LOCAL-GLOBAL PRINCIPLE AND GENERALIZED LOCAL COHOMOLOGY MODULES

BUI THI HONG CAM, NGUYEN MINH TRI, AND DO NGOC YEN

ABSTRACT. Let \mathcal{M} be a stable Serre subcategory of the category of R-modules. We introduce the concept of \mathcal{M} -minimax R-modules and investigate the local-global principle for generalized local cohomology modules that concerns to the \mathcal{M} -minimaxness. We also provide the \mathcal{M} -finiteness dimension $f_I^{\mathcal{M}}(M, N)$ of M, N relative to I which is an extension the finiteness dimension $f_I(N)$ of a finitely generated R-module N relative to I.

1. Introduction

Throughout this paper, R is a commutative Noetherian ring and I is an ideal of R. Let M, N be two finitely generated R-modules. The *i*-th local cohomology module of an R-module X with respect to I is denoted by $H_I^i(X)$. Local cohomology was first defined and studied by Grothendieck. The readers may refer [4,8] for more details about local cohomology. Since the local cohomology theory has a lot of useful applications, there are some extensions of this theory. The following generalization is given by J. Herzog in [10]. Let j be a nonnegative integer, M a finitely generated R-module and X an R-module. The j-th generalized local cohomology module of M and X with respect to I is defined by

$$H_I^j(M, X) \cong \varinjlim_n \operatorname{Ext}_R^j(M/I^nM, X).$$

If M = R, then $H_I^i(M, X) = H_I^i(X)$ the usual local cohomology module.

An important theorem in local cohomology is Faltings' local-global principle for the finiteness dimension of local cohomology modules [6, Satz 1]. The Faltings' theorem was stated that for a given finitely generated *R*-module and a positive integer *n*, the $R_{\mathfrak{p}}$ -module $H^i_{IR_{\mathfrak{p}}}(N_{\mathfrak{p}})$ is finitely generated for all $0 \leq i \leq n$ and for all $\mathfrak{p} \in \operatorname{Spec} R$ if and only if the *R*-module $H^i_I(N)$ is finitely

O2023Korean Mathematical Society

Received May 31, 2022; Revised December 23, 2022; Accepted February 10, 2023.

²⁰²⁰ Mathematics Subject Classification. Primary 13D45, 13C60.

Key words and phrases. Finiteness dimension, generalized local cohomology, local-global principle, Serre subcategories.

generated for all $0 \le i \le n$. The Faltings' local-global principle for the finiteness dimension of local cohomology modules has been improved in [2,5,9,14,15,17].

The Faltings' local-global principle induces the concept of the finiteness dimension $f_I(M)$ which is the least integer *i* such that a local cohomology module $H_I^i(M)$ is not a finitely generated *R*-module.

Recently, Faltings' local-global principle has been applied to the generalized local cohomology modules. Some results relating to this problem can be seen in [7,11].

In this paper, we will introduce the concept of \mathcal{M} -minimax R-modules, where \mathcal{M} is a stable Serre subcategory of the category of R-modules. This notion is based on the concept of \mathcal{S} -minimax R-modules [13] and some results in [17]. Recall that a stable Serre subcategory of the category of R-modules is a Serre subcategory that is closed under taking injective hulls. An R-module K is said to be \mathcal{M} -minimax if there is a finitely generated R-module T of Ksuch that $K/T \in \mathcal{M}$. We investigate the local-global principle for generalized local cohomology modules that concerns to the \mathcal{M} -minimaxness. One of the our tools for proving the main results in Section 2, is the following theorem.

Theorem 1.1 (Theorem 2.5). Let \mathcal{M} be a stable Serre subcategory of the category of *R*-modules. Assume that M, N are two finitely generated *R*-modules and *t* is a non-negative integer such that $H_I^i(M, N)$ is \mathcal{M} -minimax for all i < t. Then $\operatorname{Hom}_R(R/I, H_I^t(M, N))$ is \mathcal{M} -minimax.

As the first main result of this paper, we prove the following.

Theorem 1.2. Let \mathcal{M} be a stable Serre subcategory of the category of R-modules, t a non-negative integer, I an ideal of R and M, N two finitely generated R-modules. Then the following statements are equivalent:

- (i) The module $H_I^i(M, N)$ is an \mathcal{M} -minimax R-module for all i < t;
- (ii) The module $H_I^i(M, N)_{\mathfrak{p}}$ is an $(\mathcal{M} \otimes_R R_{\mathfrak{p}})$ -minimax $R_{\mathfrak{p}}$ -module for all i < t and for all $\mathfrak{p} \in \operatorname{Spec} R$;
- (iii) The module $H_I^i(M, N)_{\mathfrak{m}}$ is an $(\mathcal{M} \otimes_R R_{\mathfrak{m}})$ -minimax $R_{\mathfrak{m}}$ -module for all i < t and for all $\mathfrak{m} \in \operatorname{Max} R$.

This result is a generalization of Faltings' local-global principle, which includes the local-global principles for the Artinianness and the modules in dimension < n of local cohomology modules as well as of generalized local cohomology modules. Another main result of this paper is Theorem 2.13 which shows some equivalent conditions such that the module $H_I^i(M, N)$ is \mathcal{M} -minimax for all i < t. This result inspires us to provide the concept \mathcal{M} finiteness dimension $f_I^{\mathcal{M}}(M, N)$ of M, N with respect to I. The paper is closed by some consequents relating to some certain finiteness dimensions in [2,3,11].

