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Abstract. Let M be a stable Serre subcategory of the category of R-

modules. We introduce the concept of M-minimax R-modules and inves-
tigate the local-global principle for generalized local cohomology modules

that concerns to the M-minimaxness. We also provide the M-finiteness
dimension fM

I (M,N) of M,N relative to I which is an extension the

finiteness dimension fI(N) of a finitely generated R-module N relative

to I.

1. Introduction

Throughout this paper, R is a commutative Noetherian ring and I is an ideal
of R. LetM,N be two finitely generated R-modules. The i-th local cohomology
module of an R-module X with respect to I is denoted by Hi

I(X). Local
cohomology was first defined and studied by Grothendieck. The readers may
refer [4,8] for more details about local cohomology. Since the local cohomology
theory has a lot of useful applications, there are some extensions of this theory.
The following generalization is given by J. Herzog in [10]. Let j be a non-
negative integer, M a finitely generated R-module and X an R-module. The
j-th generalized local cohomology module of M and X with respect to I is
defined by

Hj
I (M,X) ∼= lim−→

n

ExtjR(M/InM,X).

If M = R, then Hi
I(M,X) = Hi

I(X) the usual local cohomology module.
An important theorem in local cohomology is Faltings’ local-global principle

for the finiteness dimension of local cohomology modules [6, Satz 1]. The
Faltings’ theorem was stated that for a given finitely generated R-module and
a positive integer n, the Rp-module Hi

IRp
(Np) is finitely generated for all 0 ≤

i ≤ n and for all p ∈ SpecR if and only if the R-module Hi
I(N) is finitely
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generated for all 0 ≤ i ≤ n. The Faltings’ local-global principle for the finiteness
dimension of local cohomology modules has been improved in [2,5,9,14,15,17].

The Faltings’ local-global principle induces the concept of the finiteness di-
mension fI(M) which is the least integer i such that a local cohomology module
Hi

I(M) is not a finitely generated R-module.
Recently, Faltings’ local-global principle has been applied to the generalized

local cohomology modules. Some results relating to this problem can be seen
in [7, 11].

In this paper, we will introduce the concept of M-minimax R-modules,
where M is a stable Serre subcategory of the category of R-modules. This
notion is based on the concept of S-minimax R-modules [13] and some results
in [17]. Recall that a stable Serre subcategory of the category of R-modules is
a Serre subcategory that is closed under taking injective hulls. An R-module
K is said to be M-minimax if there is a finitely generated R-module T of K
such that K/T ∈ M. We investigate the local-global principle for generalized
local cohomology modules that concerns to the M-minimaxness. One of the
our tools for proving the main results in Section 2, is the following theorem.

Theorem 1.1 (Theorem 2.5). Let M be a stable Serre subcategory of the
category of R-modules. Assume that M,N are two finitely generated R-modules
and t is a non-negative integer such that Hi

I(M,N) is M-minimax for all i < t.
Then HomR(R/I,Ht

I(M,N)) is M-minimax.

As the first main result of this paper, we prove the following.

Theorem 1.2. Let M be a stable Serre subcategory of the category of R-
modules, t a non-negative integer, I an ideal of R and M,N two finitely gen-
erated R-modules. Then the following statements are equivalent:

(i) The module Hi
I(M,N) is an M-minimax R-module for all i < t;

(ii) The module Hi
I(M,N)p is an (M⊗R Rp)-minimax Rp-module for all

i < t and for all p ∈ SpecR;
(iii) The module Hi

I(M,N)m is an (M⊗RRm)-minimax Rm-module for all
i < t and for all m ∈ MaxR.

This result is a generalization of Faltings’ local-global principle, which in-
cludes the local-global principles for the Artinianness and the modules in di-
mension < n of local cohomology modules as well as of generalized local
cohomology modules. Another main result of this paper is Theorem 2.13
which shows some equivalent conditions such that the module Hi

I(M,N) is
M-minimax for all i < t. This result inspires us to provide the concept M-
finiteness dimension fM

I (M,N) of M,N with respect to I. The paper is closed
by some consequents relating to some certain finiteness dimensions in [2,3,11].

