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SENSITIVITY ANALYSIS OF SOLUTIONS
FOR PARAMETRIC NONLINEAR IMPLICIT
QUASIVARIATIONAL INCLUSIONS

WEILI WANG, ZEQING L1U, AND SHIN MIN KANG

ABSTRACT. In this paper we introduce a new class of parametric
nonlinear implicit quasivariational inclusions and obtain some re-
sults about the existence and sensitivity analysis of solutions for
this kind of quasivariational inclusions.

1. Introduction

Variational inequalities arise in various models for a lot of mathemati-
cal, physical, regional, engineering and other problems. It is well known
that the theory of variational inequalities provided the most general,
natural, simple, unified, and efficient framework for general treatment
of a wide class of nonlinear problems. Quasivariational inclusions are a
very important generalization of variational inequalities. Many authors
(see for example [2, 4-6]) have studied the problem about sensitivity
analysis of the solutions for variational inequalities. By making use of
the implicit resolvent operator technique, Agarwal, Cho and Huang [1]
and Liu, Debnath, Kang and Ume [7] established the sensitivity analysis
of solutions for a few classes of quasivariational inclusions.

In this paper we introduce a new class of parametric nonlinear im-
plicit quasivariational inclusions. We establish some results about the
existence and sensitivity analysis of solutions for this kind of quasivari-
ational inclusion. Our results extend and improve the corresponding
results due to Agarwal, Cho and Huang [1].
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2. Preliminaries

Let H be a real Hilbert space with a norm and inner product denoted
by || - || and {-,-), respectively, and I denote the identity mapping. Let
D be a nonempty open subset of H in which the parameter A takes
values and f,p,g,m : Hx D — H N : Hx Hx D — H. Suppose
that M : H x H x D — 2% is such that for each (y,\) € H x D,
M(-,y,)) : H — 2 is a maximal monotone mapping. For a given
A € D, we consider the following problem:

Find v = u()) € H such that

(2.1) 0€ N(f(u,A),p(u, N), A} + M((g — m)(u, A), u, \).

The problem (2.1) is called a parametric nonlinear implicit quasivaria-
tional inclusion.

In case f(u,A) = p(u,A) = (g—m)(u,\) =uforallu € H and A € D,
then the problem (2.1) reduces to the following parametric generalized
strongly nonlinear mixed quasi-variational inclusion problem:

Find u € H such that

(2.2) 0 € N(u,u, A) + M(u,u, A),

which was introduced and studied by Agarwal, Cho and Huang [1].
EM(-y,A) =0p(-,A) forany y € H and A € D, where ¢ : H x D —

R|J{+oo} satisfies that for each A € D, ¢(-,A) : M — R|J{+oo}

is a proper convex lower semicontinuous function on H and d¢(-, A)

denotes the subdifferential of the function ¢(-, A), then the problem (2.1)
is equivalent to seek u € H such that

(2.3)  (N(f(u,A),p(u, A), A),v —u) 2 p(u, ) —@(v,), VveH,

which is called the parametric nonlinear quasivaritional inequality.
Let us recall the following concepts.

DEFINITION 2.1. Let M : Hx H — 2 be a maximal monotone map-
ping with respect to the first argument and o > 0 be a constant. Then
for any given y € H, the implicit resolvent operator JY (%) associated

with M (-,y) is defined by

JMEW () = (I + aM(-,y)) " (u) for u e H.
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DEFINITION 2.2. A mapping f: H x D — H is said to be
(1) Lipschitz continuous with respect to the first argument if there
exist a constant s > 0 satisfying

I1f (s A) = Fo, M| < sllu =

for (u,v,\) € H x H x D;
(2) t-strongly monotone with respect to the first argument if there
exist a constant ¢t > 0 satisfying

(f(w,X) = f(v,2),u = v) > t]lu—off?

for (u,v,A\) € H x H x D.

DEerFINITION 2.3. Let m and g : H x D — H be mappings. m and
g are called m-g-relazed monotone if there exists a constant ¢ € [go, cd]
satisfying

(m(v,\) = m(u, X), g(u, A) = g(v, V) < gllu ~ v||?
for (u,v,A) € Hx Hx D, where qo = inf{s : (m(v, \) —m(u, A), g(u, \) —
g(v,\)) < s|lu—wv||? for (v,v,\) € H x H x D}.

DEFINITION 2.4. Let f: Hx D — Hand N: Hx Hx D — H be
mappings. N is said to be

(1) I-strongly monotone with respect to f in the first argument if there
exists a constant [ > 0 such that

(N(f(uv ’\)73:7 /\) - N(f(’l), ’\)7337 >‘)7u - U) z lHu - UH2

for (u,v,2,\) € H x Hx H x D;
(2) Lipschitz continuous if there exist a constant s > 0 satisfying

HN(uax7 >‘) - N('U,.T, A)H < SHU - ’l)"

for (u,v,xz,A\) € H x Hx H x D.