Throughout this article, \mathcal{M} is a stable Serre subcategory of the category of *R*-modules. We shall use Max*R* to denote the set of all maximal ideals of *R*. Also, for any ideal *I* of *R*, we denote $\{\mathfrak{p} \in \operatorname{Spec} R | I \subseteq \mathfrak{p}\}$ by V(I). For any ideal *J* of *R*, the radical of *J*, denoted by \sqrt{J} , is defined to be the set $\{x \in R \mid x^n \in J \text{ for some } n \in \mathbb{N}\}$. We denote by $E_R(M)$ the injective hull of an *R*-module *M*. Let *S* be a subcategory of the category of *R*-modules and **p** be a prime ideal of *R*, we denote by $S \otimes_R R_p$ the set [17]

$$\mathcal{S} \otimes_R R_{\mathfrak{p}} = \{ M \otimes_R R_{\mathfrak{p}} \mid M \in \mathcal{S} \}.$$

Moreover, the set $\cup_{M \in \mathcal{S}} \operatorname{Supp}_R M$ is denoted by $\operatorname{Supp}_R \mathcal{S}$.

2. Main results

In [18], H. Zöschinger introduced the class of minimax modules. An R-module K is said to be a minimax module if K has a finitely generated sub-module T such that K/T is Artinian.

Next, we recall that a Serre subcategory S of the category of R-modules is a subcategory of the category of R-modules if it is closed under taking submodules, quotients and extensions. A Serre subcategory of the category of R-modules is called *stable* if it is closed under taking injective hulls.

Definition. Let \mathcal{M} be a stable Serre subcategory of the category of R-modules. An R-module M is called \mathcal{M} -minimax if there exists a finitely generated submodule N of M such that $M/N \in \mathcal{M}$.

Example 2.1.

- (i) Note that the class of Artinian R-modules is a stable Serre subcategory of the category of R-modules. Hence all Artinian R-modules are \mathcal{M} -minimax.
- (ii) It is clear that finitely generated R-modules are \mathcal{M} -minimax.
- (iii) The class of minimax R-modules, which was introduced by Zöchinger in [18], is \mathcal{M} -minimax.
- (iv) Since $\operatorname{Ass}_R X = \operatorname{Ass}_R E(X)$, the subcategory $D_{\leq n-1}$ is a stable subcategory. So, the concept of $\operatorname{FD}_{\leq n-1}$ modules in [1] and the modules in dimension < n in [2] are \mathcal{M} -minimax.

Lemma 2.2. Let \mathcal{M} be a stable Serre subcategory of the category of R-modules. The class of \mathcal{M} -minimax R-modules is a Serre subcategory of the category of R-modules.

Proof. It follows from [16, Corollary 3.5].

Lemma 2.3. Let \mathcal{M} be a stable Serre subcategory of the category of R-modules. Let \mathcal{M} be a finitely generated R and N an \mathcal{M} -minimax R-module. Then $\operatorname{Ext}_{R}^{i}(\mathcal{M}, N)$ and $\operatorname{Tor}_{i}^{R}(\mathcal{M}, N)$ are \mathcal{M} -minimax for all $i \geq 0$.

Proof. Since M is a finitely generated R-module and R is a Noetherian ring, there exists a free resolution of M

$$\mathbf{F}: \quad \cdots F_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to 0,$$

where F_i is finitely generated free for all $i \ge 0$. For each non-negative integer i, one has that $\operatorname{Hom}_R(F_i, N) = \oplus^t N$ for some positive integer t. Since

 $\operatorname{Ext}_{R}^{i}(M,N) = H^{i}(\operatorname{Hom}_{R}(\mathbf{F},N))$ which is a subquotient of the \mathcal{M} -minimax R-module $\oplus^{t}N$, it follows from Lemma 2.2 that $\operatorname{Ext}_{R}^{i}(M,N)$ is \mathcal{M} -minimax for all $i \geq 0$. The proof of Tor modules is similar. \Box

Next, we summarize some basic properties of generalized local cohomology modules which follow easily from the definition of generalized local cohomology modules.

Lemma 2.4. Let M be a finitely generated R-module and X an R-module. The following statements are true.

- (i) $\Gamma_I(M, X) \cong \operatorname{Hom}_R(M, \Gamma_I(X)) \cong \Gamma_I(\operatorname{Hom}_R(M, X)).$
- (ii) If $\Gamma_I(X) = X$, then $H_I^i(M, X) \cong \operatorname{Ext}^i_R(M, X)$ for all $i \ge 0$.

Theorem 2.5. Let \mathcal{M} be a stable Serre subcategory of the category of R-modules. Assume that M, N are two finitely generated R-modules and t is a non-negative integer such that $H_I^i(M, N)$ is \mathcal{M} -minimax for all i < t. Then $\operatorname{Hom}_R(R/I, H_I^t(M, N))$ is \mathcal{M} -minimax.

Proof. The proof is by induction on t. Let t = 0. We see that

$$\operatorname{Hom}_{R}(R/I, H_{I}^{0}(M, N)) \subseteq H_{I}^{0}(M, N) = \Gamma_{I}(\operatorname{Hom}_{R}(M, N)).$$

Since M, N are two finitely generated *R*-modules, so is $H^0_I(M, N)$ and then $\operatorname{Hom}_R(R/I, H^0_I(M, N))$ is \mathcal{M} -minimax.