Throughout this article, M is a stable Serre subcategory of the category
of R-modules. We shall use MaxR to denote the set of all maximal ideals of
R. Also, for any ideal I of R, we denote {p ∈ SpecR | I ⊆ p} by V (I). For

any ideal J of R, the radical of J , denoted by
√
J , is defined to be the set
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{x ∈ R |xn ∈ J for some n ∈ N}. We denote by ER(M) the injective hull of
an R-module M . Let S be a subcategory of the category of R-modules and p
be a prime ideal of R, we denote by S ⊗R Rp the set [17]

S ⊗R Rp = {M ⊗R Rp |M ∈ S}.
Moreover, the set ∪M∈SSuppRM is denoted by SuppRS.

2. Main results

In [18], H. Zöschinger introduced the class of minimax modules. An R-
module K is said to be a minimax module if K has a finitely generated sub-
module T such that K/T is Artinian.

Next, we recall that a Serre subcategory S of the category of R-modules is
a subcategory of the category of R-modules if it is closed under taking sub-
modules, quotients and extensions. A Serre subcategory of the category of
R-modules is called stable if it is closed under taking injective hulls.

Definition. LetM be a stable Serre subcategory of the category of R-modules.
An R-module M is called M-minimax if there exists a finitely generated sub-
module N of M such that M/N ∈ M.

Example 2.1.

(i) Note that the class of Artinian R-modules is a stable Serre subcategory
of the category of R-modules. Hence all Artinian R-modules are M-
minimax.

(ii) It is clear that finitely generated R-modules are M-minimax.
(iii) The class of minimax R-modules, which was introduced by Zöchinger

in [18], is M-minimax.
(iv) Since AssRX = AssRE(X), the subcategory D≤n−1 is a stable subcat-

egory. So, the concept of FD≤n−1 modules in [1] and the modules in
dimension < n in [2] are M-minimax.

Lemma 2.2. Let M be a stable Serre subcategory of the category of R-modules.
The class of M-minimax R-modules is a Serre subcategory of the category of
R-modules.

Proof. It follows from [16, Corollary 3.5]. □

Lemma 2.3. Let M be a stable Serre subcategory of the category of R-modules.
Let M be a finitely generated R and N an M-minimax R-module. Then
ExtiR(M,N) and TorRi (M,N) are M-minimax for all i ≥ 0.

Proof. Since M is a finitely generated R-module and R is a Noetherian ring,
there exists a free resolution of M

F : · · ·Fn → Fn−1 → · · · → F1 → F0 → 0,

where Fi is finitely generated free for all i ≥ 0. For each non-negative inte-
ger i, one has that HomR(Fi, N) = ⊕tN for some positive integer t. Since
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ExtiR(M,N) = Hi(HomR(F, N)) which is a subquotient of the M-minimax
R-module ⊕tN , it follows from Lemma 2.2 that ExtiR(M,N) is M-minimax
for all i ≥ 0. The proof of Tor modules is similar. □

Next, we summarize some basic properties of generalized local cohomology
modules which follow easily from the definition of generalized local cohomology
modules.

Lemma 2.4. Let M be a finitely generated R-module and X an R-module.
The following statements are true.

(i) ΓI(M,X) ∼= HomR(M,ΓI(X)) ∼= ΓI(HomR(M,X)).
(ii) If ΓI(X) = X, then Hi

I(M,X) ∼= ExtiR(M,X) for all i ≥ 0.

Theorem 2.5. Let M be a stable Serre subcategory of the category of R-
modules. Assume that M,N are two finitely generated R-modules and t is a
non-negative integer such that Hi

I(M,N) is M-minimax for all i < t. Then
HomR(R/I,Ht

I(M,N)) is M-minimax.

Proof. The proof is by induction on t. Let t = 0. We see that

HomR(R/I,H0
I (M,N)) ⊆ H0

I (M,N) = ΓI(HomR(M,N)).

