J. Korean Math. Soc. ${\bf 47}$ (2010), No. 2, pp. 235–246 DOI 10.4134/JKMS.2010.47.2.235

UPPER TRIANGULAR OPERATORS WITH SVEP

Bhagwati Prashad Duggal

ABSTRACT. A Banach space operator $A \in B(\mathcal{X})$ is polaroid if the isolated points of the spectrum of A are poles of the resolvent of A; A is hereditarily polaroid, $A \in (\mathcal{HP})$, if every part of A is polaroid. Let $\mathcal{X}^n = \bigoplus_{i=1}^n \mathcal{X}_i$, where \mathcal{X}_i are Banach spaces, and let \mathcal{A} denote the class of upper triangular operators $A = (A_{ij})_{1 \leq i,j \leq n}$, $A_{ij} \in B(\mathcal{X}_j, \mathcal{X}_i)$ and $A_{ij} = 0$ for i > j. We prove that operators $A \in \mathcal{A}$ such that A_{ii} for all $1 \leq i \leq n$, and A^* have the single-valued extension property have spectral properties remarkably close to those of Jordan operators of order n and n-normal operators. Operators $A \in \mathcal{A}$ such that $A_{ii} \in (\mathcal{HP})$ for all $1 \leq i \leq n$ are polaroid and have SVEP; hence they satisfy Weyl's theorem. Furthermore, A + R satisfies Browder's theorem for all upper triangular operators R, such that $\bigoplus_{i=1}^n R_{ii}$ is a Riesz operator, which commutes with A.

1. Introduction

Let $B(\mathcal{H})$ denote the algebra of operators on a separable infinite dimensional Hilbert space \mathcal{H} , and let $n \in \mathbb{N}$ be a fixed natural number. An operator $A \in B(\mathcal{H})$ is a $\mathcal{C}_n = \mathcal{C}_n(\mathcal{H})$ operator if there exists a decomposition $\mathcal{H} = \bigoplus_{i=1}^n \mathcal{H}_i$ and an $n \times n$ upper triangular operator matrix $A = (A_{ij})_{1 \leq i,j \leq n}$, $A_{ij} \in B(\mathcal{H}_j, \mathcal{H}_i)$ and $A_{ij} = 0$ for all i > j, such that A_{ii} is normal for all $1 \leq i \leq n$. \mathcal{C}_n operators have recently been considered by Jung, Ko, and Pearcy in [10], where it is proved that the classes consisting of Jordan operators of order n and n-normal operators are subclasses of \mathcal{C}_n . \mathcal{C}_n operators share a number of spectral properties with normal operators. More precisely, one has [10, Theorem 2.3 and Lemma 2.4]:

Theorem 1.1. If $A \in C_n$, then $\sigma(A) = \sigma_a(A) = \bigcup_{i=1}^n \sigma(A_{ii}) = \sigma_e(A) \cup \sigma_p(A)$, $\sigma_e(A) = \bigcup_{i=1}^n \sigma_e(A_{ii}) = \sigma_{le}(A) \cap \sigma_{re}(A) = acc\sigma(A) \cup \sigma_p^{\infty}(A)$ and $\sigma_p(A)$ is at most countable. Furthermore, every hole in $\sigma_e(A)$ has associated Fredholm index zero and intersects $\sigma(A)$ in at most countably many points.

O2010 The Korean Mathematical Society

235

Received April 24, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 47B47, 47A10, 47A11.

Key words and phrases. Banach space, *n*-normal operator, hereditarily polaroid operator, single valued extension property, Weyl's theorem.

Here, and in the sequel, $\sigma_a(A)$ denotes the approximate point spectrum, $\sigma_p(A)$ the eigenvalues, $\sigma_p^{\infty}(A)$ the set of eigenvalues of infinite multiplicity, $\sigma_{le}(A)$ and $\sigma_{re}(A)$ the upper semi–Fredholm and the lower semi–Fredholm spectrum (respectively), $\sigma_e(A)$ the Fredholm spectrum, and $\operatorname{acc}\sigma(A)$ the set of accumulation points of the spectrum of A. Recall that a hole in $\sigma_e(A)$ is a bounded component of $\mathbb{C} \setminus \sigma_e(A)$ [13].

A part of a Banach space operator $A \in B(\mathcal{X})$ is its restriction to a closed invariant subspace. The operator A is polaroid, [8], if the isolated points λ of $\sigma(A), \lambda \in iso\sigma(A)$, are poles of the resolvent of A (i.e., if $\lambda \in iso\sigma(A)$ implies $\operatorname{asc}(A - \lambda) = \operatorname{dsc}(A - \lambda) < \infty$, where the ascent $\operatorname{asc}(A - \lambda)$ of $A - \lambda$ is the least non-negative integer n such that $(A - \lambda)^{-n}(0) = (A - \lambda)^{(n+1)}(0)$ and the descent $\operatorname{dsc}(A - \lambda)$ of $A - \lambda$ is the least non-negative integer n such that $(A - \lambda)^n \mathcal{X} = (A - \lambda)^{n+1} \mathcal{X}$. We say that $A \in B(\mathcal{X})$ is hereditarily polaroid, $A \in (\mathcal{HP})$, if every part of A is polaroid [6]. Class (\mathcal{HP}) is large: it contains a number of the more commonly considered classes of operators, amongst them subscalar operators, multipliers of commutative semi–simple Banach algebras and paranormal operators (See [6] for an extensive, though by no means exhaustive, list of classes of operators which are (\mathcal{HP}) operators). Just like normal operators, (\mathcal{HP}) operators have SVEP, the single–valued extension property [6, Theorem 2.8]; however, unlike normal operators, the conjugate operator A^* of an operator $A \in (\mathcal{HP})$ does not (necessarily) have SVEP.