Now, let t > 0. The short exact sequence

$$0 \to \Gamma_I(N) \to N \to N/\Gamma_I(N) \to 0$$

induces a long exact sequence

$$\cdots \to H^t_I(M,\Gamma_I(N)) \xrightarrow{\alpha} H^t_I(M,N) \xrightarrow{\rho} H^t_I(M,N/\Gamma_I(N)) \xrightarrow{\gamma} \cdots$$

Lemma 2.4(ii) shows that $H_I^i(M, \Gamma_I(N)) \cong \operatorname{Ext}_R^i(M, \Gamma_I(N))$ for all $i \geq 0$. It follows from the assumption that $\operatorname{Ext}_R^i(M, \Gamma_I(N))$ is finitely generated for all $i \geq 0$. Hence, $H_I^i(M, \Gamma_I(N))$ is \mathcal{M} -minimax for all $i \geq 0$. Let $\overline{N} = N/\Gamma_I(N)$. The hypothesis induces that $H_I^i(M, \overline{N})$ is \mathcal{M} -minimax for all i < t. There are short exact sequences

$$0 \to \operatorname{Im} \alpha \to H^t_I(M, N) \to \operatorname{Im} \beta \to 0$$

and

$$0 \to \operatorname{Im}\beta \to H^t_I(M, N/\Gamma_I(N)) \to \operatorname{Im}\gamma \to 0.$$

Applying the functor $\operatorname{Hom}_R(R/I, -)$ to these above short exact sequences, we obtain the following exact sequences

$$0 \to \operatorname{Hom}_{R}(R/I, \operatorname{Im}\alpha) \to \operatorname{Hom}_{R}(R/I, H^{t}_{I}(M, N))$$
$$\to \operatorname{Hom}_{R}(R/I, \operatorname{Im}\beta) \to \operatorname{Ext}^{1}_{R}(R/I, \operatorname{Im}\alpha)$$

and

$$0 \to \operatorname{Hom}_R(R/I, \operatorname{Im}\beta) \to \operatorname{Hom}_R(R/I, H^t_I(M, N/\Gamma_I(N))) \to \operatorname{Hom}_R(R/I, \operatorname{Im}\gamma).$$

By Lemma 2.2, $\operatorname{Im}\alpha$ and $\operatorname{Im}\gamma$ are \mathcal{M} -minimax. Lemma 2.3 induces that $\operatorname{Hom}_R(R/I, \operatorname{Im}\alpha)$, $\operatorname{Ext}^1_R(R/I, \operatorname{Im}\alpha)$ and $\operatorname{Hom}_R(R/I, \operatorname{Im}\gamma)$ are \mathcal{M} -minimax R-modules. Hence, the proof is complete by showing that

$$\operatorname{Hom}_{R}(R/I, H_{I}^{t}(M, N/\Gamma_{I}(N)))$$

is \mathcal{M} -minimax. It is clear that \overline{N} is *I*-torsion free. Consequently, there is an element $x \in I$ which is \overline{N} -regular. The short exact sequence

$$0 \to \overline{N} \xrightarrow{x} \overline{N} \to \overline{N} / x \overline{N} \to 0$$

yields the following exact sequence

$$\cdots \xrightarrow{f} H_{I}^{t-1}(M, \overline{N}/x\overline{N}) \xrightarrow{g} H_{I}^{t}(M, \overline{N}) \xrightarrow{x} H_{I}^{t}(M, \overline{N}) \to \cdots$$

This implies that $H_I^i(M, \overline{N}/x\overline{N})$ is \mathcal{M} -minimax for all i < t - 1. Therefore, we can claim by the inductive hypothesis that $\operatorname{Hom}_R(R/I, H_I^{t-1}(M, \overline{N}/x\overline{N}))$ is \mathcal{M} -minimax. Now, the short exact sequence

$$0 \to \operatorname{Im} f \to H^{t-1}_I(M, \overline{N}/x\overline{N}) \to (0:_{H^t_I(M, \overline{N})} x) \to 0$$

induces a long exact sequence

$$0 \to \operatorname{Hom}_{R}(R/I, \operatorname{Im} f) \to \operatorname{Hom}_{R}(R/I, H_{I}^{t-1}(M, \overline{N}/x\overline{N}))$$

$$\to \operatorname{Hom}_{R}(R/I, (0:_{H_{I}^{t}(M, \overline{N})} x)) \to \operatorname{Ext}_{R}^{1}(R/I, \operatorname{Im} f) \to \cdots.$$

Since Im f is an \mathcal{M} -minimax R-module, combining Lemma 2.2 with Lemma 2.3, we see that $\operatorname{Hom}_R(R/I, (0 :_{H_I^t(\mathcal{M},\overline{\mathcal{N}})} x))$ is \mathcal{M} -minimax. Moreover, since $x \in I$, there is an isomorphism

$$\operatorname{Hom}_{R}(R/I, (0:_{H_{I}^{t}(M,\overline{N})} x)) \cong \operatorname{Hom}_{R}(R/I, H_{I}^{t}(M,\overline{N})),$$

which completes the proof.

Proposition 2.6. Let \mathcal{M} be a stable Serre subcategory of the category of R-modules. Let \mathcal{M}, \mathcal{N} be two finitely generated R-modules and t a non-negative integer such that $H_I^i(\mathcal{M}, \mathcal{N})$ is \mathcal{M} -minimax for all i < t. Then the set $\{\mathfrak{p} \in Ass_R H_I^t(\mathcal{M}, \mathcal{N}) | R/\mathfrak{p} \text{ is not in } \mathcal{M}\}$ is finite.

Proof. It follows from Theorem 2.5 that there is a finitely generated R-modules X and an R-module Y in \mathcal{M} such that

$$0 \to X \to \operatorname{Hom}_R(R/I, H^t_I(M, N)) \to Y \to 0$$

is a short exact sequence. It should be noted that

$$\operatorname{Ass}_R \operatorname{Hom}_R(R/I, H_I^t(M, N)) = \operatorname{Ass}_R H_I^t(M, N)$$

and

$$\operatorname{Ass}_R H^t_I(M, N) \subseteq \operatorname{Ass}_R X \cup \operatorname{Ass}_R Y.$$

Let $\mathfrak{p} \in \operatorname{Ass}_R H^t_I(M, N)$ and R/\mathfrak{p} be not in \mathcal{M} . We show $\mathfrak{p} \notin \operatorname{Ass}_R Y$. If $\mathfrak{p} \in \operatorname{Ass}_R Y$, then R/\mathfrak{p} is an isomorphism to a submodule of Y. Since \mathcal{M} is a Serre subcategory of the category of R-modules, we can conclude that

 $R/\mathfrak{p} \in \mathcal{M}$, a contradiction. Consequently, we have $\mathfrak{p} \in \operatorname{Ass}_R X$. Moreover, since X is a finitely generated R-module, the set $\operatorname{Ass}_R X$ is finite. Thus, we get the assertion.

