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SENSITIVITY ANALYSIS FOR A NEW SYSTEM OF
VARIATIONAL INEQUALITIES

Jae Ug Jeong

Abstract. In this paper, we study the behavior and sensitivity analysis
of the solution set for a new system of generalized parametric multi-valued
variational inclusions with (A, η)-accretive mappings in q-uniformly smoo-
th Banach spaces. The present results improve and extend many known
results in the literature.

1. Introduction

Sensitivity analysis of solutions of variational inequalities with single-valued
mappings have been studied by many authors via quite different techniques.

By using the projection method, Dafermos [2], Yen [12], Mukherjee and
Verma [7], Noor [9] and Pan [10] studied the sensitivity analysis of solutions of
some variational inequalities with single-valued mappings in finite-dimensional
spaces or Hilbert spaces.

By using the resolvent operator technique, Agarwal et al. [1], Jeong [3] stud-
ied a new system of parametric generalized nonlinear mixed quasi-variational
inclusions in a Hilbert space and in Lp(p ≥ 2) spaces, respectively.

In 2008, using the concept and technique of resolvent operators, Lan [4]
introduced and studied the behavior and sensitivity analysis of the solution set
for a system of generalized parametric (A, η)-accretive variational inclusions in
Banach spaces.

Motivated and inspired by the research work going on this field, in this
paper, we study the behavior and sensitivity analysis of the solution set for a
new system of generalized parametric multi-valued variational inclusions with
(A, η)-accretive mappings in q-uniformly smooth Banach spaces. The present
results improve and extend many known results in the literature.
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2. Preliminaries

Let E be a real Banach space with dual space E∗ and 〈·, ·〉 be the dual pair
between E and E∗, CB(E) denote the family of all nonempty closed bounded
subsets of E and 2E denote the family of all the nonempty subsets of E. The
generalized duality mapping Jq : E → 2E∗ is defined by

Jq(x) = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖q and ‖f∗‖ = ‖x‖q−1}, ∀x ∈ E,

where q > 1 is a constant. In particular, J2 is the usual normalized duality
mapping. It is known that, in general, Jq(x) = ‖x‖q−2J2(x) for all x 6= 0 and
Jq is single-valued if E∗ is strictly convex. If E = H is a Hilbert space, then
J2 becomes the identity mapping of H.

The modulus of smoothness of E is the function ρE : [0,∞) → [0,∞) defined
by

ρE(t) = sup
{

1
2
(‖x + y‖+ ‖x− y‖)− 1 : ‖x‖ ≤ 1, ‖y‖ ≤ t

}
.

A Banach space E is called uniformly smooth if limt→0
ρE(t)

t = 0. E is called
q-uniformly smooth if there exists a constant c > 0 such that ρE(t) ≤ ctq,
q > 1. Note that Jq is single-valued if E is uniformly smooth.

We consider now a system of generalized parametric multi-valued variational
inclusions with (A, η)-accretive mappings in q-uniformly smooth Banach spaces.
To this end, let Ω and Λ be two nonempty open subsets of E in which the
parameters ω and λ take values, U : E × E × Ω → E, V : E × E × Λ → E,
f : E×Ω → E, g : E×Λ → E are single-valued mappings and S : E×Ω → 2E ,
T : E × Λ → 2E are multi-valued mappings. Suppose that M : E × E × Ω →
2E and N : E × E × Λ → 2E are any nonlinear mappings such that for all
(z, ω) ∈ E × Ω, M(·, z, ω) : E → 2E is an (A, η)-accretive mapping with
f(E, ω) ∩ dom(M(·, z, ω)) 6= φ and for all (t, λ) ∈ E ×Λ, N(·, t, λ) : E → 2E is
an (A, η)-accretive mapping with g(E, λ) ∩ dom(N(·, t, λ)) 6= φ. For each fixed
(ω, λ) ∈ Ω × Λ, the system of generalized parametric multi-valued variational
inclusions with (A, η)-accretive mappings in q-uniformly smooth Banach spaces
consist of finding (x, y) ∈ E × E such that u ∈ S(x, ω), v ∈ T (y, λ) and

(2.1)
0 ∈ A(f(x, ω))− x + ρU(x, v, ω) + ρM(f(x, ω), x, ω),

0 ∈ A(g(y, λ))− y + γV (u, y, λ) + γN(g(y, λ), y, λ),

where ρ > 0 and γ > 0 are two constants.
We now discuss some special cases.
Case I. Let S : E × Ω → E and T : E × Λ → E be single-valued mappings.

Then for each fixed (ω, λ) ∈ Ω×Λ, the problem (2.1) reduces to finding (x, y) ∈
E × E such that

(2.2)
0 ∈ A(f(x, ω))− x + ρU(x, T (y, λ), ω) + ρM(f(x, ω), x, ω),

0 ∈ A(g(y, λ))− y + γV (S(x, ω), y, λ) + γN(g(y, λ), y, λ).
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Case II. Let A(f(x, ω)) = x for all (x, ω) ∈ E × Ω, A(g(y, λ)) = y for all
(y, λ) ∈ E × Λ and ρ = γ = 1. Then problem (2.1) reduces to the problem of
finding (x, y) ∈ E × E such that

0 ∈ U(x, v, w) + M(f(x, ω), x, ω),

0 ∈ V (u, y, λ) + N(g(y, λ), y, λ),

which has been studied by Lan [4].