Let $\mathcal{X}^n = \bigoplus_{i=1}^n \mathcal{X}_i$, where each \mathcal{X}_i , $1 \leq i \leq n$, is an infinite dimensional Banach space. Let \mathcal{A} denote the class of upper triangular operator matrices

$$A = (A_{ij})_{1 \le i,j \le n} \in B(\mathcal{X}^n), A_{ij} \in B(\mathcal{X}_j, \mathcal{X}_i) \text{ and } A_{ij} = 0 \text{ for all } i > j,$$

and let $(HP)_n$ denote the class of operators $A \in \mathcal{A}$ such that $A_{ii} \in (\mathcal{HP})$ for all $1 \leq i \leq n$. We study operators $A \in (HP)_n$, and operators $A \in \mathcal{A}$ such that A_{ii} has SVEP for all $1 \leq i \leq n$. It is proved that operators $A \in \mathcal{A}$ such that each A_{ii} has SVEP have spectral properties remarkably similar to those of operators $A \in \mathcal{C}_n$. Indeed, if $A \in \mathcal{A}$ is such that A^* along with each A_{ii} has SVEP, then A shares with operators in \mathcal{C}_n the spectral properties of Theorem 1.1 (except for the countability properties). We prove that if the Banach spaces \mathcal{X}_i are separable and the operators A_{ii} are hereditarily normaloid (\mathcal{HP}) operators (see the following sections for any undefined terminology), then $\sigma_p(A)$ is at most countable. Operators $A \in (HP)_n$ are polaroid and have SVEP. It is proved that if $A \in \mathcal{A}$ and $A_0 = \bigoplus_{i=1}^n A_{ii}$ is a polynomially (HP)_n operator which commutes with the diagonal algebraic operator $B = \bigoplus_{i=1}^n B_{ii} \in B(\mathcal{X}^n)$, then f(A + B) satisfies Weyl's theorem and $f(A^* + B^*)$ satisfies a-Weyl's theorem for every function f which is analytic on a neighbourhood of $\sigma(A + B)$. Perturbation of operators $A \in \mathcal{A}$ such that A_{ii} has SVEP for all $1 \leq i \leq n$ by quasi-nilpotent operators is considered.

2. Upper triangular operators with SVEP

An operator $A \in B(\mathcal{X})$ is upper semi–Fredholm (lower semi–Fredholm) at

$$\begin{split} \lambda \in \mathbb{C}, \ \lambda \in \Phi_+(A) \ (\text{resp.}, \ \lambda \in \Phi_-(A)), \ \text{if} \ (A - \lambda)\mathcal{X} \ \text{is closed and} \ \alpha(A - \lambda) = \dim(A - \lambda)^{-1}(0) < \infty \ (\text{resp.}, \ (A - \lambda)\mathcal{X} \ \text{is closed and} \ \beta(A - \lambda) = \dim(\mathcal{X} \setminus (A - \lambda)\mathcal{X}) < \infty). \ \text{The upper semi-Fredholm spectrum (resp., lower semi-Fredholm spectrum)} \ \text{of} \ A \ \text{is the set} \ \sigma_{le}(A) = \{\lambda \in \mathbb{C} : \lambda \notin \Phi_+(A)\} \ (\text{resp.}, \ \sigma_{re}(A) = \{\lambda \in \mathbb{C} : \lambda \notin \Phi_-(A)\}), \ \text{the semi-Fredholm spectrum of} \ A \ \text{is the set} \ \sigma_{sF}(A) = \sigma_{le}(A) \cap \sigma_{re}(A), \ \text{and the Fredholm spectrum of} \ A \ \text{is the set} \ \sigma_{e}(A) = \sigma_{le}(A) \cup \sigma_{re}(A) = \{\lambda \in \sigma(A) : \lambda \notin \Phi(A) = \Phi_+(A) \cap \Phi_-(A)\}. \ \text{The Weyl} \ \text{spectrum (resp., Browder spectrum) of} \ A \ \text{is the set} \ \sigma_w(A) = \{\lambda \in \mathbb{C} : A - \lambda \ \text{is not Fredholm or ind}(A - \lambda) \neq 0\} \ (\text{resp.}, \sigma_b(A) = \{\lambda \in \mathbb{C} : A - \lambda \ \text{is not Fredholm or ind}(A - \lambda) \neq 0\} \ (\text{resp.}, \sigma_b(A) = \{\lambda \in \mathbb{C} : A - \lambda \ \text{is not Fredholm or ind}(A - \lambda) \neq 0\} \ (\text{resp.}, \sigma_b(A) = \{\lambda \in \mathbb{C} : A - \lambda \ \text{is not Fredholm or ind}(A - \lambda) \neq 0\} \ (\text{resp.}, \sigma_b(A) = \{\lambda \in \log\sigma(A) : 0 < \alpha(A - \lambda) < \infty\}, \ \text{and let} \ p_0(A) = \{\lambda \in \log\sigma(A) : \lambda \ \text{is a finite rank pole of the resolvent of} \ A\}. \ \text{In common with current terminology, we say that} \ A \ \text{satisfies Browder's theorem, or} \ Bt, \ \text{if} \ \sigma_w(A) = \sigma_b(A) \ (\iff \sigma(A) \setminus \sigma_w(A) = p_0(A)). \ \end{tabular}$$

An operator $A \in B(\mathcal{X})$ has the single-valued extension property at a point $\lambda_0 \in \mathbb{C}$, SVEP at λ_0 , if for every open disc \mathcal{D} centered at λ_0 the only analytic function $f : \mathcal{D} \longrightarrow \mathcal{X}$ satisfying $(A - \lambda)f(\lambda) = 0$ is the function $f \equiv 0$. The single valued extension property plays an important role in local spectral theory and Fredholm theory (see [11] and [1]). Evidently, every A has SVEP at points in the resolvent set $\rho(A) = \mathbb{C} \setminus \sigma(A)$ and the boundary $\partial \sigma(A)$ of $\sigma(A)$. It is easily verified that SVEP is inherited by restrictions. We say that A has SVEP if it has SVEP at every $\lambda \in \sigma(A)$.

Lemma 2.1. If $\lambda \in \Phi_{\pm}(A)$, then the following implications hold:

 $\begin{array}{l} A \ (resp., A^*) \ has \ SVEP \ at \ \lambda \Longrightarrow asc(A - \lambda) < \infty \ (resp., dsc(A - \lambda) < \infty);\\ asc(A - \lambda) < \infty \Longrightarrow ind(A - \lambda) \leq 0 \ (resp., dsc(A - \lambda) < \infty \Longrightarrow ind(A - \lambda) \geq 0).\\ Proof. \ See \ [1, \ Theorems \ 3.16, \ 3.17 \ and \ Corollary \ 3.19]. \end{array}$

The following theorem is known (see, for example, [2, Lemma 2.18] and [3, Theorem 2.2]).

Theorem 2.2. Let $A \in B(\mathcal{X})$.

(i) A necessary and sufficient condition for A to satisfy Browder's theorem, $\sigma(A) \setminus \sigma_w(A) = p_0(A)$ (equivalently, $\sigma_b(A) = \sigma_w(A)$), is that A has SVEP at points $\lambda \notin \sigma_w(A)$.

(ii) A necessary and sufficient condition for A to satisfy Weyl's theorem is that A satisfies Browder's theorem and A is polaroid at points $\lambda \in \pi_{00}(A)$.