Since M,N are two finitely generated R-modules, so is H0
I (M,N) and then

HomR(R/I,H0
I (M,N)) is M-minimax.

Now, let t > 0. The short exact sequence

0 → ΓI(N) → N → N/ΓI(N) → 0

induces a long exact sequence

· · · → Ht
I(M,ΓI(N))

α→ Ht
I(M,N)

β→ Ht
I(M,N/ΓI(N))

γ→ · · · .

Lemma 2.4(ii) shows that Hi
I(M,ΓI(N)) ∼= ExtiR(M,ΓI(N)) for all i ≥ 0. It

follows from the assumption that ExtiR(M,ΓI(N)) is finitely generated for all
i ≥ 0. Hence, Hi

I(M,ΓI(N)) is M-minimax for all i ≥ 0. Let N = N/ΓI(N).

The hypothesis induces that Hi
I(M,N) is M-minimax for all i < t. There are

short exact sequences

0 → Imα → Ht
I(M,N) → Imβ → 0

and
0 → Imβ → Ht

I(M,N/ΓI(N)) → Imγ → 0.

Applying the functor HomR(R/I,−) to these above short exact sequences, we
obtain the following exact sequences

0 → HomR(R/I, Imα) → HomR(R/I,Ht
I(M,N))

→ HomR(R/I, Imβ) → Ext1R(R/I, Imα)

and

0 → HomR(R/I, Imβ) → HomR(R/I,Ht
I(M,N/ΓI(N))) → HomR(R/I, Imγ).
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By Lemma 2.2, Imα and Imγ are M-minimax. Lemma 2.3 induces that
HomR(R/I, Imα), Ext1R(R/I, Imα) and HomR(R/I, Imγ) are M-minimax R-
modules. Hence, the proof is complete by showing that

HomR(R/I,Ht
I(M,N/ΓI(N)))

is M-minimax. It is clear that N is I-torsion free. Consequently, there is an
element x ∈ I which is N -regular. The short exact sequence

0 → N
x→ N → N/xN → 0

yields the following exact sequence

· · · f→ Ht−1
I (M,N/xN)

g→ Ht
I(M,N)

x→ Ht
I(M,N) → · · · .

This implies that Hi
I(M,N/xN) is M-minimax for all i < t − 1. Therefore,

we can claim by the inductive hypothesis that HomR(R/I,Ht−1
I (M,N/xN))

is M-minimax. Now, the short exact sequence

0 → Imf → Ht−1
I (M,N/xN) → (0 :Ht

I(M,N) x) → 0

induces a long exact sequence

0 → HomR(R/I, Imf) → HomR(R/I,Ht−1
I (M,N/xN))

→ HomR(R/I, (0 :Ht
I(M,N) x)) → Ext1R(R/I, Imf) → · · · .

Since Imf is an M-minimax R-module, combining Lemma 2.2 with Lemma
2.3, we see that HomR(R/I, (0 :Ht

I(M,N) x)) is M-minimax. Moreover, since

x ∈ I, there is an isomorphism

HomR(R/I, (0 :Ht
I(M,N) x))

∼= HomR(R/I,Ht
I(M,N)),

which completes the proof. □

Proposition 2.6. Let M be a stable Serre subcategory of the category of R-
modules. Let M,N be two finitely generated R-modules and t a non-negative
integer such that Hi

I(M,N) is M-minimax for all i < t. Then the set {p ∈
AssRH

t
I(M,N) |R/p is not in M} is finite.

Proof. It follows from Theorem 2.5 that there is a finitely generated R-modules
X and an R-module Y in M such that

0 → X → HomR(R/I,Ht
I(M,N)) → Y → 0

is a short exact sequence. It should be noted that

AssRHomR(R/I,Ht
I(M,N)) = AssRH

t
I(M,N)

and

AssRH
t
I(M,N) ⊆ AssRX ∪AssRY.

