• 제목/요약/키워드: relative cohomology

검색결과 6건 처리시간 0.019초

RELATIVE ROTA-BAXTER SYSTEMS ON LEIBNIZ ALGEBRAS

  • Apurba Das;Shuangjian Guo
    • 대한수학회지
    • /
    • 제60권2호
    • /
    • pp.303-325
    • /
    • 2023
  • In this paper, we introduce relative Rota-Baxter systems on Leibniz algebras and give some characterizations and new constructions. Then we construct a graded Lie algebra whose Maurer-Cartan elements are relative Rota-Baxter systems. This allows us to define a cohomology theory associated with a relative Rota-Baxter system. Finally, we study formal deformations and extendibility of finite order deformations of a relative Rota-Baxter system in terms of the cohomology theory.

LOCAL-GLOBAL PRINCIPLE AND GENERALIZED LOCAL COHOMOLOGY MODULES

  • Bui Thi Hong Cam;Nguyen Minh Tri;Do Ngoc Yen
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.649-661
    • /
    • 2023
  • Let 𝓜 be a stable Serre subcategory of the category of R-modules. We introduce the concept of 𝓜-minimax R-modules and investigate the local-global principle for generalized local cohomology modules that concerns to the 𝓜-minimaxness. We also provide the 𝓜-finiteness dimension f𝓜I (M, N) of M, N relative to I which is an extension the finiteness dimension fI (N) of a finitely generated R-module N relative to I.

A NOTE ON DERIVATIONS OF A SULLIVAN MODEL

  • Kwashira, Rugare
    • 대한수학회논문집
    • /
    • 제34권1호
    • /
    • pp.279-286
    • /
    • 2019
  • Complex Grassmann manifolds $G_{n,k}$ are a generalization of complex projective spaces and have many important features some of which are captured by the $Pl{\ddot{u}}cker$ embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$ where $N=\(^n_k\)$. The problem of existence of cross sections of fibrations can be studied using the Gottlieb group. In a more generalized context one can use the relative evaluation subgroup of a map to describe the cohomology of smooth fiber bundles with fiber the (complex) Grassmann manifold $G_{n,k}$. Our interest lies in making use of techniques of rational homotopy theory to address problems and questions involving applications of Gottlieb groups in general. In this paper, we construct the Sullivan minimal model of the (complex) Grassmann manifold $G_{n,k}$ for $2{\leq}k<n$, and we compute the rational evaluation subgroup of the embedding $f:G_{n,k}{\rightarrow}{\mathbb{C}}P^{N-1}$. We show that, for the Sullivan model ${\phi}:A{\rightarrow}B$, where A and B are the Sullivan minimal models of ${\mathbb{C}}P^{N-1}$ and $G_{n,k}$ respectively, the evaluation subgroup $G_n(A,B;{\phi})$ of ${\phi}$ is generated by a single element and the relative evaluation subgroup $G^{rel}_n(A,B;{\phi})$ is zero. The triviality of the relative evaluation subgroup has its application in studying fibrations with fibre the (complex) Grassmann manifold.

COLOCALIZATION OF LOCAL HOMOLOGY MODULES

  • Rezaei, Shahram
    • 대한수학회보
    • /
    • 제57권1호
    • /
    • pp.167-177
    • /
    • 2020
  • Let I be an ideal of Noetherian local ring (R, m) and M an artinian R-module. In this paper, we study colocalization of local homology modules. In fact we give Colocal-global Principle for the artinianness and minimaxness of local homology modules, which is a dual case of Local-global Principle for the finiteness of local cohomology modules. We define the representation dimension rI (M) of M and the artinianness dimension aI (M) of M relative to I by rI (M) = inf{i ∈ ℕ0 : HIi (M) is not representable}, and aI (M) = inf{i ∈ ℕ0 : HIi (M) is not artinian} and we will prove that i) aI (M) = rI (M) = inf{rIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R)} ≥ inf{aIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R)}, ii) inf{i ∈ ℕ0 : HIi (M) is not minimax} = inf{rIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R) ∖ {𝔪}}. Also, we define the upper representation dimension RI (M) of M relative to I by RI (M) = sup{i ∈ ℕ0 : HIi (M) is not representable}, and we will show that i) sup{i ∈ ℕ0 : HIi (M) ≠ 0} = sup{i ∈ ℕ0 : HIi (M) is not artinian} = sup{RIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R)}, ii) sup{i ∈ ℕ0 : HIi (M) is not finitely generated} = sup{i ∈ ℕ0 : HIi (M) is not minimax} = sup{RIR𝖕 (𝖕M) : 𝖕 ∈ Spec(R) ∖ {𝔪}}.