In a similar way, we can define the Lipschitz continuity of f with
respect to the second argument and the Lipschitz continuity of N with
respect to the second and the third arguments, respectively.
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LEMMA 2.1. Let a > 0 be a constant and A € D. Thenu = u(\) € H
is a solution of the problem (2.1) if and only if the mapping F - Hx D —
H defined by
F(z,)) =z — (9 —m)(z,A) + J3 0=V (g — m)(z, )

(24) —aN(f(z,\),p(z,2),)), z€H

has a fixed point v = u(\) € H, where JHCEA) (I+aM(-,z,\)7L
PROOF. It is clear that the problem (2.1) has a solution u = u(\) € H
if and only if
= N{f(u, A),p(u, A), ) € M((g —m)(u, A),u, A)
& (g —m)(u,A) — aN(f(u, A),p(u, A), A)
€ (g —m)(u,\) + aM((g — m)(u, A),u, A)
S u=u—(g-m)(u)+ 3N ((g—m)(u,)
—aN(f(u, A),p(u, A), A)),
that is, u = u(\) € H is a fixed point of F. This completes the proof.(]

REMARK 2.1. Lemma 2.1 generalizes Lemma 2.1 in [1].

3. Existence of solutions

THEOREM 3.1. Let f,p,g,m : H x D — H be Lipschitz continuous
with respect to the first argument with constants a,b,c and d, respec-
tively and f is h-strongly monotone with respect to the first argument.
Let g and m be g-m-relaxed monotone with respect to the first argu-
ment with constant q, and g — m be r-strongly monotone with respect
to the first argument. Assume that N : H x H x D — H is s-strongly
monotone with respect to f in the first argument and Lipschitz contin-
uous with respect to the first and the second arguments with constants
! and t, respectively. Suppose that M : H x H x D — 2H satisfies that
for each (y,\) € H x D, M(-,y,)) : H — 2% is a maximal monotone
mapping and there exists a constant k > O satisfying

(3.1) 1T21C2N (2) = TP ()] < Kllz -y

for (z,y,2,)\) € Hx Hx Hx D. Let P = I?a%2 — t?b? and Q =
2\ﬁ —2r + c? + d? + 2q + k. If there exists a constant o > 0 satisfying

(3.2) ath<1—Q
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and one of the following conditions

P>0, s>(1-Qth+/PQ2-Q),

(3.3) s+(Q -1  VE+(@Q-1P2-PQ2-Q)
o — P < P !
P <0,
(3.4) L sTBQ-D|_ VEET Q-1 -PQ(2-Q)
P P ’

then for each X\ € D, the problem (2.1) has a unique solution u = u(\) €
.

ProoF. Let F' be defined by (2.4) and A € D. Since f,p,g,m
H x D — H are Lipschitz continuous with respect to the first argument
and f is h-strongly monotone with respect to the first arguments, g
and m are g-m-relaxed monotone with respect to the first argument
and g — m be r-strongly monotone with respect to the first argument,
N : Hx Hx D — H is s-strongly monotone with respect to f in the
first argument and Lipschitz continuous with respect to the first and the
second arguments, respectively, by (3.1) we have

I1F(u, A) = F(v, A

< lu—v—({g —m)(u,A) — (g = m)(v,N))]
+ 1IN (g = m)(u, \) = aN(f(w, A), p(u, X), X))
= JT N (g = m) (v, X) = aN(f(v,A), p(v, X), M)
+ |72V (g = m) (v, A) — aN(f(v, ), p(v, 1), A))
= I 0PI (g = m) (v, A) — aN(f(v,A), p(v, A), V)

35) < 2lu—v—(g—m)w,A) (g —m)(v, )

+ [lu—v — a(N(f(u, N),p(u, A), A) — N(f(v, ), p(v, \), )|
+ kllu — vl

< 2flu — v — ((g — m)(u, A) = (g — m)(v, \))|
+ ”’U, —v - a(N(f(u, )‘)ap(ua )‘)a )‘) - N(f(”? )\),p(U, /\)7 )‘))”
+ al[N(f (v, A),p(u, A), A) = N(f(v, A), p(v, A), )|
+ kllu — v

< Bflu — vl



316 Weili Wang, Zeqing Liu, and Shin Min Kang

for (u,v,\) € H x H x D, where

(3.6) 0=Q+V1-2as + a?l2a? + atb.

In light of (3.2) and one of (3.3) and (3.4) we conclude that § < 1 and
(3.5) ensures that F' has a unique fixed point v = u()\) € H. It follows
from Lemma 2.1 that v = u(\) € H is the unique solution of the problem
(2.1). This completes the proof. O

REMARK 3.1. Theorem 3.1 is an improvement and a refinement of
Lemma 3.1 in [1].