It is well known that A satisfies Browder's theorem if and only if A^* satisfies Browder's theorem: this, however, fails for Weyl's theorem.

The quasinilpotent part $H_0(A)$ and the analytic core K(A) of an operator $A \in B(\mathcal{X})$ are the sets

$$H_0(A) = \{ x \in \mathcal{X} : \lim_{n \to \infty} ||A^n x||^{\frac{1}{n}} = 0 \}$$

and

238

 $K(A) = \{x \in \mathcal{X} : \text{there exists a sequence } \{x_n\} \subset \mathcal{X} \text{ and } \delta > 0 \text{ for which}$ $x = x_0, Ax_{n+1} = x_n \text{ and } ||x_n|| \le \delta^n ||x|| \text{ for all } n \in \mathbb{N}$

[1, 11]. $H_0(A)$ and K(A) are generally non-closed hyperinvariant subspaces of A such that $A^{-m}(0) \subseteq H_0(A)$ for all $m \in \mathbb{N}$ and AK(A) = K(A) [12]. If $\lambda \in iso\sigma(A)$, then

$$\mathcal{X} = H_0(A - \lambda) \oplus K(A - \lambda)$$

[1, Theorem 3.74]; furthermore, if also $\lambda \in \Phi_{\pm}(A)$, then, [1, Theorem 3.77], $H_0(A - \lambda) = (A - \lambda)^{-p}(0)$ for some $p \in \mathbb{N}$ and

$$\mathcal{X} = (A - \lambda)^{-p}(0) \oplus (A - \lambda)^p \mathcal{X}$$

(so that λ is a finite rank pole of the resolvent of A).

Operators $A \in (\mathcal{HP})$ have SVEP [6, Theorem 2.8], and SVEP survives quasi-affine transforms. Indeed, if SX = XT, where $S \in B(\mathcal{X}), X \in B(\mathcal{Y}, \mathcal{X})$ is injective and $T \in B(\mathcal{Y})$, then $(T - \lambda)f(\lambda) = 0 \Longrightarrow (S - \lambda)Xf(\lambda) = 0$: hence if S has SVEP at a point λ_0 and λ is a point in an open disc centered at λ_0 , then $Xf(\lambda) \equiv 0 \Longrightarrow f(\lambda) \equiv 0$. The polaroid property survives similarities, but it does not survive quasi-affine transforms, as the following example shows. Let $T \in \ell^2(\mathbb{N})$ be the forward unilateral shift, let $S \in \ell^2(\mathbb{N})$ be the weighted forward unilateral shift with the weight sequence $\{\frac{1}{n+1}\}$, and let $X \in \ell^2(\mathbb{N})$ be the multiplication operator defined by $Xx = \{\frac{x_n}{n!}\}_{n \in \mathbb{N}}$ for all $x = \{x_n\}_{n \in \mathbb{N}} \in \ell^2(\mathbb{N})$. Then $T \in (\mathcal{HP})$, X is a quasi-affinity and SX = XT, but S is quasi-nilpotent (hence not polaroid).

Operators $A \in \mathcal{A}$ such that A_{ii} has SVEP for all $1 \leq i \leq n$ have SVEP [4, Lemma 3.1]. Furthermore:

Theorem 2.3. If $A \in \mathcal{A}$ is such that A_{ii} has SVEP for all $1 \leq i \leq n$, then:

- (i) $\sigma(A) = \sigma_a(A^*) = \bigcup_{i=1}^n \sigma_a(A^*_{ii}) = \bigcup_{i=1}^n \sigma(A_{ii}) = \sigma_w(A) \cup \pi_{00}(A) =$ $\sigma_b(A) \cup \pi_{00}(A);$
- (ii) $\sigma_e(A) = \sigma_{re}(A) = \bigcup_{i=1}^n \sigma_{re}(A_{ii}) = \bigcup_{i=1}^n \sigma_e(A_{ii});$ (iii) $\sigma_{sF}(A) = \sigma_{le}(A) = acc\sigma_a(A) \cup \{\lambda \in iso\sigma_a(A) : \dim H_0(A \lambda) = \infty \text{ or }$ $(A - \lambda)\mathcal{X}^n$ is not closed};
- (iv) $\sigma_w(A) = \bigcup_{i=1}^n \sigma_w(A_{ii})$, and $\sigma_w(A) = \sigma_e(A)$ if and only if A^* has SVEP at points $\lambda \in \sigma_w(A) \setminus \sigma_e(A)$;
- (v) if C is a hole in $\sigma_e(A)$, then, for all $\lambda \in C$, either $ind(A \lambda) = 0$ and $C \cap \rho(A) \neq \emptyset$ or $ind(A - \lambda) < 0$ and the eigenvalues do not have a limit point in C (and every point of C is a deficiency value).

Furthermore, if also A^* has SVEP, then:

- (vi) $\sigma_e(A) = \sigma_{le}(A) \cap \sigma_{re}(A) = \sigma_{sF}(A) = \sigma_w(A)$ and $\sigma(A) = \sigma_a(A) = \sigma_a(A)$ $\sigma_e(A) \cup \pi_{00}(A);$
- (vii) for every hole C in $\sigma_e(A)$ and $\lambda \in C$, $ind(A \lambda) = 0$ and $C \cap \rho(A) \neq \emptyset$.

Proof. A proof of parts (i) to (iv) of the theorem, except for the equality $\sigma(A) = \sigma_w(A) \cup \pi_{00}(A) = \sigma_b(A) \cup \pi_{00}(A)$ of part (i), the equality $\sigma_{sF}(A) = \sigma_{le}(A)$ of part (iii), and the necessary and sufficient condition for the equality of the spectra $\sigma_w(A)$ and $\sigma_e(A)$ of part (iv), appears in [4, Proposition 3.5]. We divide the proof into parts (**A**) and (**B**), with (**A**) completing the proof of parts (i) to (v), and (**B**) proving parts (vi) and (vii).

