
: Avk+z = Awyg + . Ay
e iz Ows Ok |vp=vi
= —e](t) (6.1)
for the residual error
(1) =i, (5) + il y(2) (6.2)
For simplicity, we assume that
8’1:]3’1\[ 8ik’N
Sv ™ B (™)
k lvy=v] k lvp=v]
and set Py
Dy = kN
8vk vk:vg

where v is the dc operating point. Now, applying
the harmonic balance method to (6), we have

Re{Y (0)}AVip + DoAVio = —cly  (8.1)
Re{Y (w])}AVi1 + DoAVi1 = -}, (8.2)
; Ilm{Y (w ;
—Im{Y(wi)}AVk,l-#Vk,lA% = —tk2
o (8:3)
{Y (nw}) + Do} (AV,2n-1 + jAVi2n) = "51,271—1
. IIm{Y (nw .
~J€k,2n + %(anq + 7 Vi on) Awg
Wk
(8.4)
n=23,...,N

where Y (*) and Y(*) are the admittance of reac-
tance circuit, and the complex conjugate, respec-
tively. Observe that the variational value of the
fundamental frequency component AV ; and Awg
are calculated from (8.2) and (8.3), respectively.
The variational value at the high frequency compo-
nents AVy o1 and AVj o, are calculate from (8.4).
The algorithm belongs to the relazation method[5],
and it can be applied weakly nonlinear circuits, ef-
ficiently.



Remark that the reactance oscillator may hap-
pen to oscillate near at the anti-resonant frequency
pownt.

Proof In order that the circuit has a nonzero am-
plitude steady-state oscillation, it satisfies the re-
lations (8.2) and (8.3) for nonzero AV ; and Awg.
Since, from the assumption of (1), 51,2 in (8.3) is
always setted to be zero, we can assume a nonzero
amplitude AV;; at the anti-resonance frequency
point(Awy = 0) because Im{Y (w7,)} is always zero
at the frequency. _

On the other hand, since Im{Y (w7)} is very large
at the resonant point in (8.3), the amplitude must
be AVy, = 0. Therefore, the circuit never oscil-
lates at the resonant frequency points of the reac-
tance sub-circuit. Thus, we can prove the impor-
tant property. The result is exactly equal to the
theorem [9,10] saying that the reactance oscillator
may oscillate at the frequency, where the energy
consumption of a reactance circuit being smallest.

Now, our algorithm is as follows: We first con-
struct a reactance sub-circuit by specifying the res-
onant and anti-resonant frequencies. The nonlin-
ear sub-circuit is constructed by a negative resis-
tor such as tunnel diode. Suppose that the driving
point characteristic of the nonlinear resistive cir-
cuit is as follows:

iy = —v + c3v®
Assuming vg = V0jcoswit, k=1,2,...,p at the
anti-resonant poin’ts, we can calculate the initial
guess from (8.2) and (8.3) as follows:

Cl—G

G-c+ 1.5C3V02 =0= Vo =
1.5¢3

where G = Re{Y (jwi)}-

0. Set kth frequency of the oscillations, the max-
imum frequency component N and j7 = 0.

1. Calculate the response(ii n) of nonlinear re-
sistive circuit , and describe it in the Fourier
series using FFT.

2. Calculate the response(z'i’L) of linear reac-
tance circuit by the phasor technique.

3. Calculate the residual error (6.2), and describe
it in the form of the Fourier series. If it sat-
isfies {|e7.(t)|| < & for a small specified &, then
stop. Otherwise, go to 4.

4. Calculate the variational value AV, o, AV},
AVis,..., AV oy and Awy from (8.2), (8.3)
and (8.4). Thus, we have

vi“(t) = vi(t) + Awvg(t), wi“ = wl + Awg

5. Using the ac-sweep of SPICE, -calculate

. j+1
Y (nwit!) and 2200} iy (3.9)(8.4). Set
Wi

j=j+1andgotol.
Our algorithm is called the frequency domain re-

lazation method, and it can be efficiently applied
any kind of weakly nonlinear circuits.

3. An Illustrative Example

Consider a reactance oscillator shown in Fig
.2(a). The linear reactance circuit is synthesized
by the Cauer circuit, whose anti-resonance points
are chosen at w; = 1, wy = 4 and w3 = 6, respec-
tively.

N
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(a) Reactance oscillator

C; = 0.100, Cz = 0.343, C3 = 0.439, L; = 0.417,
L, =0.262, Ls =1.05
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(b) The steady-state waveforms of 3 type oscillations.
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Fig.2 Reactance oscillator

The characteristic of nonlinear resistor is chosen .

by
iv=—v+3°

We found that the reactance oscillator has 3 types
of oscillations as shown in Fig .2(b) depending on
the initial conditions. The fundamental frequency
components are as follows:

wp =1.0531, wy=3.6210, ws = 5.6947

which are something different from the original
anti-resonant frequencies. The nonlinearity for the
first case w; is largest and the convergence ratio
is smallest, where we consider 18 higher harmonic
components, and 7, 5 components for second wo
and wj cases, respectively.

4. Conclusions and Remarks

In this paper, we have proposed an analytical
method of reactance oscillators whose linear sub-
circuit is consisted by the Cauer or Foster circuit,
and the nonlinear sub - circuit consisted by nega-
tive resistance circuit. We have efficiently applied
the frequency domain relaxation method to solve
it. We found that the circuit has multi - type os-
cillations around the vicinity of the anti-resonance
frequency points.

As the future problem, we need to solve the
quasi-periodic oscillations which will happen in the
weakly nonlinear circuits.
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