Let p ∈ AssRH
t
I(M,N) and R/p be not in M. We show p ̸∈ AssRY . If

p ∈ AssRY , then R/p is an isomorphism to a submodule of Y . Since M
is a Serre subcategory of the category of R-modules, we can conclude that
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R/p ∈ M, a contradiction. Consequently, we have p ∈ AssRX. Moreover,
since X is a finitely generated R-module, the set AssRX is finite. Thus, we get
the assertion. □

Let p ∈ SpecR, we denote the set

M⊗R Rp = {M ⊗R Rp |M is an R-module in M}.

It follows from [17, Proposition 3.2] that

M⊗R Rp = {M is an Rp-module |M is in M as an R-module}

and M⊗R Rp is a stable Serre subcategory of the category of Rp-modules.

Lemma 2.7. Let M be a stable Serre subcategory of the category of R-modules
and M an M-minimax R-module. Then Mp is an (M⊗R Rp)-minimax Rp-
module for all p ∈ SpecR.

Proof. Since M is an M-minimax R-module, there is a short exact sequence

0 → A → M → B → 0,

where A is a finitely generated R-module and B ∈ M. Let p ∈ SpecR. Ap-
plying the functor − ⊗R Rp to the above exact sequence, we obtain the short
exact sequence

0 → Ap → Mp → Bp → 0.

Note that Bp
∼= B ⊗R Rp ∈ M ⊗R Rp and Ap is a finitely generated Rp-

module. It follows from [17, Proposition 3.2] that M⊗R Rp is a stable Serre
subcategory of the category of Rp-modules. Hence, Mp is an (M ⊗R Rp)-
minimax Rp-module. □

We are going to state and prove the first main result of this paper.

Theorem 2.8. Let M be a stable Serre subcategory of the category of R-
modules, t a non-negative integer, I an ideal of R and M,N two finitely gen-
erated R-modules. Then the following statements are equivalent:

(i) The module Hi
I(M,N) is an M-minimax R-module for all i < t;

(ii) The module Hi
I(M,N)p is an (M⊗R Rp)-minimax Rp-module for all

i < t and for all p ∈ SpecR;
(iii) The module Hi

I(M,N)m is an (M⊗RRm)-minimax Rm-module for all
i < t and for all m ∈ MaxR.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) hold by Lemma 2.7.
(iii) ⇒ (i) The proof is by induction on t. Let t = 0. It follows Lemma

2.4 that H0
I (M,N) is an R-submodule of the finitely generated R-module

HomR(M,N). Then we get the conclusion in this case.
We assume that t > 0 and the theorem is true for t − 1. The inductive

hypothesis shows that Hi
I(M,N) is M-minimax for all i ≤ t − 2. Now, we
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prove that Ht−1
I (M,N) is also M-minimax. Proposition 2.6 indicates that the

set

{p ∈ AssRH
t−1
I (M,N) |R/p is not in M} = {p1, p2, . . . , pk}

is finite. Fix 1 ≤ i ≤ k. There is an ideal mi ∈ MaxR such that pi ⊆ mi. By
the hypothesis (iii), Ht−1

I (M,N)mi
is an (M ⊗R Rmi

)-minimax Rmi
-module.

Now, there is a finitely generated R-module Xi and an R-module Yi in M such
that

0 → Xi ⊗R Rmi
→ Ht−1

I (M,N)mi
→ Yi ⊗R Rmi

→ 0

is a short exact sequence of Rmi-modules. Applying the functor − ⊗Rmi

(Rmi)piRmi
to the above exact sequence, we get, by [12, Corollary 4, p. 24],

the following short exact sequence of Rpi
-modules

0 → Xi ⊗R Rpi
→ Ht−1

I (M,N)pi
→ Yi ⊗R Rpi

→ 0.

Since R/pi is not in M, we see that Yi ⊗R Rpi = 0. This implies that

Xi ⊗R Rpi
∼= Ht−1

I (M,N)pi
.