(A). Start by observing that A has SVEP implies $\sigma_w(A) = \sigma_b(A)$. Evidently, $\sigma_b(A) \cup \pi_{00}(A) \subseteq \sigma(A)$. (Recall that $\pi_{00}(A) = \{\lambda \in iso\sigma(A) : 0 < \alpha(A - \lambda) < \infty\}$.) For the reverse inclusion, if $\lambda \in \sigma(A) \setminus \sigma_b(A)$, then $\lambda \in \Phi(A) = \Phi_+(A) \cap \Phi_-(A)$ and $\operatorname{asc}(A - \lambda) = \operatorname{dsc}(A - \lambda) < \infty$. Hence λ is a finite rank pole of the resolvent of A. Thus $\lambda \in \pi_{00}(A)$ and $\sigma(A) \subseteq \sigma_b(A) \cup \pi_{00}(A)$. To complete the proof of (iii), let $\lambda \notin \sigma_{re}(A)$. Then $\lambda \in \Phi_-(A)$. Since A has SVEP, $\operatorname{ind}(A - \lambda) = \alpha(A - \lambda) - \beta(A - \lambda) \leq 0$. Thus $\lambda \notin \sigma_{re}(A) \Longrightarrow (A - \lambda)\mathcal{X}^n$ is closed and $\alpha(A - \lambda) \leq \beta(A - \lambda) < \infty$. Hence $\lambda \notin \sigma_{le}(A)$, which implies that $\sigma_{le}(A) \subseteq \sigma_{re}(A)$. Thus $\sigma_{sF}(A) = \sigma_{le}(A) \cap \sigma_{re}(A) = \sigma_{le}(A)$.

To complete the proof of (iv), we start by observing that A has SVEP implies A satisfies Browder's theorem, which in turn implies that A^* satisfies Browder's theorem, i.e., A^* has SVEP at $\lambda \notin \sigma_w(A^*) = \sigma_w(A)$. Thus if $\sigma_w(A) = \sigma_e(A)$, then (vacuously) A^* has SVEP at points $\lambda \in \sigma_w(A) \setminus \sigma_e(A)$. Conversely, if A^* has SVEP at points $\lambda \in \sigma_w(A) \setminus \sigma_e(A)$, then A^* has SVEP at all $\lambda \in \Phi(A^*) = \Phi(A)$. This, since A has SVEP, implies that if $\lambda \in \Phi(A)$, then $\operatorname{ind}(A - \lambda) = 0$. Hence $\sigma_w(A) \subseteq \sigma_e(A)$. Since $\sigma_e(A) \subseteq \sigma_w(A)$ for every $A, \sigma_w(A) = \sigma_e(A)$.

To prove (v), we observe that if C is a hole in $\sigma_e(A)$ and $\lambda \in C$, then $\lambda \in \Phi(A)$ and (because of SVEP) $\operatorname{ind}(A - \lambda) \leq 0$. If $\operatorname{ind}(A - \lambda) = 0$, then (both A and A* have SVEP at λ and) $\operatorname{asc}(A - \lambda) = \operatorname{dsc}(A - \lambda) < \infty$; if, instead, $\operatorname{ind}(A - \lambda) < 0$, then (A has SVEP at λ implies) $\operatorname{asc}(A - \lambda) < \infty$. Now apply [9, Theorem 51.1 $(a_1), (b_1)$].

(B). Observe that if A^* has SVEP, then $\sigma(A) = \sigma_a(A)$ [11, Proposition 1.3.2]. Thus, if both A and A^* have SVEP, then (see (iv)) $\sigma(A) = \sigma_a(A) = \sigma_e(A) \cup \pi_{00}(A)$. Again, if A^* has SVEP, then $\lambda \notin \sigma_{le}(A)$ implies that $\lambda \in \Phi_+(A)$ and $\operatorname{ind}(A - \lambda) \ge 0 \Longrightarrow \lambda \in \Phi(A)$ (and $\operatorname{ind}(A - \lambda) \ge 0$). Thus $\lambda \notin \sigma_{re}(A)$, which in view of the fact that $\sigma_{le}(A) \subseteq \sigma_{re}(A)$, see the proof above, implies that $\sigma_{le}(A) = \sigma_{re}(A)$. This proves (vi). The proof of (vii) follows from [9, Theorem 51.1].

It is apparent from the theorem above that a number of the properties of operators $A \in C_n$ proved in Theorem 1.1 are typical of operators $A \in \mathcal{A}$ such that A_{ii} , $1 \leq i \leq n$, and A^* have SVEP. The following theorem supplements Theorem 2.3 to prove that if \mathcal{X} is separable and $A \in \mathcal{A}$, then $\sigma_p(A)$ is countable for certain classes of operators A_{ii} .

Recall that an operator $T \in B(\mathcal{X})$ is normaloid if its norm equals its spectral radius. We say that T is hereditarily normaloid if every part of T is normaloid.

We shall call an operator simply polaroid if the isolated points of its spectrum are simple poles, i.e., poles of order one, of its resolvent.

Theorem 2.4. Let \mathcal{X} be a separable Banach space, and let $T \in B(\mathcal{X})$ be a hereditarily normaloid (\mathcal{HP}) operator. Then $\sigma_p(T)$ is countable.

Proof. Let $\alpha, \beta \in \sigma_p(T)$, where $\beta \neq 0, \alpha \neq \beta$ and $|\alpha| \leq |\beta|$. Let M denote the subspace generated by $(T - \alpha)^{-1}(0)$ and $(T - \beta)^{-1}(0)$. Then $T_1 = T|_M$ is a normaloid (\mathcal{HP}) operator with $\sigma(T_1) = \{\alpha, \beta\}$, and $||T_1|| = |\beta|$. Furthermore, $\operatorname{asc}(T_1 - \beta) \leq 1$ [9, Proposition 54.2], which implies that β is a simple pole of the resolvent of T_1 . Let P_β denote the spectral projection corresponding to β ; then $||P_\beta|| = 1$ [9, Proposition 54.4]. Since

$$M = P_{\beta}M \oplus (1 - P_{\beta})M = (T_1 - \beta)^{-1}(0) \oplus (T_1 - \beta)M = (T - \beta)^{-1}(0) \oplus (T - \alpha)^{-1}(0),$$

it follows that

$$||x|| = ||P_{\beta}x|| = ||P_{\beta}(x+y)|| \le ||x+y||$$

for every $x \in (T - \beta)^{-1}(0)$ and $y \in (T_1 - \beta)M = (T - \alpha)^{-1}(0)$. Suppose now that $\sigma_p(T)$ is not countable. Then there exists an uncountable set of unit vectors $\{x_i\}$ and $\{y_i\}$, determined by the unit eigen-vectors corresponding to distinct eigen-values of T such that

$$1 \le ||x_i + y_i||.$$

Since \mathcal{X} is separable, this is impossible. Hence $\sigma_p(T)$ is countable.