Case III. Let A = I, the identity mapping, f(x, ω) = 2x, M(x, y, ω) =
M(1

2x, ω) for all (x, y, ω) ∈ E ×E ×Ω and g(y, λ) = 2y, N(x, y, λ) = N( 1
2x, λ)

for all (x, y, λ) ∈ E×E×Λ. Let U(x, T (y, λ), ω) = G1(y, ω)+V1(y, ω)− 1
ρy and

V (S(x, ω), y, λ) = G2(x, λ) + V2(x, λ)− 1
γ x for all (x, y, ω, λ) ∈ E ×E ×Ω×Λ,

where G1, V1 : E ×Ω → E, G2, V2 : E ×Λ → E are nonlinear mappings. Then
the problem (2.2) is equivalent to finding (x, y) ∈ E × E such that

(2.3)
0 ∈ x− y + ρ(G1(y, ω) + V1(y, ω)) + ρM(x, ω),

0 ∈ y − x + γ(G2(x, λ) + V2(x, λ)) + γN(y, λ),

which was studied by Jeong [3] for m-accretive mappings M,N in (2.3). Fur-
ther, the problem (2.3) was introduced and studied by Agawal et al. [1] for a
Hilbert space E = H, two maximal monotone mappings M, N in (2.3).

Remark 2.1. For appropriate and suitable choices of U, V, M,N, S, T,A, f, g
and E, it is easy to see that the problem (2.1) includes a number of quasi-
variational inclusions, quasi-variational inequalities studied by many authors
as special cases (see [1, 2, 3, 4, 7, 9, 10]).

Definition 2.1. Let A : E → E, η : E × E → E be single-valued mappings.
The mapping A is said to be

(i) accretive if

〈A(x)−A(y), Jq(x− y)〉 ≥ 0, ∀x, y ∈ E;

(ii) γ-strongly accretive if

〈A(x)−A(y), Jq(x− y)〉 ≥ γ‖x− y‖q, ∀x, y ∈ E;

(iii) r-strongly η-accretive if

〈A(x)−A(y), Jq(η(x, y)) ≥ r‖x− y‖q, ∀x, y ∈ E.

Definition 2.2. Let A : E → E and η : E×E → E be single-valued mappings.
Then a set-valued mapping M : E → 2E is said to be

(i) m-relaxed η-accretive if there exists a constant m > 0 such that

〈u− v, Jq(η(x, y))〉 ≥ −m‖x− y‖q, ∀x, y ∈ E, u ∈ M(x), v ∈ M(y);

(ii) (A, η)-accretive if
(1) M is m-relaxed η-accretive,
(2) (A + ρM)(E) = E for every ρ > 0.
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Definition 2.3. Let S : E × Ω → 2E be a multi-valued mapping. Then S is
called k-H-Lipschitz continuous in the first argument if there exists a constant
k > 0 such that

H(S(x, ω), S(y, ω)) ≤ k‖x− y‖, ∀x, y ∈ E,ω ∈ Ω,

where H : 2E × 2E → (−∞,∞) ∪ {+∞} is the Hausdorff metric, i.e.,

H(A,B) = max{sup
x∈A

inf
y∈B

‖x− y‖, sup
x∈B

inf
y∈A

‖x− y‖}, ∀A, B ⊂ 2E .

In a similar way, we can define H-Lipschitz continuity of the mapping S(·, ·)
in the second argument.

Definition 2.4. A mapping f : E × Ω → E is said to be
(i) δ-strongly accretive with respect to the first argument, δ ∈ (0, 1), if

〈f(x, ω)− f(y, ω), Jq(x− y)〉 ≥ δ‖x− y‖q,∀x, y ∈ E;

(ii) σ-Lipschitz continuous with respect to the first argument if there exists
a constant σ > 0 such that

‖f(x, ω)− f(y, ω)‖ ≤ σ‖x− y‖,∀(x, y, ω) ∈ E × E × Ω.

Definition 2.5. A single-valued mapping η : E × E → E is said to be τ -
Lipschitz continuous if there exists a constant τ > 0 such that

‖η(x, y)‖ ≤ τ‖x− y‖, ∀x, y ∈ E.

If A : E → E is a strictly η-accretive mapping and M : E → 2E is an (A, η)-
accretive mapping, then for a constant ρ > 0, the resolvent operator associated
with A and M is defined by

RA,η
M,ρ(u) = (A + ρM)−1(u), ∀u ∈ E.

It is well known that RA,η
M,ρ is a single-valued mapping [5].

Remark 2.2. Since M is an (A, η)-accretive mapping with respect to the first
argument, for any fixed (z, ω) ∈ E × Ω, we define

RA,η
M(·,z,ω),ρ(u) = (A + ρM(·, z, ω))−1(u), ∀u ∈ D(M),

which is called the parametric resolvent operator associated with A and M
(·, z, ω).

Now we need some lemmas which will be used in the proofs for the main
results in the next section.

Lemma 2.1 ([11]). Let E be a real uniformly smooth Banach space. Then E
is q-uniformly smooth if and only if there exists a constant cq > 0 such that for
all x, y ∈ E

‖x + y‖q ≤ ‖x‖q + q〈y, Jq(x)〉+ cq‖y‖q.
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Lemma 2.2 ([5]). Let E be a q-uniformly smooth Banach space, η : E×E → E
be a single-valued τ -Lipschitz continuous mapping, A : E → E be a r-strongly
η-accretive mapping and M : E → 2E be an (A, η)-accretive mapping. Then
the resolvent operator RA,η

M,γ : E → E is τq−1

r−γm -Lipschitz continuous, i.e.,

‖RA,η
M,γ(x)−RA,η

M,γ(y)‖ ≤ τ q−1

r − γm
‖x− y‖, ∀x, y ∈ E.

Lemma 2.3 ([6]). Let (X, d) be a complete metric space and T1, T2 : X →
CB(X) be two set-valued contractive mappings with the same constant θ ∈
(0, 1), i.e.,

H(Ti(x), Ti(y)) ≤ θd(x, y), ∀x, y ∈ X, i = 1, 2.