As a consequent of Theorem 3.1, we have

COROLLARY 3.1. Let f,p, N and P be as in Theorem 3.1 and Q = 0.
Suppose that ¢ : H x D — R|J{+o0} satisfies that for each y € H and
A€ D, (-, A) : M — R|J{+o00} is a proper convex lower semicontinuous
function on H. If there exists a constant o > 0 satisfying (3.2) and one
of (3.3) and (3.4), then for each A € D, the problem (2.3) has a unique
solution v = u(\) € H.

4. Sensitivity analysis

THEOREM 4.1. Let f,g,m,p, N, M, P, and o be as in Theorem 3.1
and 0 be defined by (3.6). Let f,p,g,m be continuous (resp., uniformly
continuous or Lipschitz continuous) with respect to the second argu-
ments and N be continuous (resp., uniformly continuous or Lipschitz
continuous) with respect to the third argument. Suppose that there
exists a constant 3 > 0 such that

(4.1) JJMC2N () — gMEeN ()| < BIA = N||, Vz,z€ H, A, A€ D.

If (3.1), (3.2) and one of (3.3) and (3.4) hold, then the solutions of the
problem (2.1) are continuous (resp., uniformly continuous or Lipschitz
continuous).

PROOF. Let F be defined by (2.4). It follows from Theorem 3.1 that
for each A € D, there exists a unique u € H denoted by u(X) such that
it is the unique solution of the problem (2.1). Hence we get that

u(A) = F(u(A),)) and u(A) = F(u()),\) for each A\, € D.
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It is clear that
(X)) = u(V)]]
(4.2) = [[F(u(A),A) = F(u(A), M
< IF(u(X), A) = F(u(0), V| + 1F (M), A) = F(u(X), M|
for A, A € D. In view of (3.5) we obtain that
43)  |[F(u()),A) = Fu(d), )] < 0llu(r) —u(})| for A\,X € D.

By virtue of (4.1) we deduce that
(4.4)

IF(u(X), ) = F(u(A), M
< li(g = m)(u(X), ) = (g = m)(u(X), Nl

+ | JM DN (g — m)(u(X), N) — aN (£ (u(}), A), p(u(}), }), N))
— JMCRRIN (g —m)(u(X), X) — aN(f(u(}), N), p(u(X), A), M)l
+ JM RN (g — m)(u(R), A) — aN(f(u(X), X), pu(}), X), X))
— JUCHON (g — m)(u(R), X) — aN(f(u(X), X), p(u(}), 1), 1))
< 2{l(g = m)(u(N), A) — (g — m)(u(}), V)
+ ol (N (£ (u(A), A), p(u(X), X), X) = N(f(u(A), X), p(u(}), \), )|
+ ol (N(f(u(A), V), p(u(}), X), X) = N(f(u(}), X), p(u(}), A), V)|
+a N(f(u(R), A), p(u(X), X), A) = N(f(u(X), 1), p(u(X), A), V]|
+ BlIx = Al
< 2l)(g = m)((X), A) = (g~ m)(u(X), V]|
+all| f(w(A),\) — f@N), V] + atllpud), X) — puX), Nl
+al|N(F(X), X), p(u(A), A), A)

= N(f(u(), A), p(u(A), A), M)l + BIA = Al
for A, A € D. Substituting (4.3) and (4.4) into (4.2) we conclude that
[ICVERTIOV]|

< 15 2lg — m @R, ) - (9 - m) (R, )|

),

M5 Ll f ), A) = FR), V] + atlp(u(R), A) — puh), V]|
+al|N(F(u(N), X), p(u(X), X), A)
— N(F(uR), X, p(u(X), X), V] + BlIA = All]
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for \,A € D. Observe that f,p,g,m are continuous (resp., uniformly
continious or Lipschitz continuous) with respect to the second argu-
ment and N is continuous (resp., uniformly continuous or Lipschitz
continuous) with respect to the third argument and # < 1. Therefore
(4.5) guarantees that the solutions of the problem (2.1) are continuous
(resp., uniformly continuous or Lipschitz continuous). This completes
the proof. 0

REMARK 4.1. Theorem 3.1 in [1] is a special case of Theorem 4.1.

COROLLARY 4.1. Let f,p, N, P,Q be as in Corollary 3.1 and 6 be
defined by (3.6). Suppose that there exists a constant [ > 0 satisfying

[JEC (@) = JECN (@) < BIA = All, ¥A, N € D.

If (3.2) and one of (3.3) and (3.4) hold, then the solutions of the problem
(2.3) are continuous (resp., uniformly continuous or Lipschitz continu-
ous).
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