Let $\mathfrak{p} \in \operatorname{Spec} R$, we denote the set

 $\mathcal{M} \otimes_R R_{\mathfrak{p}} = \{ M \otimes_R R_{\mathfrak{p}} \mid M \text{ is an } R \text{-module in } \mathcal{M} \}.$

It follows from [17, Proposition 3.2] that

 $\mathcal{M} \otimes_R R_{\mathfrak{p}} = \{ M \text{ is an } R_{\mathfrak{p}} \text{-module} \mid M \text{ is in } \mathcal{M} \text{ as an } R \text{-module} \}$

and $\mathcal{M} \otimes_R R_{\mathfrak{p}}$ is a stable Serre subcategory of the category of $R_{\mathfrak{p}}$ -modules.

Lemma 2.7. Let \mathcal{M} be a stable Serre subcategory of the category of R-modules and \mathcal{M} an \mathcal{M} -minimax R-module. Then $\mathcal{M}_{\mathfrak{p}}$ is an $(\mathcal{M} \otimes_R R_{\mathfrak{p}})$ -minimax $R_{\mathfrak{p}}$ module for all $\mathfrak{p} \in \operatorname{Spec} R$.

Proof. Since M is an \mathcal{M} -minimax R-module, there is a short exact sequence

$$0 \to A \to M \to B \to 0,$$

where A is a finitely generated R-module and $B \in \mathcal{M}$. Let $\mathfrak{p} \in \operatorname{Spec} R$. Applying the functor $- \otimes_R R_{\mathfrak{p}}$ to the above exact sequence, we obtain the short exact sequence

$$0 \to A_{\mathfrak{p}} \to M_{\mathfrak{p}} \to B_{\mathfrak{p}} \to 0.$$

Note that $B_{\mathfrak{p}} \cong B \otimes_R R_{\mathfrak{p}} \in \mathcal{M} \otimes_R R_{\mathfrak{p}}$ and $A_{\mathfrak{p}}$ is a finitely generated $R_{\mathfrak{p}}$ -module. It follows from [17, Proposition 3.2] that $\mathcal{M} \otimes_R R_{\mathfrak{p}}$ is a stable Serre subcategory of the category of $R_{\mathfrak{p}}$ -modules. Hence, $M_{\mathfrak{p}}$ is an $(\mathcal{M} \otimes_R R_{\mathfrak{p}})$ -minimax $R_{\mathfrak{p}}$ -module.

We are going to state and prove the first main result of this paper.

Theorem 2.8. Let \mathcal{M} be a stable Serre subcategory of the category of R-modules, t a non-negative integer, I an ideal of R and M, N two finitely generated R-modules. Then the following statements are equivalent:

- (i) The module $H_I^i(M, N)$ is an \mathcal{M} -minimax R-module for all i < t;
- (ii) The module Hⁱ_I(M, N)_p is an (M ⊗_R R_p)-minimax R_p-module for all i < t and for all p ∈ SpecR;
- (iii) The module $H_I^i(M, N)_{\mathfrak{m}}$ is an $(\mathcal{M} \otimes_R R_{\mathfrak{m}})$ -minimax $R_{\mathfrak{m}}$ -module for all i < t and for all $\mathfrak{m} \in MaxR$.

Proof. The implications (i) \Rightarrow (ii) \Rightarrow (iii) hold by Lemma 2.7.

(iii) \Rightarrow (i) The proof is by induction on t. Let t = 0. It follows Lemma 2.4 that $H_I^0(M, N)$ is an R-submodule of the finitely generated R-module $\operatorname{Hom}_R(M, N)$. Then we get the conclusion in this case.

We assume that t > 0 and the theorem is true for t - 1. The inductive hypothesis shows that $H_I^i(M, N)$ is \mathcal{M} -minimax for all $i \leq t - 2$. Now, we

prove that $H_I^{t-1}(M, N)$ is also \mathcal{M} -minimax. Proposition 2.6 indicates that the set

$$\{\mathfrak{p} \in \operatorname{Ass}_R H_I^{t-1}(M, N) \mid R/\mathfrak{p} \text{ is not in } \mathcal{M}\} = \{\mathfrak{p}_1, \mathfrak{p}_2, \dots, \mathfrak{p}_k\}$$

is finite. Fix $1 \leq i \leq k$. There is an ideal $\mathfrak{m}_i \in \operatorname{Max} R$ such that $\mathfrak{p}_i \subseteq \mathfrak{m}_i$. By the hypothesis (iii), $H_I^{t-1}(M, N)_{\mathfrak{m}_i}$ is an $(\mathcal{M} \otimes_R R_{\mathfrak{m}_i})$ -minimax $R_{\mathfrak{m}_i}$ -module. Now, there is a finitely generated *R*-module X_i and an *R*-module Y_i in \mathcal{M} such that

$$0 \to X_i \otimes_R R_{\mathfrak{m}_i} \to H_I^{t-1}(M,N)_{\mathfrak{m}_i} \to Y_i \otimes_R R_{\mathfrak{m}_i} \to 0$$

is a short exact sequence of $R_{\mathfrak{m}_i}$ -modules. Applying the functor $-\otimes_{R_{\mathfrak{m}_i}}$ $(R_{\mathfrak{m}_i})_{\mathfrak{p}_i R_{\mathfrak{m}_i}}$ to the above exact sequence, we get, by [12, Corollary 4, p. 24], the following short exact sequence of $R_{\mathfrak{p}_i}$ -modules

$$0 \to X_i \otimes_R R_{\mathfrak{p}_i} \to H^{t-1}_I(M,N)_{\mathfrak{p}_i} \to Y_i \otimes_R R_{\mathfrak{p}_i} \to 0.$$