Then

H(F (T1), F (T2)) ≤ 1
1− θ

sup
x∈X

H(T1(x), T2(x)),

where F (T1) and F (T2) are fixed point sets of T1, T2, respectively.

3. Sensitivity analysis of solution set

Throughout the rest of this paper, we always assume that E is a real q-
uniformly smooth Banach space.

Lemma 3.1. Let U : E×E×Ω → E, V : E×E×Λ → E, f : E×Ω → E and
g : E×Λ → E be single-valued mappings. Let S : E×Ω → 2E, T : E×Λ → 2E

be multi-valued mappings. Suppose that M : E×E×Ω → 2E and N : E×E×
Λ → 2E are any nonlinear mappings such that for all (z, ω) ∈ E×Ω, M(·, z, ω) :
E → 2E is an (A, η)-accretive mapping with f(E, ω)∩dom(M(·, z, ω)) 6= φ and
for all (t, λ) ∈ E × Λ, N(·, t, λ) : E → 2E is an (A, η)-accretive mapping
with g(E, λ) ∩ dom(N(·, t, λ)) 6= φ. Then for each fixed (ω, λ) ∈ Ω × Λ, (x, y)
is a solution of the system of generalized parametric multi-valued variational
inclusions with (A, η)-accretive mappings in q-uniformly smooth Banach spaces
(2.1) if and only if there are x, y ∈ E, u ∈ S(x, ω), v ∈ T (y, λ) such that

(3.1)
f(x, ω) = RA,η

M(·,x,ω),ρ[x− ρU(x, v, ω)],

g(y, λ) = RA,η
N(·,y,λ),γ [y − γV (u, y, λ)],

where RA,η
M,ρ = (A + ρM)−1, RA,η

N,γ = (A + γN)−1 and ρ, γ > 0 are constants.

Proof. The proof directly follows from definition of resolvent operator and some
arguments. ¤

Theorem 3.1. Let A : E → E, η : E×E → E, f : E×Ω → E, g : E×Λ → E
be mappings and U : E×E×Ω → 2E, V : E×E×Λ → 2E, M : E×E×Ω → 2E,
N : E ×E ×Λ → 2E, S : E ×Ω → CB(E), T : E ×Λ → CB(E) be set-valued
mappings satisfying the following conditions:

(1) A is r-strongly η-accretive,
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(2) η is τ -Lipschitz continuous,
(3) f is δ1-strongly accretive and σ1-Lipschitz continuous with respect to the

first argument,
(4) g is δ2-strongly accretive and σ2-Lipschitz continuous with respect to the

first argument,
(5) U is γ1-strongly accretive, µ1-Lipschitz continuous with respect to the

first argument and µ2-Lipschitz continuous with respect to the second argument,
(6) V is β1-Lipschitz continuous with respect to the first argument and γ2-

strongly accretive, β2-Lipschitz continuous with respect to the second argument,
(7) M and N are (A, η)-accretive with respect to the first argument,
(8) S is k1-H-Lipschitz continuous with respect to the first argument,
(9) T is k2-H-Lipschitz continuous with respect to the first argument.
Suppose that

(3.2)
‖RA,η

M(·,x,ω),ρ(z)−RA,η
M(·,y,ω),ρ(z)‖ ≤ ν1‖x− y‖,

‖RA,η
N(·,x,λ),γ(z)−RA,η

N(·,y,λ),γ(z)‖ ≤ ν2‖x− y‖
for all (x, y, z, ω, λ) ∈ E×E×E×Ω×Λ and there exist ρ > 0 and γ > 0 such
that

(3.3)

h1 = q

√
1− qδ1 + cqσ

q
1 + ν1,

h2 = q

√
1− qδ2 + cqσ

q
2 + ν2,

q

√
1− qργ1 + cqρqµq

1 < τ1−q(r − ρm)(1− h1 − γτ q−1β1k1

r − γm
),

q

√
1− qγγ2 + cqγqβq

2 < τ1−q(r − γm)(1− h2 − ρτ q−1µ2k2

r − ρm
),

where cq is the constant as in Lemma 2.1.
Then

(1) for each (ω, λ) ∈ Ω×Λ, the system of generalized parametric multi-valued
variational inclusions with (A, η)-accretive mapping in q-uniformly smooth Ba-
nach space (2.1) has a nonempty solution set K(ω, λ).

(2) K(ω, λ) is a closed subset of E × E.

Proof. From (3.1) we first define mappings F1 : E × E × E × Ω → E, F2 :
E × E × E × Λ → E as follows:

(3.4)
F1(x, y, v, ω) = x− f(x, ω) + RA,η

M(·,x,ω),ρ[x− ρU(x, v, w)],

F2(x, y, u, λ) = y − g(y, λ) + RA,η
N(·,y,λ),γ [y − γV (u, y, λ)]

for all (x, y, ω, λ) ∈ E × E × Ω× Λ.
Now define ‖ · ‖1 on E × E by

‖(x, y)‖1 = ‖x‖+ ‖y‖, ∀(x, y) ∈ E × E.
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It is well known that (E × E, ‖ · ‖1) is a Banach space. For any given ρ > 0
and γ > 0 we can define F : E × E × Ω× Λ → 2E × 2E by

F (x, y, ω, λ) = {(F1(x, y, v, ω), F2(x, y, u, λ)) : u ∈ S(x, ω), v ∈ T (y, λ)}
for every (x, y, ω, λ) ∈ E×E×Ω×Λ. Since S(x, ω) ∈ CB(E), T (y, λ) ∈ CB(E)
and f, g, U, V,RA,η

M,ρ, R
A,η
N,γ are continuous, we have F (x, y, ω, λ) ∈ CB(E × E)

for every (x, y, ω, λ) ∈ E × E × Ω× Λ.
Now for each fixed (ω, λ) ∈ Ω × Λ, we prove that F (x, y, ω, λ) is a multi-

valued contractive mapping.
In fact, for any (x1, y1, ω, λ), (x2, y2, ω, λ) ∈ E×E×Ω×Λ and any (a1, a2) ∈

F (x1, y1, ω, λ), there exist u1 ∈ S(x1, ω), v1 ∈ T (y1, λ) such that

a1 = x1 − f(x1, ω) + RA,η
M(·,x1,ω),ρ[x1 − ρU(x1, v1, ω)],

a2 = y1 − g(y1, λ) + RA,η
N(·,y1,λ),γ [y1 − γV (u1, y1, λ)].