Theorem 2.4 implies that if \mathcal{X} is separable, each A_{ii} , $1 \leq i \leq n$, is a hereditarily normaloid (\mathcal{HP}) operator and A is the upper triangular operator $A = (A_{ij})_{1 \leq i,j \leq n}$, then $\sigma_p(A)$ is at most countable. The hypotheses of Theorem 2.4 are satisfied by a number of classes of Banach space operators, amongst them \mathcal{THN} and \mathcal{CHN} operators of [2]. Suffice it to say here that paranormal operators, [9, page 229], are operators of the type considered in the theorem.

Perturbations. An operator $R \in B(\mathcal{X})$ is a Riesz operator if $\lambda \in \Phi(R)$ for every non-zero $\lambda \in \mathbb{C}$: equivalently, R is a Riesz operator if the essential numerical radius $r_e(R) = \lim_{n \longrightarrow \infty} ||\pi(R)^n||^{\frac{1}{n}} = 0$, where $\pi : B(\mathcal{X}) \longrightarrow B(\mathcal{X})/\mathcal{K}(\mathcal{X})$ is the Calkin map and $\mathcal{K}(\mathcal{X}) \subset B(\mathcal{X})$ is the ideal of compact operators. Evidently, quasi-nilpotent operators are Riesz operators. The following theorem, the main result of this section, considers perturbations of operators $A \in \mathcal{A}$ such that A_{ii} has SVEP for all $1 \leq i \leq n$ by upper triangular operators R such that [A, R] = 0 and $R_0 = \bigoplus_{i=1}^n R_{ii}$ is a Riesz operator. But before that we introduce some terminology and complementary results specific to this and the following results.

For an operator $T \in B(\mathcal{X})$, let $T \in \Phi(\mathcal{X})$ (resp., $T \in \Phi_+(\mathcal{X})$, $T \in \Phi_-(\mathcal{X})$) denote that T is Fredholm (resp., upper semi-Fredholm, lower semi-Fredholm).

240

The Weyl essential approximate point spectrum $\sigma_{wa}(T)$ and the Weyl essential surjectivity spectrum $\sigma_{ws}(T)$ of $T \in B(\mathcal{X})$ are the sets

$$\sigma_{wa}(T) = \bigcap_{K \in \mathcal{K}(\mathcal{X})} \sigma_a(T+K) = \{\lambda \in \sigma_a(T) : T-\lambda \notin \Phi_+(\mathcal{X}) \text{ or } \operatorname{ind}(T-\lambda) \not\leq 0\}$$

and

$$\sigma_{ws}(T) = \bigcap_{K \in \mathcal{K}(\mathcal{X})} \sigma_s(T+K) = \{\lambda \in \sigma_s(T) : T-\lambda \notin \Phi_-(\mathcal{X}) \text{ or ind}(T-\lambda) \not\geq 0\}.$$

Evidently, $\sigma_{ws}(T) = \sigma_{wa}(T^*)$, $\sigma_{wa}(T) = \sigma_{ws}(T^*)$ and $\sigma_w(T) = \sigma_{wa}(T) \cup \sigma_{ws}(T)$. The Browder essential approximate point spectrum $\sigma_{ba}(T)$ and the Browder essential surjectivity spectrum $\sigma_{bs}(T)$ of $T \in B(\mathcal{X})$ are the sets

$$\sigma_{ba}(T) = \bigcap_{K \in \mathcal{K}(\mathcal{X}), KT = TK} \sigma_a(T+K) = \{\lambda \in \sigma_a(T) : T-\lambda \notin \Phi_+(\mathcal{X}) \text{ or } \operatorname{asc}(T-\lambda) = \infty\}$$

and

$$\sigma_{bs}(T) = \bigcap_{K \in \mathcal{K}(\mathcal{X}), KT = TK} \sigma_s(T+K) = \{\lambda \in \sigma_s(T) : T - \lambda \notin \Phi_-(\mathcal{X}) \text{ or } \operatorname{dsc}(T-\lambda) = \infty\}.$$

Apparently, $\sigma_{bs}(T) = \sigma_{ba}(T^*)$, $\sigma_{ba}(T) = \sigma_{bs}(T^*)$, $\sigma_b(T) = \sigma_{ba}(T) \cup \sigma_{bs}(T)$, $\sigma_{wa}(T) \subseteq \sigma_{ba}(T)$ and $\sigma_{ws}(T) \subseteq \sigma_{bs}(T)$. We say that T satisfies a-Browder's theorem, or a - Bt (resp., s-Browder's theorem, or s - Bt) if $\sigma_{wa}(T) = \sigma_{ba}(T)$ (resp., $\sigma_{ws}(T) = \sigma_{bs}(T)$).

Lemma 2.5. *T* satisfies a - Bt (rep., s - Bt) if and only *T* has SVEP at points $\lambda \notin \sigma_{wa}(T)$ (resp., $\lambda \notin \sigma_{ws}(T)$).

Proof. The lemma is proved in [2, Lemma 2.18] for the case in which T satisfies a - Bt; the case in which T satisfies s - Bt is similarly proved.

Lemma 2.6. If T has SVEP, then T and T^* satisfy a - Bt and s - Bt.

Proof. It is clear from Lemma 2.5 that T satisfies a - Bt and s - Bt. To prove that T^* satisfies a - Bt and s - Bt, we have only to prove that $\sigma_{ba}(T^*) \subseteq \sigma_{wa}(T^*)$ and $\sigma_{bs}(T^*) \subseteq \sigma_{ws}(T^*)$. Observe that if $\lambda \notin \sigma_{wa}(T^*)$ (resp., $\lambda \notin \sigma_{ws}(T^*)$), then $T^* - \lambda I^* \in \Phi_+(\mathcal{X}^*)$ and $\operatorname{ind}(T^* - \lambda I^*) \leq 0$ (resp., $T^* - \lambda I^* \in \Phi_-(\mathcal{X}^*)$ and $\operatorname{ind}(T^* - \lambda I^*) \geq 0$). Thus, if T has SVEP and $\lambda \notin \sigma_{wa}(T^*)$ (resp., $\lambda \notin \sigma_{ws}(T^*)$), then, by Lemma 2.1, $T^* - \lambda I^* \in \Phi(\mathcal{X}^*)$ and $\operatorname{asc}(T^* - \lambda I^*) = \operatorname{dsc}(T^* - \lambda I^*) < \infty$ (resp., $T^* - \lambda I^* \in \Phi(\mathcal{X}^*)$ and $\operatorname{dsc}(T^* - \lambda I^*) < \infty$). Hence $\lambda \notin \sigma_{ba}(T^*)$ (resp., $\lambda \notin \sigma_{bs}(T^*)$).

The following lemma follows from [14, Theorem 5] and the argument of the proof of [5, Theorem 1.5(iii)].