Since R/\mathfrak{p}_i is not in \mathcal{M} , we see that $Y_i \otimes_R R_{\mathfrak{p}_i} = 0$. This implies that

$$X_i \otimes_R R_{\mathfrak{p}_i} \cong H_I^{t-1}(M, N)_{\mathfrak{p}_i}.$$

Hence $H_I^{t-1}(M, N)_{\mathfrak{p}_i}$ is a finitely generated $R_{\mathfrak{p}_i}$ -module. There exists a positive integer m_i such that $(IR_{\mathfrak{p}_i})^{m_i}H_I^{t-1}(M, N)_{\mathfrak{p}_i} = 0$. Let $m = \max\{m_1, m_2, \ldots, m_k\}$. Then we get

$$\{\mathfrak{p}_1,\mathfrak{p}_2,\ldots,\mathfrak{p}_k\}\cap \mathrm{Supp}_R I^m H^{t-1}_I(M,N)=\emptyset.$$

Let $\mathfrak{q} \in \operatorname{Ass}_R I^m H_I^{t-1}(M, N)$. Then $\mathfrak{q} \in \operatorname{Ass}_R H_I^{t-1}(M, N) \setminus {\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_k}$. Therefore, R/\mathfrak{q} is in \mathcal{M} and then $\operatorname{Ass}_R I^m H_I^{t-1}(M, N) \subseteq \operatorname{Supp}_R \mathcal{M}$. This induces that

$$\operatorname{Ass}_R\operatorname{Hom}_R(R/I, I^m H^{t-1}_I(M, N)) \subseteq \operatorname{Supp}_R\mathcal{M}.$$

On the other hand, by the inductive hypothesis and Theorem 2.5, we can claim that $\operatorname{Hom}_R(R/I, H_I^{t-1}(M, N))$ is \mathcal{M} -minimax. Since

$$\operatorname{Hom}_{R}(R/I, I^{m}H_{I}^{t-1}(M, N))$$

is a submodule of $\operatorname{Hom}_R(R/I, H_I^{t-1}(M, N))$, we get the \mathcal{M} -minimaxness of $\operatorname{Hom}_R(R/I, I^m H_I^{t-1}(M, N))$. Thus, there are a finitely generated R-module A and an R-module $B \in \mathcal{M}$ such that

$$0 \to A \to \operatorname{Hom}_R(R/I, I^m H_I^{t-1}(M, N)) \to B \to 0$$

is a short exact sequence. We also have

$$\operatorname{Ass}_R A \subseteq \operatorname{Ass}_R \operatorname{Hom}_R(R/I, I^m H^{t-1}_I(M, N)) \subseteq \operatorname{Ass}_R A \cup \operatorname{Ass}_R B.$$

Since $\operatorname{Ass}_R A \subseteq \operatorname{Supp}_R \mathcal{M}$ and A is a finitely generated R-module, the module $E_R(A)$ is the zero module or a finite direct sum of copies of indecomposable injective R-modules $E_R(R/\mathfrak{p})$ with $\mathfrak{p} \in \operatorname{Ass}_R A \subseteq \operatorname{Supp}_R(\mathcal{M})$. It follows from [17, Lemma 4.1] that $R/\mathfrak{p} \in \mathcal{M}$ for all $\mathfrak{p} \in \operatorname{Ass}_R A$. Since \mathcal{M} is stable, this implies that $E_R(R/\mathfrak{p}) \in \mathcal{M}$. Consequently, we claim that $E_R(A) \in \mathcal{M}$. Furthermore, the injective homomorphism $A \to \operatorname{Hom}_R(R/I, I^m H_I^{t-1}(M, N))$ induces a

homomorphism $\operatorname{Hom}_R(R/I, I^m H_I^{t-1}(M, N)) \to E_R(A)$. Then there is an injective homomorphism $E_R(\operatorname{Hom}_R(R/I, I^m H_I^{t-1}(M, N))) \to E_R(A)$. This shows that $E_R(\operatorname{Hom}_R(R/I, I^m H_I^{t-1}(M, N)))$ is a direct summand of $E_R(A) \in \mathcal{M}$. On the other hand, there is an inclusion

$$I^{m}H_{I}^{t-1}(M,N) \subseteq E_{R}(I^{m}H_{I}^{t-1}(M,N)) = E_{R}(\operatorname{Hom}_{R}(R/I,I^{m}H_{I}^{t-1}(M,N))).$$

Hence, we can claim that $I^m H_I^{t-1}(M, N) \in \mathcal{M}$ and then it is an \mathcal{M} -minimax R-module. By [17, Lemma 5.1(2)] and Lemma 2.2, one gets that

$$H_I^{t-1}(M,N)/(0:_{H_I^{t-1}(M,N)}I^m)$$

is \mathcal{M} -minimax.