It follows from Nader’s theorem [8] that there exist u2 ∈ S(x2, ω) and v2 ∈
T (y2, λ) such that

(3.5)
‖u1 − u2‖ ≤ H(S(x1, ω), S(x2, ω)),

‖v1 − v2‖ ≤ H(T (y1, λ), T (y2, λ)).

Let

b1 = x2 − f(x2, ω) + RA,η
M(·,x2,ω),ρ[x2 − ρU(x2, v2, ω)],

b2 = y2 − g(y2, λ) + RA,η
N(·,y2,λ),γ [y2 − γV (u2, y2, λ)].

Then we have (b1, b2) ∈ F (x2, y2, ω, λ). By (3.2) and Lemma 2.2, we have
(3.6)

‖a1 − b1‖
≤ ‖x1 − x2 − (f(x1, ω)− f(x2, ω))‖

+ ‖RA,η
M(·,x1,ω),ρ[x1 − ρU(x1, v1, ω)]−RA,η

M(·,x2,ω),ρ[x1 − ρU(x1, v1, ω)]‖
+ ‖RA,η

M(·,x2,ω),ρ[x1 − ρU(x1, v1, ω)]−RA,η
M(·,x2,ω),ρ[x2 − ρU(x2v2, ω)]‖

≤ ‖x1 − x2 − (f(x1, ω)− f(x2, ω))‖+ ν1‖x1 − x2‖

+
τ q−1

r − ρm
‖x1 − x2 − ρ(U(x1, v1, ω)− U(x2, v1, ω))‖

+
ρτ q−1

r − ρm
‖U(x2, v1, ω)− U(x2, v2, ω)‖,

(3.7)

‖a2 − b2‖
≤ ‖y1 − y2 − (g(y1, λ)− g(y2, λ))‖

+ ‖RA,η
N(·,y1,λ),γ [y1 − γV (u1, y1, λ)]−RA,η

N(·,y2,λ),γ [y1 − γV (u1, y1, λ)]‖
+ ‖RA,η

N(·,y2,λ),γ [y1 − γV (u1, y1, λ)]−RA,η
N(·,y2,λ),γ [y2 − γV (u2, y2, λ)]‖
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≤ ‖y1 − y2 − (g(y1, λ)− g(y2, λ))‖+ ν2‖y1 − y2‖

+
τ q−1

r − γm
‖y1 − y2 − γ(V (u1, y1, λ)− V (u1, y2, λ))‖

+
γτ q−1

r − γm
‖V (u1, y2, λ)− V (u2, y2, λ)‖.

From Lemma 2.1, the δ1-strongly accretivity and σ1-Lipschitz continuity of f ,
and the δ2-strongly accretivity and σ2-Lipschitz continuity of g with respect to
the first argument we have
(3.8)
‖x1 − x2 − (f(x1, ω)− f(x2, ω))‖q

≤ ‖x1 − x2‖q − q〈f(x1, ω)− f(x2, ω), Jq(x1 − x2)〉+ cq‖f(x1, ω)− f(x2, ω)‖q

≤ (1− qδ1 + cqσ
q
1)‖x1 − x2‖q,

(3.9) ‖y1 − y2 − (g(y1, λ)− g(y2, λ))‖q ≤ (1− qδ2 + cqσ
q
2)‖y1 − y2‖q.

Since U is γ1-strongly accretive, µ1-Lipschitz continuous with respect to the
first argument and V is γ2-strongly accretive, β2-Lipschitz continuous with
respect to the second argument,

(3.10)

‖x1 − x2 − ρ(U(x1, v1, ω)− U(x2, v1, ω))‖q

≤ ‖x1 − x2‖q − qρ〈U(x1, v1, ω)− U(x2, v1, ω), Jq(x1 − x2)〉
+ cqρ

q‖U(x1, v1, ω)− U(x2, v1, ω)‖q

≤ (1− qργ1 + cqρ
qµq

1)‖x1 − x2‖q,

(3.11)
‖y1 − y2 − γ(V (u1, y1, λ)− V (u1, y2, λ))‖q ≤ (1− qγγ2 + cqγ

qβq
2)‖y1 − y2‖q.

Since U is µ2-Lipschitz continuous with respect to the second argument, V is
β1-Lipschitz continuous with respect to the first argument, T is k2-H-Lipschitz
continuous with respect to the first argument and S is k1-H-Lipschitz contin-
uous with respect to the first argument, we obtain

(3.12)

‖U(x2, v1, ω)− U(x2, v2, ω)‖ ≤ µ2‖v1 − v2‖
≤ µ2H(T (y1, λ), T (y2, λ))

≤ µ2k2‖y1 − y2‖,

(3.13) ‖V (u1, y2, λ)− V (u2, y2, λ)‖ ≤ β1k1‖x1 − x2‖.
It follows from (3.6)-(3.13) that

(3.14)

‖a1 − b1‖

≤
[

q

√
1− qδ1 + cqσ

q
1 + ν1 +

τ q−1

r − ρm
q

√
1− qργ1 + cqρqµq

1

]
‖x1 − x2‖

+
ρτ q−1µ2k2

r − ρm
‖y1 − y2‖
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= θ1‖x1 − x2‖+ θ2‖y1 − y2‖,

