• Title/Summary/Keyword: resolvent operator

Search Result 76, Processing Time 0.032 seconds

SYSTEM OF GENERALIZED NONLINEAR MIXED VARIATIONAL INCLUSIONS INVOLVING RELAXED COCOERCIVE MAPPINGS IN HILBERT SPACES

  • Lee, Byung-Soo;Salahuddin, Salahuddin
    • East Asian mathematical journal
    • /
    • v.31 no.3
    • /
    • pp.383-391
    • /
    • 2015
  • We considered a new system of generalized nonlinear mixed variational inclusions in Hilbert spaces and define an iterative method for finding the approximate solutions of this class of system of generalized nonlinear mixed variational inclusions. We also established that the approximate solutions obtained by our algorithm converges to the exact solutions of a new system of generalized nonlinear mixed variational inclusions.

PERTURBED PROXIMAL POINT ALGORITHMS FOR GENERALIZED MIXED VARIATIONAL INEQUALITIES

  • Jeong, Jae-Ug
    • East Asian mathematical journal
    • /
    • v.18 no.1
    • /
    • pp.95-109
    • /
    • 2002
  • In this paper, we study a class of variational inequalities, which is called the generalized set-valued mixed variational inequality. By using the properties of the resolvent operator associated with a maximal monotone mapping in Hilbert spaces, we have established an existence theorem of solutions for generalized set-valued mixed variational inequalities, suggesting a new iterative algorithm and a perturbed proximal point algorithm for finding approximate solutions which strongly converge to the exact solution of the generalized set-valued mixed variational inequalities.

  • PDF

SENSITIVITY ANALYSIS OF SOLUTIONS FOR PARAMETRIC NONLINEAR IMPLICIT QUASIVARIATIONAL INCLUSIONS

  • WANG WEILI;LIU ZEQING;KANG SHIN MIN
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.2
    • /
    • pp.311-319
    • /
    • 2005
  • In this paper we introduce a new class of parametric nonlinear implicit quasivariational inclusions and obtain some results about the existence and sensitivity analysis of solutions for this kind of quasivariational inclusions.

SENSITIVITY ANALYSIS FOR A NEW SYSTEM OF VARIATIONAL INEQUALITIES

  • Jeong, Jae-Ug
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.427-441
    • /
    • 2010
  • In this paper, we study the behavior and sensitivity analysis of the solution set for a new system of generalized parametric multi-valued variational inclusions with (A, $\eta$)-accretive mappings in q-uniformly smooth Banach spaces. The present results improve and extend many known results in the literature.

FINDING A ZERO OF THE SUM OF TWO MAXIMAL MONOTONE OPERATORS WITH MINIMIZATION PROBLEM

  • Abdallah, Beddani
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.895-902
    • /
    • 2022
  • The aim of this paper is to construct a new method for finding the zeros of the sum of two maximally monotone mappings in Hilbert spaces. We will define a simple function such that its set of zeros coincide with that of the sum of two maximal monotone operators. Moreover, we will use the Newton-Raphson algorithm to get an approximate zero. In addition, some illustrative examples are given at the end of this paper.

ON GENERALIZED NONLINEAR QUASIVARIATIONAL INEQUALITIES

  • Li, Jin-Song;Kang, Shin-Min
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • In this paper, we introduce a new generalized nonlinear quasivariational inequality and establish its equivalence with a xed point problem by using the resolvent operator technique. Utilizing this equivalence, we suggest two iterative schemes, prove two existence theorems of solutions for the generalized nonlinear quasivariational inequality involving generalized cocoercive mapping and establish some convergence results of the sequences generated by the algorithms. Our results include several previously known results as special cases.

UPPER TRIANGULAR OPERATORS WITH SVEP

  • Duggal, Bhagwati Prashad
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.235-246
    • /
    • 2010
  • A Banach space operator A $\in$ B(X) is polaroid if the isolated points of the spectrum of A are poles of the resolvent of A; A is hereditarily polaroid, A $\in$ ($\mathcal{H}\mathcal{P}$), if every part of A is polaroid. Let $X^n\;=\;\oplus^n_{t=i}X_i$, where $X_i$ are Banach spaces, and let A denote the class of upper triangular operators A = $(A_{ij})_{1{\leq}i,j{\leq}n$, $A_{ij}\;{\in}\;B(X_j,X_i)$ and $A_{ij}$ = 0 for i > j. We prove that operators A $\in$ A such that $A_{ii}$ for all $1{\leq}i{\leq}n$, and $A^*$ have the single-valued extension property have spectral properties remarkably close to those of Jordan operators of order n and n-normal operators. Operators A $\in$ A such that $A_{ii}$ $\in$ ($\mathcal{H}\mathcal{P}$) for all $1{\leq}i{\leq}n$ are polaroid and have SVEP; hence they satisfy Weyl's theorem. Furthermore, A+R satisfies Browder's theorem for all upper triangular operators R, such that $\oplus^n_{i=1}R_{ii}$ is a Riesz operator, which commutes with A.

DEGENERATE VOLTERRA EQUATIONS IN BANACH SPACES

  • Favini, Angelo;Tanabe, Hiroki
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.915-927
    • /
    • 2000
  • This paper is concerned with degenerate Volterra equations Mu(t) + ∫(sub)0(sup)t k(t-s) Lu(s)ds = f(t) in Banach spaces both in the hyperbolic case, and the parabolic one. The key assumption is played by the representation of the underlying space X as a direct sum X = N(T) + R(T), where T is the bounded linear operator T = ML(sup)-1. Hyperbolicity means that the part T of T in R(T) is an abstract potential operator, i.e., -T(sup)-1 generates a C(sub)0-semigroup, and parabolicity means that -T(sup)-1 generates an analytic semigroup. A maximal regularity result is obtained for parabolic equations. We will also investigate the cases where the kernel k($.$) is degenerated or singular at t=0 using the results of Pruss[8] on analytic resolvents. Finally, we consider the case where $\lambda$ is a pole for ($\lambda$L + M)(sup)-1.

  • PDF