Now, combining Theorem 2.5 with the inductive hypothesis, we assert that $(0:_{H_I^{t-1}(M,N)} I)$ is \mathcal{M} -minimax. Again, using [17, Lemma 5.1(3)], we have that $(0:_{H_I^{t-1}(M,N)} I^m)$ is \mathcal{M} -minimax. Finally, the short exact sequence

$$0 \to (0:_{H_{I}^{t-1}(M,N)} I^{m}) \to H_{I}^{t-1}(M,N) \to H_{I}^{t-1}(M,N)/(0:_{H_{I}^{t-1}(M,N)} I^{m}) \to 0$$

and Lemma 2.2 show that $H_I^{t-1}(M, N)$ is an \mathcal{M} -minimax R-module, which complete the proof.

Corollary 2.9 (See [6, Satz 1]). Let N be a finitely generated R-module and t a positive integer. Then the following statements are equivalent:

- (i) The module $H_I^i(N)$ is a finitely generated R-module for all i < t;
- (ii) The module Hⁱ_I(N)_p is a finitely generated R_p-module for all i < t and for all p ∈ SpecR;
- (iii) The module $H_I^i(N)_{\mathfrak{m}}$ is a finitely generated $R_{\mathfrak{m}}$ -module for all i < t and for all $\mathfrak{m} \in \operatorname{Max} R$.

Proof. The assertion follows from Theorem 2.8 when M = R and $\mathcal{M} = \{0\}$ the zero subcategory of the category of *R*-modules.

Corollary 2.10 (See [7, Theorem 5.3]). Let M, N be two finitely generated R-modules and t a positive integer. Then the following statements are equivalent:

- (i) The module $H_I^i(M, N)$ is an Artinian R-module for all i < t;
- (ii) The module Hⁱ_I(M, N)_p is an Artinian R_p-module for all i < t and for all p ∈ SpecR;
- (iii) The module $H_I^i(M, N)_{\mathfrak{m}}$ is an Artinian $R_{\mathfrak{m}}$ -module for all i < t and for all $\mathfrak{m} \in \operatorname{Max} R$.

Proof. Applying Theorem 2.8 which \mathcal{M} is the class of Artinian *R*-modules. \Box

Corollary 2.11 (See [11, Theorem 2.2]). Let M, N be finitely generated R-modules and n, t two non-negative integers. Then the following statements are equivalent:

(i) The module $H^i_I(M, N)$ is in dimension < n for all i < t;

- (ii) The module Hⁱ_I(M, N)_p is in dimension < n as R_p-module for all i < t and for all p ∈ SpecR;
- (iii) The module $H_I^i(M, N)_{\mathfrak{m}}$ is in dimension < n as $R_{\mathfrak{m}}$ -module for all i < tand for all $\mathfrak{m} \in \operatorname{Max} R$.

Proof. The assertion follows from Theorem 2.8 by applying \mathcal{M} to be the stable Serre subcategory of *R*-modules in dimension < n.

Corollary 2.12 ([5, Theorem 2.2]). Let N be a finitely generated R-module and n, t two non-negative integers. Then the following statements are equivalent:

- (i) The module $H_I^i(N)$ is in dimension < n for all i < t;
- (ii) The module Hⁱ_I(N)_p is in dimension < n as R_p-module for all i < t and for all p ∈ SpecR;
- (iii) The module Hⁱ_I(N)_m is in dimension < n as R_m-module for all i < t and for all m ∈ MaxR.

Proof. The assertion follows from Theorem 2.8 by applying M = R and \mathcal{M} to be the stable Serre subcategory of R-modules in dimension < n.

The following theorem is the second main result of this paper, which provides some equivalent conditions for the \mathcal{M} -minimaxness of the generalized local cohomology modules.

Theorem 2.13. Let \mathcal{M} be a stable Serre subcategory of the category of R-modules, t a non-negative integer, I an ideal of R and \mathcal{M}, \mathcal{N} two finitely generated R-modules. Then the following statements are equivalent:

- (i) The module $H^i_I(M, N)$ is \mathcal{M} -minimax for all i < t;
- (ii) There exists a positive integer m such that $I^m H^i_I(M, N)$ is in \mathcal{M} for all i < t.
- (iii) The module $H^i_I(M, N)_{\mathfrak{p}}$ is a finitely generated $R_{\mathfrak{p}}$ -module for all i < tand for all $\mathfrak{p} \in \operatorname{Supp}_R M \cap \operatorname{Supp}_R N \cap V(I)$ with $R/\mathfrak{p} \notin \mathcal{M}$.

Proof. (i) \Rightarrow (ii) Let i < t be an integer. Since $H_I^i(M, N)$ is \mathcal{M} -minimax and $\operatorname{Supp}_R H_I^i(M, N) \subseteq V(I)$, by [13, Theorem 2.8] there exists an integer m such that $I^m H_I^i(M, N) \in \mathcal{M}$.

(ii) \Rightarrow (i) We proceed by induction on t. There is nothing to do in the case t = 0. Let t = 1. Since M, N are two finitely generated R-modules and the module $H_I^0(M, N)$ is a submodule of $\operatorname{Hom}_R(M, N)$, we see that $H_I^0(M, N)$ is finitely generated and then it is also \mathcal{M} -minimax.

Now, consider the case where t > 1. Let $m \ge 1$ be an integer such that $I^m H^s_I(M, N) \in \mathcal{M}$ for all s < t. It is obvious that $I^m H^s_I(M, N)$ is \mathcal{M} -minimax. One has that $H^s_I(M, N)/(0 :_{H^s_I(M,N)} I^m)$ is \mathcal{M} -minimax by [17, Lemma 5.1 (2)]. The inductive assumption induces that $H^i_I(M, N)$ is \mathcal{M} -minimax for i < s. Also, in view of Theorem 2.5, the module $\operatorname{Hom}_R(R/I, H^s_I(M, N))$ is \mathcal{M} -minimax. We have by [17, Lemma 5.1(3)] that $(0 :_{H^s_I(M,N)} I^m)$ is \mathcal{M} -minimax. The short exact sequence

 $0 \to (0:_{H^s_t(M,N)} I^m) \to H^s_I(M,N) \to H^s_I(M,N)/(0:_{H^s_t(M,N)} I^m) \to 0$

and Lemma 2.2 induce that $H_I^s(M, N)$ is an \mathcal{M} -minimax R-module, which complete the proof.