(3.15)

‖a2 − b2‖

≤
[

q

√
1− qδ2 + cqσ

q
2 + ν2 +

τ q−1

r − γm
q

√
1− qγγ2 + cqγqβq

2

]
‖y1 − y2‖

+
γτ q−1β1k1

r − γm
‖x1 − x2‖

= θ3‖x1 − x2‖+ θ4‖y1 − y2‖,
where

θ1 = q

√
1− qδ1 + cqσ

q
1 + ν1 +

τ q−1

r − ρm
q

√
1− qργ1 + cqρqµq

1,

θ2 =
ρτ q−1µ2k2

r − ρm
,

θ3 =
γτ q−1β1k1

r − γm
,

θ4 = q

√
1− qδ2 + cqσ

q
2 + ν2 +

τ q−1

r − γm
q

√
1− qγγ2 + cqγqβq

2 .

By (3.14) and (3.15), we have

‖a1 − b1‖+ ‖a2 − b2‖ ≤ θ(‖x1 − x2‖+ ‖y1 − y2‖),(3.16)

where θ = max{θ1 + θ3, θ2 + θ4}. Hence we have

d((a1, a2), F (x2, y2, ω, λ)) = inf
(b1,b2)∈F (x2,y2,ω,λ)

(‖a1 − b1‖+ ‖a2 − b2‖)
≤ θ(‖x1 − x2‖+ ‖y1 − y2‖)
= θ‖(x1, y1)− (x2, y2)‖1

and

d((b1, b2), F (x1, y1, ω, λ)) ≤ θ‖(x1, y1)− (x2, y2)‖1.
By the definition of the Hausdorff metric H on CB(E × E), we have

(3.17)

H(F (x1, y1, ω, λ), F (x2, y2, ω, λ))

= max{ sup
(a1,a2)∈F (x1,y1,ω,λ)

d((a1, a2), F (x2, y2, ω, λ)),

sup
(b1,b2)∈F (x2,y2,ω,λ)

d((b1, b2), F (x1, y1, ω, λ))}

≤ θ‖(x1, y1)− (x2, y2)‖1
for all (x1, x2, y1, y2, ω, λ) ∈ E ×E ×E ×E ×Ω×Λ. It follows from condition
(3.3) that θ < 1. Thus, (3.17) implies that F is a contractive mapping which
is uniform with respect to (ω, λ) ∈ Ω × Λ. Since F (x, y, ω, λ) is a uniform θ-
contractive mapping with respect to (ω, λ) ∈ Ω× Λ, by the Nadler fixed point
theorem [8], F (x, y, ω, λ) has a fixed point (x̄, ȳ) for each (ω, λ) ∈ Ω×Λ. From
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the definition of F there exist ū ∈ S(x̄, ω) and v̄ ∈ T (ȳ, λ) such that (3.1) holds.
By Lemma 3.1, K(ω, λ) 6= φ.

(2) For each (ω, λ) ∈ Ω × Λ, let (xn, yn) ∈ K(ω, λ) and xn → x0, yn → y0

as n →∞. Then we have

(xn, yn) ∈ F (xn, yn, ω, λ), n = 1, 2, . . . .

By (1), we have

H(F (xn, yn, ω, λ), F (x0, y0, ω, λ)) ≤ θ‖(xn, yn)− (x0, y0)‖1.
It follows that

d((x0, y0), F (x0, y0, ω, λ))

≤ ‖(x0, y0)− (xn, yn)‖1 + d((xn, yn), F (xn, yn, ω, λ))

+ H(F (xn, yn, ω, λ), F (x0, y0, ω, λ))

≤ (1 + θ)‖(xn, yn)− (x0, y0)‖1 → 0 as n →∞.

Hence we have (x0, y0) ∈ F (x0, y0, ω, λ). From Lemma 3.1 we have (x0, y0) ∈
K(ω, λ). Therefore, K(ω, λ) is a nonempty closed subset of E × E. ¤

Theorem 3.2. Under the hypotheses of Theorem 3.1, further assume that for
any x, y ∈ E, the mappings ω 7→ U(x, y, ω), λ 7→ V (x, y, λ), ω 7→ f(x, ω)
and λ 7→ g(y, λ) are Lipschitz continuous with constants lU , lV , lf , lg, respec-
tively. Let ω → S(x, ω) be lS-H-Lipschitz continuous and λ 7→ T (y, λ) be lT -H-
Lipschitz continuous for any x, y ∈ E. Suppose that for any (t, ω, ω̄) ∈ E×Ω×Ω
and (z, λ, λ̄) ∈ E × Λ× Λ

(3.18)
‖RA,η

M(·,x,ω),ρ(t)−RA,η
M(·,x,ω̄),ρ(t)‖ ≤ ξ1‖ω − ω̄‖,

‖RA,η
N(·,y,λ),γ(z)−RA,η

N(·,y,λ̄),γ
(z)‖ ≤ ξ2‖λ− λ̄‖,

where ξ1 > 0 and ξ2 > 0 are two constants.
Then the solution mapping K(ω, λ) for the system of generalized parametric
multi-valued variational inclusions with (A, η)-accretive mapping in q-uniformly
smooth Banach spaces (2.1) is Lipschitz continuous from Ω× Λ to E × E.