HenceHt−1
I (M,N)pi

is a finitely generated Rpi
-module. There exists a positive

integer mi such that (IRpi
)miHt−1

I (M,N)pi
= 0. Let m = max{m1,m2, . . .,

mk}. Then we get

{p1, p2, . . . , pk} ∩ SuppRI
mHt−1

I (M,N) = ∅.

Let q ∈ AssRI
mHt−1

I (M,N). Then q ∈ AssRH
t−1
I (M,N) \ {p1, p2, . . . , pk}.

Therefore, R/q is in M and then AssRI
mHt−1

I (M,N) ⊆ SuppRM. This in-
duces that

AssRHomR(R/I, ImHt−1
I (M,N)) ⊆ SuppRM.

On the other hand, by the inductive hypothesis and Theorem 2.5, we can claim
that HomR(R/I,Ht−1

I (M,N)) is M-minimax. Since

HomR(R/I, ImHt−1
I (M,N))

is a submodule of HomR(R/I,Ht−1
I (M,N)), we get the M-minimaxness of

HomR(R/I, ImHt−1
I (M,N)). Thus, there are a finitely generated R-module A

and an R-module B ∈ M such that

0 → A → HomR(R/I, ImHt−1
I (M,N)) → B → 0

is a short exact sequence. We also have

AssRA ⊆ AssRHomR(R/I, ImHt−1
I (M,N)) ⊆ AssRA ∪AssRB.

Since AssRA ⊆ SuppRM and A is a finitely generated R-module, the module
ER(A) is the zero module or a finite direct sum of copies of indecomposable
injective R-modules ER(R/p) with p ∈ AssRA ⊆ SuppR(M). It follows from
[17, Lemma 4.1] that R/p ∈ M for all p ∈ AssRA. Since M is stable, this im-
plies that ER(R/p) ∈ M. Consequently, we claim that ER(A) ∈ M. Further-
more, the injective homomorphism A → HomR(R/I, ImHt−1

I (M,N)) induces a
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homomorphism HomR(R/I, ImHt−1
I (M,N)) → ER(A). Then there is an injec-

tive homomorphism ER(HomR(R/I, ImHt−1
I (M,N))) → ER(A). This shows

that ER(HomR(R/I, ImHt−1
I (M,N))) is a direct summand of ER(A) ∈ M.

On the other hand, there is an inclusion

ImHt−1
I (M,N) ⊆ ER(I

mHt−1
I (M,N)) = ER(HomR(R/I, ImHt−1

I (M,N))).

Hence, we can claim that ImHt−1
I (M,N) ∈ M and then it is an M-minimax

R-module. By [17, Lemma 5.1(2)] and Lemma 2.2, one gets that

Ht−1
I (M,N)/(0 :Ht−1

I (M,N) I
m)

is M-minimax.
Now, combining Theorem 2.5 with the inductive hypothesis, we assert that

(0 :Ht−1
I (M,N) I) is M-minimax. Again, using [17, Lemma 5.1(3)], we have that

(0 :Ht−1
I (M,N) I

m) is M-minimax. Finally, the short exact sequence

0 → (0 :Ht−1
I (M,N) I

m) → Ht−1
I (M,N) → Ht−1

I (M,N)/(0 :Ht−1
I (M,N) I

m) → 0

and Lemma 2.2 show that Ht−1
I (M,N) is an M-minimax R-module, which

complete the proof. □

Corollary 2.9 (See [6, Satz 1]). Let N be a finitely generated R-module and t
a positive integer. Then the following statements are equivalent:

(i) The module Hi
I(N) is a finitely generated R-module for all i < t;

(ii) The module Hi
I(N)p is a finitely generated Rp-module for all i < t and

for all p ∈ SpecR;
(iii) The module Hi

I(N)m is a finitely generated Rm-module for all i < t and
for all m ∈ MaxR.