Lemma 2.7. If $R \in B(\mathcal{X})$ is a Riesz operator such that [T, R] = 0, then $\sigma_{wx}(T+R) = \sigma_{wx}(T)$ and $\sigma_{bx}(T+R) = \sigma_{bx}(T)$, where $\sigma_{.x}$ stands for $\sigma_{.a}$ or $\sigma_{.s}$.

Taken together, Lemmas 2.6 and 2.7 imply that if T has SVEP and the Riesz operator R commutes with T, then T + R and $T^* + R^*$ satisfy a - Bt and s - Bt. Combining with Lemma 2.5, this implies the following.

Corollary 2.8. If T has SVEP and the Riesz operator R commutes with T, then T + R has SVEP at points $\lambda \notin \sigma_{wx}(T + R)$ and $T^* + R^*$ has SVEP at points $\lambda \notin \sigma_{wx}(T^* + R^*)$, where $\sigma_{.x}$ stands for $\sigma_{.a}$ or $\sigma_{.s}$.

Theorem 2.9. Let $A \in \mathcal{A}$ be such that A_{ii} has SVEP for all $1 \leq i \leq n$. Let $R = (R_{ij})_{1 \leq i,j \leq n} \in B(\mathcal{X}^n)$, $R_{ij} = 0$ for all i > j, be an upper triangular operator such that [T, R] = 0.

- (i) If $R_0 = \bigoplus_{i=1}^n R_{ii}$ is a Riesz operator, then $\sigma(A+R) \setminus \sigma_w(A+R) = p_0(A+R)$.
- (ii) If $R_0 = \bigoplus_{i=1}^n R_{ii}$ is a quasi-nilpotent operator, then A + R satisfies conclusions (i) to (v) of Theorem 2.3.
- (iii) If $R_0 = \bigoplus_{i=1}^n R_{ii}$ is an injective quasi-nilpotent operator, then (A + R) satisfies conclusions (i) to (v) of Theorem 2.3 and) $\sigma(A+R) = \sigma_w(A+R) = \sigma_b(A+R)$.

Proof. The hypothesis R commutes with A implies that R_{ii} commutes with A_{ii} for all $1 \le i \le n$.

(i) Since the restriction of a Riesz operator to an invariant subspace is again a Riesz operator, the hypotheses imply that R_{ii} is a Riesz operator such that $[A_{ii}, R_{ii}] = 0$, $\sigma_w(A_{ii} + R_{ii}) = \sigma_w(A_{ii})$, $\sigma_b(A_{ii} + R_{ii}) = \sigma_b(A_{ii})$ for all $1 \leq i \leq n$. Furthermore, A has SVEP (implies A satisfies Bt, i.e., $\sigma_w(A) = \sigma_b(A)$), $\sigma_w(A) = \bigcup_{i=1}^n \sigma_w(A_{ii})$ and $\sigma_b(A) = \bigcup_{i=1}^n \sigma_b(A_{ii})$. Hence $\sigma_w(A) = \bigcup_{i=1}^n \sigma_w(A_{ii} + R_{ii}) = \bigcup_{i=1}^n \sigma_b(A_{ii} + R_{ii}) = \sigma_b(A)$. Evidently, $\sigma_w(A + R) \subseteq \bigcup_{i=1}^n \sigma_w(A_{ii} + R_{ii})$ and $\sigma_b(A + R) \subseteq \bigcup_{i=1}^n \sigma_b(A_{ii} + R_{ii})$. We prove the reverse inclusions: this would then imply that A + R satisfies Bt.

Define the operator $T_s \in B(\bigoplus_{i=s}^n \mathcal{X}_i), 1 \leq s \leq n$, by

$$T_{s} = \begin{pmatrix} A_{ss} + R_{ss} & A_{s(s+1)} + R_{s(s+1)} & \cdots & A_{sn} + R_{sn} \\ 0 & A_{(s+1)(s+1)} + R_{(s+1)(s+1)} & \cdots & A_{(s+1)n} + R_{(s+1)n} \\ \vdots & & & \\ 0 & 0 & \cdots & A_{nn} + R_{nn} \end{pmatrix}$$

Considering the operator

$$A + R = \left(\begin{array}{cc} A_{11} + R_{11} & * \\ 0 & T_2 \end{array} \right),$$

it follows that if $\lambda \notin \sigma_w(A+R)$, then $A_{11} + R_{11} - \lambda \in \Phi_+(\mathcal{X}_1)$, $T_2 - \lambda \in \Phi_-(\bigoplus_{i=2}^n \mathcal{X}_i)$ and $\operatorname{ind}(A_{11}+R_{11}-\lambda)+\operatorname{ind}(T_2-\lambda)=0$. Recall from Corollary 3.2 that $A_{11} + R_{11}$ has SVEP at points $\lambda \notin \sigma_{wa}(A_{11} + R_{11})$ and $A_{11}^* + R_{11}^*$ has SVEP at points $\lambda \notin \sigma_{wa}(A_{11} + R_{11})$ and $A_{11}^* + R_{11}^*$ has SVEP at points $\lambda \notin \sigma_{ws}(A_{11}^* + R_{11}^*) = \sigma_{wa}(A_{11} + R_{11})$. Hence, see Lemma 2.1, if $A_{11} + R_{11} - \lambda \in \Phi_+(\mathcal{X}_1)$ and if either $\operatorname{ind}(A_{11} + R_{11} - \lambda) \ge 0$ or $\operatorname{ind}(A_{11} + R_{11} - \lambda) \le 0$, then $\operatorname{ind}(A_{11} + R_{11} - \lambda) = 0$ and $A_{11} + R_{11} - \lambda \in \Phi(\mathcal{X}_1)$ (i.e.,

242

 $\lambda \notin \sigma_w(A_{11} + R_{11}))$. Consequently, $T_2 - \lambda \in \Phi_-(\bigoplus_{i=2}^n \mathcal{X}_i)$ and $\operatorname{ind}(T_2 - \lambda) = 0$, i.e., $T_2 - \lambda \in \Phi(\bigoplus_{i=2}^n \mathcal{X}_i)$. Repeating this argument, successively considering T_2 , T_3 etc., it follows that if $\lambda \notin \sigma_w(A + R)$, then $\lambda \notin \sigma_w(A_{ii} + R_{ii})$ for all $1 \leq i \leq n$. Hence $\bigcup_{i=1}^n \sigma_w(A_{ii} + R_{ii}) \subseteq \sigma_w(A + R)$. A similar argument proves that $\bigcup_{i=1}^n \sigma_b(A_{ii} + R_{ii}) \subseteq \sigma_b(A + R)$.