Proof. For each (ω, λ), (ω̄, λ̄) ∈ Ω × Λ, by Theorem 3.1, K(ω, λ) and K(ω̄, λ̄)
are both nonempty closed subsets. Also, F (x, y, ω, λ) and F (x, y, ω̄, λ̄) are
contractive mappings with same constant θ ∈ (0, 1) and have fixed points
(x(ω, λ), y(ω, λ)) and (x(ω̄, λ̄), y(ω̄, λ̄)), respectively. For any fixed (ω, λ), (ω̄, λ̄)
∈ Ω× Λ, by Lemma 2.3, we have

(3.19)
H(K(ω, λ),K(ω̄, λ̄)

≤ 1
1− θ

sup
(x,y)∈E×E

H(F (x(ω, λ), y(ω, λ), ω, λ), F (x(ω̄, λ̄), y(ω̄, λ̄), ω̄, λ̄).
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For any (a1, a2) ∈ F (x(ω, λ), y(ω, λ), ω, λ) there exist u(ω, λ) ∈ S(x(ω, λ), ω),
v(ω, λ) ∈ T (y(ω, λ), λ) such that

(3.20)

a1 = x(ω, λ)− f(x(ω, λ), ω)

+ RA,η
M(·,x(ω,λ),ω),ρ[x(ω, λ)− ρU(x(ω, λ), v(ω, λ), ω)],

a2 = y(ω, λ)− g(y(ω, λ), λ)

+ RA,η
N(·,y(ω,λ),λ),γ [y(ω, λ)− γV (u(ω, λ), y(ω, λ), λ)].

By Nader’s theorem [8], there exist

u(ω̄, λ̄) ∈ S(x(ω̄, λ̄), ω̄), v(ω̄, λ̄) ∈ T (y(ω̄, λ̄), λ̄)

such that

(3.21)
‖u(ω, λ)− u(ω̄, λ̄)‖ ≤ H(S(x(ω, λ), ω), S(x(ω̄, λ̄), ω̄)),

‖v(ω, λ)− v(ω̄, λ̄)‖ ≤ H(T (y(ω, λ), λ), T (y(ω̄, λ̄), λ̄)).

Let

(3.22)

b1 = x(ω̄, λ̄)− f(x(ω̄, λ̄), ω̄)

+ RA,η

M(·,x(ω̄,λ̄),ω̄),ρ
[x(ω̄, λ̄)− ρU(x(ω̄, λ̄), v(ω̄, λ̄), ω̄)],

b2 = y(ω̄, λ̄)− g(y(ω̄, λ̄), λ̄)

+ RA,η

N(·,y(ω̄,λ̄),λ̄),γ
[y(ω̄, λ̄)− γV (u(ω̄, λ̄), y(ω̄, λ̄), λ̄)].

Then we have

(b1, b2) ∈ F (x(ω̄, λ̄), y(ω̄, λ̄), ω̄, λ̄).

By (3.18), (3.20), (3.22) and Lemma 2.2, we have

(3.23)

‖a1 − b1‖ ≤ ‖x(ω, λ)− x(ω̄, λ̄)− (f(x(ω, λ), ω)− f(x(ω̄, λ̄), ω))‖
+ ‖f(x(ω̄, λ̄), ω)− f(x(ω̄, λ̄), ω̄)‖
+ ‖RA,η

M(·,x(ω,λ),ω),ρ[x(ω, λ)− ρU(x(ω, λ), v(ω, λ), ω)]

−RA,η

M(·,x(ω̄,λ̄),ω),ρ
[x(ω, λ)− ρU(x(ω, λ), v(ω, λ), ω)]‖

+ ‖RA,η

M(·,x(ω̄,λ̄),ω),ρ
[x(ω, λ)− ρU(x(ω, λ), v(ω, λ), ω)]

−RA,η

M(·,x(ω̄,λ̄),ω),ρ
[x(ω̄, λ̄)− ρU(x(ω̄, λ̄), v(ω̄, λ̄), ω)]‖

+ ‖RA,η

M(·,x(ω̄,λ̄),ω),ρ
[x(ω̄, λ̄)− ρU(x(ω̄, λ̄), v(ω̄, λ̄), ω)]

−RA,η

M(·,x(ω̄,λ̄),ω̄),ρ
[x(ω̄, λ̄)− ρU(x(ω̄, λ̄), v(ω̄, λ̄), ω)]‖

+ ‖RA,η

M(·,x(ω̄,λ̄),ω̄),ρ
[x(ω̄, λ̄)− ρU(x(ω̄, λ̄), v(ω̄, λ̄), ω)]

−RA,η

M(·,x(ω̄,λ̄),ω̄),ρ
[x(ω̄, λ̄)− ρU(x(ω̄, λ̄), v(ω̄, λ̄), ω̄)]‖

≤ ‖x(ω, λ)− x(ω̄, λ̄)− (f(x(ω, λ), ω)− f(x(ω̄, λ̄), ω))‖
+ lf‖ω − ω̄‖+ ν1‖x(ω, λ)− x(ω̄, λ̄)‖
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+
τ q−1

r − ρm
‖x(ω, λ)− x(ω̄, λ̄)− ρ(U(x(ω, λ), v(ω, λ), ω)

− U(x(ω̄, λ̄), v(ω, λ), ω)‖

+
τ q−1ρ

r − ρm
‖U(x(ω̄, λ̄), v(ω, λ), ω)− U(x(ω̄, λ̄), v(ω̄, λ̄), ω)‖

+ ξ1‖ω − ω̄‖+
τ q−1ρ

r − ρm
lU‖ω − ω̄‖,

(3.24)
‖a2 − b2‖ ≤ ‖y(ω, λ)− y(ω̄, λ̄)− (g(y(ω, λ), λ)− g(y(ω̄, λ̄), λ))‖

+ ‖g(y(ω̄, λ̄), λ)− g(y(ω̄, λ̄), λ̄)‖
+ ‖RA,η

N(·,y(ω,λ),λ),γ [y(ω, λ)− γV (u(ω, λ), y(ω, λ), λ)]