Proof. The assertion follows from Theorem 2.8 when M = R and M = {0}
the zero subcategory of the category of R-modules. □

Corollary 2.10 (See [7, Theorem 5.3]). Let M,N be two finitely generated R-
modules and t a positive integer. Then the following statements are equivalent:

(i) The module Hi
I(M,N) is an Artinian R-module for all i < t;

(ii) The module Hi
I(M,N)p is an Artinian Rp-module for all i < t and for

all p ∈ SpecR;
(iii) The module Hi

I(M,N)m is an Artinian Rm-module for all i < t and
for all m ∈ MaxR.

Proof. Applying Theorem 2.8 which M is the class of Artinian R-modules. □

Corollary 2.11 (See [11, Theorem 2.2]). Let M,N be finitely generated R-
modules and n, t two non-negative integers. Then the following statements are
equivalent:

(i) The module Hi
I(M,N) is in dimension < n for all i < t;
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(ii) The module Hi
I(M,N)p is in dimension < n as Rp-module for all i < t

and for all p ∈ SpecR;
(iii) The module Hi

I(M,N)m is in dimension < n as Rm-module for all i < t
and for all m ∈ MaxR.

Proof. The assertion follows from Theorem 2.8 by applying M to be the stable
Serre subcategory of R-modules in dimension < n. □

Corollary 2.12 ([5, Theorem 2.2]). Let N be a finitely generated R-module and
n, t two non-negative integers. Then the following statements are equivalent:

(i) The module Hi
I(N) is in dimension < n for all i < t;

(ii) The module Hi
I(N)p is in dimension < n as Rp-module for all i < t

and for all p ∈ SpecR;
(iii) The module Hi

I(N)m is in dimension < n as Rm-module for all i < t
and for all m ∈ MaxR.

Proof. The assertion follows from Theorem 2.8 by applying M = R and M to
be the stable Serre subcategory of R-modules in dimension < n. □

The following theorem is the second main result of this paper, which provides
some equivalent conditions for the M-minimaxness of the generalized local
cohomology modules.

Theorem 2.13. Let M be a stable Serre subcategory of the category of R-
modules, t a non-negative integer, I an ideal of R and M,N two finitely gen-
erated R-modules. Then the following statements are equivalent:

(i) The module Hi
I(M,N) is M-minimax for all i < t;

(ii) There exists a positive integer m such that ImHi
I(M,N) is in M for

all i < t.
(iii) The module Hi

I(M,N)p is a finitely generated Rp-module for all i < t
and for all p ∈ SuppRM ∩ SuppRN ∩ V (I) with R/p ̸∈ M.

Proof. (i) ⇒ (ii) Let i < t be an integer. Since Hi
I(M,N) is M-minimax and

SuppRH
i
I(M,N) ⊆ V (I), by [13, Theorem 2.8] there exists an integer m such

that ImHi
I(M,N) ∈ M.

(ii) ⇒ (i) We proceed by induction on t. There is nothing to do in the case
t = 0. Let t = 1. Since M,N are two finitely generated R-modules and the
module H0

I (M,N) is a submodule of HomR(M,N), we see that H0
I (M,N) is

finitely generated and then it is also M-minimax.
Now, consider the case where t > 1. Let m ≥ 1 be an integer such that

ImHs
I (M,N) ∈ M for all s < t. It is obvious that ImHs

I (M,N) isM-minimax.
One has that Hs

I (M,N)/(0 :Hs
I (M,N) Im) is M-minimax by [17, Lemma 5.1

(2)]. The inductive assumption induces that Hi
I(M,N) is M-minimax for

i < s. Also, in view of Theorem 2.5, the module HomR(R/I,Hs
I (M,N)) is M-

minimax. We have by [17, Lemma 5.1(3)] that (0 :Hs
I (M,N) I

m) is M-minimax.
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The short exact sequence

0 → (0 :Hs
I (M,N) I

m) → Hs
I (M,N) → Hs

I (M,N)/(0 :Hs
I (M,N) I

m) → 0

and Lemma 2.2 induce that Hs
I (M,N) is an M-minimax R-module, which

complete the proof.
(i) ⇒ (iii) For each non-negative integer i < t, there is the short exact

sequence

0 → X → Hi
I(M,N) → Y → 0,

where X is a finitely generated R-module and Y ∈ M. Let p ∈ SpecR such
that R/p ̸∈ M, it is clear that Yp = 0. Therefore, the isomorphism

Xp
∼= Hi

I(M,N)p

shows that Hi
I(M,N)p is a finitely generated Rp-module.