(ii) The argument in this case is straightforward. Since R_{ii} is a quasinilpotent which commutes with A_{ii} for all $1 \le i \le n$, A_{ii} and $A_{ii}+R_{ii}$ are quasinilpotent equivalent [11, p. 253]. Since A_{ii} has SVEP for all $1 \le i \le n$, $A_{ii}+R_{ii}$ has SVEP [11, Proposition 3.4.1]. Hence A + R has SVEP (so that Theorem 2.3 applies).

(iii) Evidently, $A_{ii} + R_{ii}$ has SVEP for all $1 \leq i \leq n$, Theorem 2.3 applies and we conclude that $\sigma_w(A+R) = \sigma_b(A+R)$ and $\sigma(A+R) \setminus \sigma_w(A+R) = p_0(A+R) \subseteq \pi_{00}(A+R)$. Since, this is easily verified, $\sigma_p(A+R) \subseteq \bigcup_{i=1}^n \sigma_p(A_{ii}+R_{ii})$ and $\pi_{00}(A_{ii}+R_{ii}) = \emptyset \Longrightarrow \pi_{00}(A+R) = \emptyset$, to complete the proof it would suffice to prove that the set $\pi_{00}(A_{ii}+R_{ii})$ is empty. To this end, we start by observing from the commutativity of A_{ii} and R_{ii} that if $(0 \neq)x \in (A_{ii}+R_{ii}-\lambda)^{-1}(0)$ for some $\lambda \in \sigma(A_{ii}+R_{ii})$, then $R_{ii}^m x \in (A_{ii}+R_{ii}-\lambda)^{-1}(0)$ for all $m \in \mathbb{N}$. Let $g(t) = \sum_{i=1}^r c_i t^i = c_r \prod_{i=1}^r t - \lambda_i$ be a polynomial such that $g(R_{ii}) = 0$. Then, since the injectivity of R implies that of R_{ii} for all $1 \leq i \leq n$, $c_r = 0$, and hence, by a finite induction argument, that $c_i = 0$ for all $0 \leq i \leq r$. Consequently, $\{R_{ii}^n x\}$ is a linearly independent set of vectors in $(A_{ii} + R_{ii} - \lambda)^{-1}(0)$ and the eigenvalues of $A_{ii} + R_{ii}$ (and so also of $A_{ii} = A_{ii} + R_{ii} - R_{ii}$) have infinite multiplicity. Hence $\pi_{00}(A_{ii} + R_{ii}) = \emptyset$.

3. Operators $A \in (HP)_n$: Weyl's theorem

For an upper triangular operator $A = (A_{ij})_{1 \leq i,j \leq n} \in B(\mathcal{X}^n)$, A polaroid (even, hereditarily polaroid) does not imply A_{ii} is hereditarily polaroid (even, polaroid) for all $1 \leq i \leq n$. For example, let $A = A_{11} \oplus A_{22}$, where $A_{11} = U \in B(\ell^2)$ is the forward unilateral shift and $A_{22} \in B(\ell^2)$ is a non-nilpotent quasinilpotent operator. Then $\sigma(A)$ is the closed unit disc, A is vacuously polaroid, and A_{22} is not polaroid. Again, if $A = \begin{pmatrix} U & 1-UU^* \\ U^* & U^* \end{pmatrix}$, where $U \in B(\ell^2)$ is the forward unilateral shift, then A is unitary (hence (\mathcal{HP})), $U \in (\mathcal{HP})$, U^* is polaroid, but $U^* \notin (\mathcal{HP})$. The following theorem considers the converse problem.

Theorem 3.1. Operators $A \in (HP)_n$ are polaroid.

Proof. Since (\mathcal{HP}) operators have SVEP [6], $\sigma(A) = \bigcup_{i=1}^{n} \sigma(A_{ii})$. Hence

$$\operatorname{iso}\sigma(A) \subseteq \bigcup_{i=1}^{n} \operatorname{iso}\sigma(A_{ii}).$$

Let $\lambda \in iso\sigma(A)$. Then the polaroid hypothesis on A_{ii} implies the existence of non–negative integers p_i such that $H_0(A_{ii} - \lambda) = (A_{ii} - \lambda)^{-p_i}(0)$. (Evidently, $p_j = 0$ whenever $\lambda \notin \sigma(A_{jj})$.) We consider the operator $A_2 = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}$: the

proof for the general case follows from a finitely repeated argument applied to $A_j = \begin{pmatrix} A_{j-1} & * \\ 0 & A_{jj} \end{pmatrix}$, $3 \leq j \leq n$. Let $p = \max\{p_1, p_2\}$. Then $H_0(A_{ii} - \lambda) = (A_{ii} - \lambda)^{-p}(0)$; $1 \leq i \leq 2$. Observe that if $(\lambda \in iso\sigma(A_2) \text{ and}) x = x_1 \oplus x_2 \in H_0(A_2 - \lambda)$, then

$$||(A_2 - \lambda)^m x||^{\frac{1}{m}} = ||\{(A_{11} - \lambda)^m x_1 + \sum_{j=0}^{m-1} (A_{11} - \lambda)^{m-j-1} A_{12} (A_{22} - \lambda)^j x_2\}$$

$$\oplus (A_{22} - \lambda)^m x_2 ||^{\frac{1}{m}} \longrightarrow 0 \text{ as } m \longrightarrow \infty$$

implies that

$$\lim_{m \to \infty} ||(A_{22} - \lambda)^m x_2||^{\frac{1}{m}} = 0 \quad (\Longrightarrow x_2 \in (A_{22} - \lambda)^{-p}(0))$$

and

$$\lim_{m \to \infty} ||(A_{11} - \lambda)^m x_1 + \sum_{j=0}^{m-1} (A_{11} - \lambda)^{m-j-1} A_{12} (A_{22} - \lambda)^j x_2||^{\frac{1}{m}} = 0.$$

Choose m = (t+1)p, t some positive integer, and set

$$(A_{11} - \lambda)^p x_1 + \sum_{j=0}^{p-1} (A_{11} - \lambda)^{p-j-1} A_{12} (A_{22} - \lambda)^j x_2 = y_1$$

Then, since $(A_{22} - \lambda)^r x_2 = 0$ for integers $r \ge p$,

$$(A_{11} - \lambda)^m x_1 + \sum_{j=0}^{m-1} (A_{11} - \lambda)^{m-j-1} A_{12} (A_{22} - \lambda)^j x_2$$