−RA,η

N(·,y(ω̄,λ̄)λ),γ
[y(ω, λ)− γV (u(ω, λ), y(ω, λ), λ)]‖

+ ‖RA,η

N(·,y(ω̄,λ̄),λ),γ
[y(ω, λ)− γV (u(ω, λ), y(ω, λ), λ)]

−RA,η

N(·,y(ω̄,λ̄),λ),γ
[y(ω̄, λ̄)− γV (u(ω̄, λ̄), y(ω̄, λ̄), λ)]‖

+ ‖RA,η

N(·,y(ω̄,λ̄),λ),γ
[y(ω̄, λ̄)− γV (u(ω̄, λ̄), y(ω̄, λ̄), λ)]

−RA,η

N(·,y(ω̄,λ̄),λ̄),γ
[y(ω̄, λ̄)− γV (u(ω̄, λ̄), y(ω̄, λ̄), λ)]‖

+ ‖RA,η

N(·,y(ω̄,λ̄),λ̄),γ
[y(ω̄, λ̄)− γV (u(ω̄, λ̄), y(ω̄, λ̄), λ)]

−RA,η

N(·,y(ω̄,λ̄),λ̄),γ
[y(ω̄, λ̄)− γV (u(ω̄, λ̄), y(ω̄, λ̄), λ̄)]‖

≤ ‖y(ω, λ)− y(ω̄, λ̄)− (g(y(ω, λ), λ)− g(y(ω̄, λ̄), λ))‖
+ lg‖λ− λ̄‖+ ν2‖y(ω, λ)− y(ω̄, λ̄)‖

+
τ q−1

r − γm
‖y(ω, λ)− y(ω̄, λ̄)− γ(V (u(ω, λ), y(ω, λ), λ)

− V (u(ω, λ), y(ω̄, λ̄), λ))‖

+
τ q−1γ

r − γm
‖V (u(ω, λ), y(ω̄, λ̄), λ)− V (u(ω̄, λ̄), y(ω̄, λ̄), λ)‖

+ ξ2‖λ− λ̄‖+
τ q−1γ

r − γm
lV ‖λ− λ̄‖,

(3.25)

‖x(ω, λ)− x(ω̄, λ̄)− (f(x(ω, λ), ω)− f(x(ω̄, λ̄), ω))‖q

≤ ‖x(ω, λ)− x(ω̄, λ̄)‖q − q〈f(x(ω, λ), ω)

− f(x(ω̄, λ̄), ω), Jq(x(ω, λ)− x(ω̄, λ̄))〉
+ cq‖f(x(ω, λ), ω)− f(x(ω̄, λ̄), ω)‖q

≤ (1− qδ1 + cqσ
q
1)‖x(ω, λ)− x(ω̄, λ̄)‖q,
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(3.26)
‖x(ω, λ)− x(ω̄, λ̄)− ρ(U(x(ω, λ), v(ω, λ), ω)− U(x(ω̄, λ̄), v(ω, λ), ω))‖q

≤ ‖x(ω, λ)− x(ω̄, λ̄‖q

− qρ〈U(x(ω, λ), v(ω, λ), ω)− U(x(ω̄, λ̄), v(ω, λ), ω), Jq(x(ω, λ)− x(ω̄, λ̄))〉
+ cqρ

q‖U(x(ω, λ), v(ω, λ), ω)− U(x(ω̄, λ̄), v(ω, λ), ω)‖q

≤ (1− qργ1 + cqρ
qµq

1)‖x(ω, λ)− x(ω̄, λ̄)‖q,

(3.27)

‖U(x(ω̄, λ̄), v(ω, λ), ω)− U(x(ω̄, λ̄), v(ω̄, λ̄), ω)‖
≤ µ2‖v(ω, λ)− v(ω̄, λ̄)‖
≤ µ2H(T (y(ω, λ), λ), T (y(ω̄, λ̄), λ̄))

≤ µ2[H(T (y(ω, λ), λ), T (y(ω̄, λ̄), λ)) + H(T (y(ω̄, λ̄), λ), T (y(ω̄, λ̄), λ̄))]

≤ µ2(k2‖y(ω, λ)− y(ω̄, λ̄)‖+ lT ‖λ− λ̄‖),

(3.28)
‖y(ω, λ)− y(ω̄, λ̄)− (g(y(ω, λ), λ)− g(y(ω̄, λ̄), λ))‖q

≤ (1− qδ2 + cqσ
q
2)‖y(ω, λ)− y(ω̄, λ̄)‖q,

(3.29)
‖y(ω, λ)− y(ω̄, λ̄)− γ(V (u(ω, λ), y(ω, λ), λ)− V (u(ω, λ), y(ω̄, λ̄), λ))‖q

≤ (1− qγγ2 + cqγ
qβq

2)‖y(ω, λ)− y(ω̄, λ̄)‖q,

(3.30)
‖V (u(ω, λ), y(ω̄, λ̄), λ)− V (u(ω̄, λ̄), y(ω̄, λ̄), λ)‖

≤ β1(k1‖x(ω, λ)− x(ω̄, λ̄)‖+ lS‖ω − ω̄‖).