(i) \Rightarrow (iii) For each non-negative integer i < t, there is the short exact sequence

$$0 \to X \to H^i_I(M, N) \to Y \to 0$$

where X is a finitely generated R-module and $Y \in \mathcal{M}$. Let $\mathfrak{p} \in \operatorname{Spec} R$ such that $R/\mathfrak{p} \notin \mathcal{M}$, it is clear that $Y_{\mathfrak{p}} = 0$. Therefore, the isomorphism

$$X_{\mathfrak{p}} \cong H^i_I(M,N)_{\mathfrak{p}}$$

shows that $H^i_I(M, N)_{\mathfrak{p}}$ is a finitely generated $R_{\mathfrak{p}}$ -module.

(iii) \Rightarrow (i) We prove the implication by induction on t. The case where t = 0 is trivial. Suppose that the result has been proved for smaller than t - 1. By the inductive hypothesis $H_I^i(M, N)$ is \mathcal{M} -minimax for all i < t - 1, now we show that $H_I^{t-1}(M, N)$ is \mathcal{M} -minimax. It follows from Proposition 2.6 that

$$\{\mathfrak{p}\in \operatorname{Ass}_{R}H^{t-1}_{I}(M,N)\,|\,R/\mathfrak{p}\notin\mathcal{M}\}=\{\mathfrak{p}_{1},\mathfrak{p}_{2},\ldots,\mathfrak{p}_{k}\}$$

is a finite set. The assumption shows that $H_I^{t-1}(M, N)_{\mathfrak{p}_i}$ is a finitely generated $R_{\mathfrak{p}_i}$ -module for all $1 \leq i \leq k$. Then, there is an integer m_i such that $(I^{m_i}H_I^{t-1}(M, N))_{\mathfrak{p}_i} = 0$. Let $m = \max\{m_1, \ldots, m_k\}$. Then

$$\{\mathfrak{p}_1,\ldots,\mathfrak{p}_k\}\cap \operatorname{Supp}_R I^m H^{t-1}_I(M,N)=\emptyset.$$

Therefore, one has

$$\operatorname{Ass}_{R} I^{m} H_{I}^{t-1}(M, N) \subseteq \{\mathfrak{p} \in \operatorname{Supp}_{R} M \cap \operatorname{Supp}_{R} N \cap V(I) \mid R/\mathfrak{p} \in \mathcal{M}\}$$
$$\subseteq \operatorname{Supp}_{R} \mathcal{M}.$$

By using the same arguments in the proof of Theorem 2.8 (iii) \Rightarrow (i), we get the claim.

Corollary 2.14 ([7, Proposition 3.1]). Let M, N be finitely generated R-modules and t a non-negative integer. Then the following statements are equivalent:

- (i) The module $H^i_I(M, N)$ is finitely generated for all i < t;
- (ii) There exists a positive integer m such that $I^m H^i_I(M, N) = 0$ for all i < t.

Let M be a finitely generated R-module. Following [4, Definition 9.1.3], the finiteness dimension $f_I(M)$ of M relative to I is defined as follows:

 $f_I(M) = \inf\{i \in \mathbb{N}_0 \mid H_I^i(M) \text{ is not finitely generated}\},\$

with the usual convention that the infimum of the empty set of integers is interpreted as ∞ . It is well-known that

$$f_I(M) = \inf\{i \in \mathbb{N} \mid I \not\subseteq \sqrt{H_I^i(M)}\}$$

$$= \inf \{ f_{IR_{\mathfrak{p}}}(M_{\mathfrak{p}}) \mid \mathfrak{p} \in \operatorname{Spec} R \}.$$

We introduce the concept of an \mathcal{M} -finiteness dimension of M, N with respect to I which is an extension of the concept of an *n*th finiteness dimension $f_I^n(M)$ in [3] as well as the concept of an *n*-th finiteness dimension $f_I^n(M, N)$ in [11]. This is also a generalization of the concept of an \mathcal{S} -finiteness dimension of Mwith respect to I in [13].

Definition. Let \mathcal{M} be a stable Serre subcategory of the category of R-modules, I an ideal of R and M, N two finitely generated R-modules. The \mathcal{M} -finiteness dimension of M, N with respect to I is defined as follows

$$f_I^{\mathcal{M}}(M,N) = \inf\{i \mid H_I^i(M,N) \text{ is not } \mathcal{M}\text{-minimax}\}.$$

Corollary 2.15. Let \mathcal{M} be a stable Serre subcategory of the category of R-modules, I an ideal of R and M, N two finitely generated R-modules. Then

$$f_I^{\mathcal{M}}(M,N) = \inf\{i \mid I^n H_I^i(M,N) \notin \mathcal{M} \text{ for all } n \in \mathbb{N}\}$$

= $\inf\{f_{IR_{\mathfrak{p}}}(M_{\mathfrak{p}},N_{\mathfrak{p}}) \mid \mathfrak{p} \in \operatorname{Supp}_R(M) \cap \operatorname{Supp}_R(N) \cap V(I) \text{ and}$
 $R/\mathfrak{p} \notin \mathcal{M}\},$

where $f_{IR_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}}) = \inf\{i \in \mathbb{N}_0 \mid H^i_{IR_{\mathfrak{p}}}(M_{\mathfrak{p}}, N_{\mathfrak{p}}) \text{ is not finitely generated}\}.$

Proof. It follows from Theorem 2.13.