= $(A_{11} - \lambda)^{(t+1)p} x_1 + \sum_{j=0}^{(t+1)p-1} (A_{11} - \lambda)^{(t+1)p-j-1} A_{12} (A_{22} - \lambda)^j x_2$
= $(A_{11} - \lambda)^{tp} \{ (A_{11} - \lambda)^p x_1 + \sum_{j=0}^{p-1} (A_{11} - \lambda)^{p-j-1} A_{12} (A_{22} - \lambda)^j x_2 \}$
= $(A_{11} - \lambda)^{tp} y.$

Since

$$\begin{aligned} ||(A_{11} - \lambda)^{tp}y||^{\frac{1}{tp}} &\longrightarrow 0 \quad \text{as} \quad t \longrightarrow \infty, \\ y \in H_0(A_{11} - \lambda) = (A_{11} - \lambda)^{-p}(0). \text{ Hence} \\ H_0(A_2 - \lambda) \subseteq \bigoplus_{i=1}^2 (A_{ii} - \lambda)^{-p}(0) = (A_2 - \lambda)^{-p}(0). \end{aligned}$$

Since $(T-\lambda)^{-p}(0) \subseteq H_0(T-\lambda)$ for every operator T (and non-negative integer p), $H_0(A_2 - \lambda) = (A_2 - \lambda)^{-p}(0)$.

To complete the proof, we now recall from above that if $\lambda \in iso\sigma(A_2)$, then

$$\mathcal{X}^2 = H_0(A_2 - \lambda) \oplus K(A_2 - \lambda) = (A_2 - \lambda)^{-p}(0) \oplus (A_2 - \lambda)^p \mathcal{X}^2,$$

i.e., λ is a pole of order $\leq p$ of the resolvent of A_2 .

Recall, [1, p. 177], that a Banach space operator A satisfies a-Weyl's theorem if $\sigma_a(A) \setminus \sigma_{aw}(A) = \pi_{00}^a(A)$, where $\pi_{00}^a(A) = \{\lambda \in iso\sigma_a(A) : 0 < \alpha(A-\lambda) < \infty\}$. Let $H(\sigma(A))$ denote the class of functions f which are analytic on a neighbourhood of $\sigma(A)$. For a polaroid operator with SVEP, f(A) satisfies Weyl's theorem and $f(A^*)$ satisfies a-Weyl's theorem for every $f \in H(\sigma(A))$ [7, Lemma 3.1]. Hence:

Corollary 3.2. For operators $A \in (HP)_n$, f(A) satisfies Weyl's theorem and $f(A^*)$ satisfies a-Weyl's theorem for every $f \in H(\sigma(A))$.

More is true, as we now proceed to prove. But before that some terminology. An operator A is said to be algebraic if there exists a (non-trivial) polynomial $q(\cdot)$ such that q(A) = 0. Banach space operators F such that F^n is finite dimensional for some positive integer n are algebraic. We say that an operator A is polynomially (\mathcal{HP}) if there exists a polynomial $q(\cdot)$ such that $q(A) \in (\mathcal{HP})$.

Theorem 3.3. Let $A \in \mathcal{A}$ be such that the operator $A_0 = \bigoplus_{i=1}^n A_{ii}$ is a polynomially $(HP)_n$ operator. If $B = \bigoplus_{i=1}^n B_{ii} \in B(\mathcal{X}^n)$ is an algebraic operator which commutes A_0 , then f(A + B) satisfies Weyl's theorem and $f(A^* + B^*)$ satisfies a-Weyl's theorem for every $f \in H(\sigma(A + B))$.

Proof. The hypothesis that A_0 is polynomially $(HP)_n$ implies that A_{ii} is polynomially (\mathcal{HP}) for all $1 \leq i \leq n$. Hence A_{ii} is polaroid and has SVEP for all $1 \leq i \leq n$ [7, Lemma 3.3]. Furthermore, since B is algebraic and commutes with A_0 , B_{ii} is algebraic and commutes with A_{ii} for all $1 \leq i \leq n$. Consequently, $A_{ii} + B_{ii}$ is polaroid and has SVEP for all $1 \leq i \leq n$. [7, Lemma 3.4]; hence A + B has SVEP, a consequence of the fact that the diagonal elements $A_{ii} + B_{ii}$ of A + B have SVEP, and A + B is polaroid (by Theorem 3.1). This, by [7, Theorem 3.8], implies that f(A+B) satisfies Weyl's theorem and $f(A^* + B^*)$ satisfies a-Weyl's theorem for every $f \in H(\sigma(A + B))$.

References

- P. Aiena, Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer, 2004.
- [2] B. P. Duggal, Hereditarily normaloid operators, Extracta Math. 20 (2005), no. 2, 203– 217.
- [3] _____, Polaroid operators satisfying Weyl's theorem, Linear Algebra Appl. 414 (2006), no. 1, 271–277.
- [4] _____, Upper triangular operators with SVEP: spectral properties, Filomat 21 (2007), no. 1, 25–37.
- [5] _____, Weyl's theorem and hypercyclic/supercyclic operators, J. Math. Anal. Appl. 335 (2007), no. 2, 990–995.
- [6] _____, Hereditarily polaroid operators, SVEP and Weyl's theorem, J. Math. Anal. Appl. 340 (2008), no. 1, 366–373.
- [7] _____, Polaroid operators, SVEP and perturbed Browder, Weyl theorems, Rend. Circ. Mat. Palermo (2) 56 (2007), no. 3, 317–330.
- [8] B. P. Duggal, R. E. Harte, and I. H. Jeon, *Polaroid operators and Weyl's theorem*, Proc. Amer. Math. Soc. **132** (2004), no. 5, 1345–1349.

- $\left[9\right]$ H. G. Heuser, Functional Analysis, John Wiley and Sons, 1982.
- [10] I. B. Jung, E. Ko, and C. Pearcy, Spectral properties of some operator matrices, Arch. Math. (Basel) 80 (2003), no. 1, 37–46.
- [11] K. B. Laursen and M. M. Neumann, Introduction to Local Spectral Theory, Clarendon Press, Oxford, 2000.
- [12] M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux, Glasgow Math. J. 29 (1987), no. 2, 159–175.
- [13] C. Pearcy, Some Recent Developments in Operator Theory, Regional Conference Series in Mathematics, No. 36. American Mathematical Society, Providence, R.I., 1978.
- [14] V. Rakočević, Semi-Browder operators and perturbations, Studia Math. 122 (1997), no. 2, 131–137.

8 Redwood Grove, Northfield Avenue Ealing, London W5 4SZ, United Kingdom *E-mail address:* bpduggal@yahoo.co.uk