By (3.23)-(3.30), we have
(3.31)

‖a1 − b1‖+ ‖a2 − b2‖

≤
[

q

√
1− qδ1 + cqσ

q
1 + ν1 +

τ q−1

r − ρm
q

√
1− qργ1 + cqρqµq

1 +
τ q−1γβ1k1

r − γm

]

‖x(ω, λ)− x(ω̄, λ̄)‖

+
[
τ q−1ρµ2k2

r − ρm
+ q

√
1− qδ2 + cqσ

q
2 + ν2 +

τ q−1

r − γm
q

√
1− qγγ2 + cqγqβq

2

]

‖y(ω, λ)− y(ω̄, λ̄)‖

+
[
lf + ξ1 +

τ q−1ρlU
r − ρm

+
τ q−1γβ1lS
r − γm

]
‖ω − ω̄‖

+
[
τ q−1ρµ2lT

r − ρm
+ lg + ξ2 +

τ q−1γlV
r − γm

]
‖λ− λ̄‖
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= θ1‖x(ω, λ)− x(ω̄, λ̄)‖+ θ2‖y(ω, λ)− y(ω̄, λ̄)‖+ n1‖ω − ω̄‖+ n2‖λ− λ̄‖
≤ θ[‖x(ω, λ)− x(ω̄, λ̄)‖+ ‖y(ω, λ)− y(ω̄, λ̄)‖] + n1‖ω − ω̄‖+ n2‖λ− λ̄‖
≤ θ[‖a1 − b1‖+ ‖a2 − b2‖] + n1‖ω − ω̄‖+ n2‖λ− λ̄‖,

where

θ1 = q

√
1− qδ1 + cqσ

q
1 + ν1 +

τ q−1

r − ρm
q

√
1− qργ1 + cqρqµq

1 +
τ q−1γβ1k1

r − γm
,

θ2 =
τ q−1ρµ2k2

r − ρm
+ q

√
1− qδ2 + c2σ

q
2 + ν2 +

τ q−1

r − γm
q

√
1− qγγ2 + cqγqβq

2 ,

n1 = lf + ξ1 +
τ q−1ρlU
r − ρm

+
τ q−1γβ1lS
r − γm

,

n2 =
τ q−1ρµ2lT

r − ρm
+ lg + ξ2 +

τ q−1γlV
r − γm

,

θ = max{θ1, θ2}.
It follows from (3.3) and (3.31) that

‖a1 − b1‖+ ‖a2 − b2‖ ≤ 1
1− θ

[n1‖ω − ω̄‖+ n2‖λ− λ̄‖]

≤ 1
1− θ

max{n1, n2}(‖ω − ω̄‖+ ‖λ− λ̄‖)
= ϑ(‖ω − ω̄‖+ ‖λ− λ̄‖),

where ϑ = 1
1−θ max{n1, n2}. Then we obtain

(3.32)

d((a1, a2), F (x(ω̄, λ̄), y(ω̄, λ̄), ω̄, λ̄))

= inf
(b1,b2)∈F (x(ω̄,λ̄),y(ω̄,λ̄),ω̄,λ̄)

(‖a1 − b1‖+ ‖a2 − b2‖)

≤ ϑ(‖ω − ω̄‖+ ‖λ− λ̄‖)
≤ ϑ‖(ω, λ)− (ω̄, λ̄)‖1,

d((b1, b2), F (x(ω, λ), y(ω, λ), ω, λ)) ≤ ϑ‖(ω, λ)− (ω̄, λ̄)‖1.(3.33)

Hence, from (3.19), (3.32) and (3.33), we have

H(K(ω, λ),K(ω̄, λ̄))

≤ 1
1− θ

sup
(x,y)∈E×E

H(F (x(ω, λ), y(ω, λ), ω, λ), F (x(ω̄, λ̄), y(ω̄, λ̄), ω̄, λ̄))

≤ ϑ

1− θ
‖(ω, λ)− (ω̄, λ̄)‖1.

This proves that K(ω, λ) is Lipschitz continuous with respect to (ω, λ) ∈ Ω ×
Λ. ¤



A NEW SYSTEM OF VARIATIONAL INEQUALITIES 441

Acknowledgement. The author would like to thank the referee for his/her
valuable comments.

References

[1] R. P. Agarwal, N. J. Huang, and M. Y. Tan, Sensitivity analysis for a new system of
generalized nonlinear mixed quasi-variational inclusions, Appl. Math. Lett. 17 (2004),
no. 3, 345–352.

[2] S. Dafermos, Sensitivity analysis in variational inequalities, Math. Oper. Res. 13 (1988),
no. 3, 421–434.

[3] J. U. Jeong, A system of parametric generalized nonlinear mixed quasi-variational in-
clusions in Lp spaces, J. Appl. Math. Comput. 19 (2005), no. 1-2, 493–506.

[4] H. Y. Lan, Nonlinear parametric multi-valued variational inclusion systems involving
(A, )-accretive mappings in Banach spaces, Nonlinear Anal. 69 (2008), no. 5-6, 1757–
1767.

[5] H. Y. Lan, Y. J. Cho, and R. U. Verma, Nonlinear relaxed cocoercive variational in-
clusions involving (A, )-accretive mappings in Banach spaces, Comput. Math. Appl. 51
(2006), no. 9-10, 1529–1538.

[6] T. C. Lim, On fixed point stability for set-valued contractive mappings with applications
to generalized differential equations, J. Math. Anal. Appl. 110 (1985), no. 2, 436–441.

[7] R. N. Mukherjee and H. L. Verma, Sensitivity analysis of generalized variational in-
equalities, J. Math. Anal. Appl. 167 (1992), no. 2, 299–304.

[8] S. B. Nadler, Multi-valued contraction mappings, Pacific J. Math. 30 (1969), 475–488.
[9] M. A. Noor, General algorithm and sensitivity analysis for variational inequalities, J.

Appl. Math. Stochastic Anal. 5 (1992), no. 1, 29–41.
[10] Y. H. Pan, Sensitivity analysis for general quasivariational inequalities in parametric

form, Sichuan Shifan Daxue Xuebao Ziran Kexue Ban 19 (1996), no. 2, 56–59.
[11] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991),

no. 12, 1127–1138.
[12] N. D. Yen, Lipschitz continuity of solutions of variational inequalities with a parametric

polyhedral constraint, Math. Oper. Res. 20 (1995), no. 3, 695–708.

Department of Mathematics
Dongeui University
Pusan 614-714, Korea
E-mail address: jujeong@deu.ac.kr