=

Corollary 2.16 ([11, Theorem 2.4]). Let I be an ideal of R and M, N two finitely generated R-modules. Then

$$f_I^n(M,N) := \inf\{f_{IR_{\mathfrak{p}}}(M_{\mathfrak{p}},N_{\mathfrak{p}}) \mid \mathfrak{p} \in \operatorname{Supp}_R(M) \cap \operatorname{Supp}_R(N) \cap V(I) \text{ and} \\ \dim R/\mathfrak{p} \ge n\}$$

$$= \inf\{i \in \mathbb{N}_0 \mid H_I^i(M, N) \text{ is not in dimension } < n\}.$$

Corollary 2.17 ([2, Theorem 2.5], [3, Theorem 2.10]). Let I be an ideal of R and N a finitely generated R-module. Then

$$f_I^n(M,N) := \inf\{f_{IR_{\mathfrak{p}}}(N_{\mathfrak{p}}) \mid \mathfrak{p} \in \operatorname{Supp}_R(N/IN) \text{ and } \dim R/\mathfrak{p} \ge n\}$$
$$= \inf\{i \in \mathbb{N}_0 \mid H_I^i(N) \text{ is not in dimension } < n\}.$$

Acknowledgments. The author is deeply grateful to the referee for careful reading of the manuscript and for the helpful suggestions. This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number C2023-26-15.

References

- M. Aghapournahr and K. Bahmanpour, Cofiniteness of weakly Laskerian local cohomology modules, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 57(105) (2014), no. 4, 347–356.
- D. Asadollahi and R. Naghipour, Faltings' local-global principle for the finiteness of local cohomology modules, Comm. Algebra 43 (2015), no. 3, 953–958. https://doi.org/10. 1080/00927872.2013.849261

- K. Bahmanpour, R. Naghipour, and M. Sedghi, Minimaxness and cofiniteness properties of local cohomology modules, Comm. Algebra 41 (2013), no. 8, 2799–2814. https://doi. org/10.1080/00927872.2012.662709
- [4] M. P. Brodmann and R. Y. Sharp, *Local cohomology*, second edition, Cambridge Studies in Advanced Mathematics, 136, Cambridge Univ. Press, Cambridge, 2013.
- M. R. Doustimehr, Faltings' local-global principle and annihilator theorem for the finiteness dimensions, Comm. Algebra 47 (2019), no. 5, 1853–1861. https://doi.org/10. 1080/00927872.2018.1523423
- G. Faltings, Der Endlichkeitssatz in der lokalen Kohomologie, Math. Ann. 255 (1981), no. 1, 45–56. https://doi.org/10.1007/BF01450555
- [7] A. Fathi, Local-global principle for the finiteness and Artinianness of generalised local cohomology modules, Bull. Aust. Math. Soc. 87 (2013), no. 3, 480-492. https://doi. org/10.1017/S0004972712000640
- [8] A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), North-Holland, Amsterdam, 1968.
- M. Hatamkhani and H. Roshan-Shekalgourabi, On the local-global principles for the cd local cohomology modules, Algebraic Structures and Their Applications 8 (2021), no. 2, 1–15.
- [10] J. Herzog, Komplexe, Auflösungen und dualität in der localen Algebra, Habilitationsschrift, Universität Regensburg, 1970.
- N. V. Hoang, On Faltings' local-global principle of generalized local cohomology modules, Kodai Math. J. 40 (2017), no. 1, 58–62. https://doi.org/10.2996/kmj/1490083223
- [12] H. Matsumura, Commutative ring theory, translated from the Japanese by M. Reid, Cambridge Studies in Advanced Mathematics, 8, Cambridge Univ. Press, Cambridge, 1986.
- [13] S. Rezaei, S-minimaxness and local cohomology modules, Arch. Math. (Basel) 110 (2018), no. 6, 563–572. https://doi.org/10.1007/s00013-018-1157-1
- [14] H. Roshan-Shekalgourabi, On the local-global principle for the local cohomology modules, Math. Rep. (Bucur.) 22(72) (2020), no. 2, 107–120.
- Z. M. Tang, Local-global principle for the Artinianness of local cohomology modules, Comm. Algebra 40 (2012), no. 1, 58-63. https://doi.org/10.1080/00927872.2010.
 511640
- [16] T. Yoshizawa, Subcategories of extension modules by Serre subcategories, Proc. Amer. Math. Soc. 140 (2012), no. 7, 2293–2305. https://doi.org/10.1090/S0002-9939-2011-11108-0
- [17] T. Yoshizawa, Remarks on the local-global principle for a subcategory consisting extension modules, J. Algebra Appl. 18 (2019), no. 12, 1950236 (18 pages)
- [18] H. Zöschinger, Minimax-moduln, J. Algebra 102 (1986), no. 1, 1–32. https://doi.org/ 10.1016/0021-8693(86)90125-0

BUI THI HONG CAM DEPARTMENT OF NATURAL SCIENCE EDUCATION DONG NAI UNIVERSITY DONG NAI PROVINCE, VIETNAM Email address: hongcamb@gmail.com

NGUYEN MINH TRI VIETNAM NATIONAL UNIVERSITY HO CHI MINH CITY, VIETNAM AND DEPARTMENT OF MATHEMATICS AND PHYSICS UNIVERSITY OF INFORMATION TECHNOLOGY HO CHI MINH CITY, VIETNAM Email address: trinm@uit.edu.vn, triminhng@gmail.com

Do NGOC YEN FACULTY OF FUNDAMENTAL SCIENCE 2 POSTS AND TELECOMMUNICATIONS INSTITUTE OF TECHNOLOGY HO CHI MINH CITY, VIETNAM *Email address*: dongocyen.dhsp@gmail.com