(iii) ⇒ (i) We prove the implication by induction on t. The case where t = 0
is trivial. Suppose that the result has been proved for smaller than t − 1. By
the inductive hypothesis Hi

I(M,N) is M-minimax for all i < t − 1, now we

show that Ht−1
I (M,N) is M-minimax. It follows from Proposition 2.6 that

{p ∈ AssRH
t−1
I (M,N) |R/p ̸∈ M} = {p1, p2, . . . , pk}

is a finite set. The assumption shows that Ht−1
I (M,N)pi

is a finitely gener-
ated Rpi-module for all 1 ≤ i ≤ k. Then, there is an integer mi such that

(ImiHt−1
I (M,N))pi = 0. Let m = max{m1, . . . ,mk}. Then

{p1, . . . , pk} ∩ SuppRI
mHt−1

I (M,N) = ∅.
Therefore, one has

AssRI
mHt−1

I (M,N) ⊆ {p ∈ SuppRM ∩ SuppRN ∩ V (I) |R/p ∈ M}
⊆ SuppRM.

By using the same arguments in the proof of Theorem 2.8 (iii) ⇒ (i), we get
the claim. □

Corollary 2.14 ([7, Proposition 3.1]). Let M,N be finitely generated R-mod-
ules and t a non-negative integer. Then the following statements are equivalent:

(i) The module Hi
I(M,N) is finitely generated for all i < t;

(ii) There exists a positive integer m such that ImHi
I(M,N) = 0 for all

i < t.

Let M be a finitely generated R-module. Following [4, Definition 9.1.3], the
finiteness dimension fI(M) of M relative to I is defined as follows:

fI(M) = inf{i ∈ N0 |Hi
I(M) is not finitely generated},

with the usual convention that the infimum of the empty set of integers is
interpreted as ∞. It is well-known that

fI(M) = inf{i ∈ N | I ̸⊆
√
Hi

I(M)}
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= inf{fIRp
(Mp) | p ∈ SpecR}.

We introduce the concept of an M-finiteness dimension of M,N with respect
to I which is an extension of the concept of an nth finiteness dimension fn

I (M)
in [3] as well as the concept of an n-th finiteness dimension fn

I (M,N) in [11].
This is also a generalization of the concept of an S-finiteness dimension of M
with respect to I in [13].

Definition. LetM be a stable Serre subcategory of the category of R-modules,
I an ideal of R and M,N two finitely generated R-modules. The M-finiteness
dimension of M,N with respect to I is defined as follows

fM
I (M,N) = inf{i |Hi

I(M,N) is not M-minimax}.

Corollary 2.15. Let M be a stable Serre subcategory of the category of R-
modules, I an ideal of R and M,N two finitely generated R-modules. Then

fM
I (M,N) = inf{i | InHi

I(M,N) ̸∈ M for all n ∈ N}
= inf{fIRp

(Mp, Np) | p ∈ SuppR(M) ∩ SuppR(N) ∩ V (I) and

R/p ̸∈ M},

where fIRp
(Mp, Np) = inf{i ∈ N0 |Hi

IRp
(Mp, Np) is not finitely generated}.

Proof. It follows from Theorem 2.13. □

Corollary 2.16 ([11, Theorem 2.4]). Let I be an ideal of R and M,N two
finitely generated R-modules. Then

fn
I (M,N) := inf{fIRp

(Mp, Np) | p ∈ SuppR(M) ∩ SuppR(N) ∩ V (I) and

dimR/p ≥ n}
= inf{i ∈ N0 |Hi

I(M,N) is not in dimension < n}.

Corollary 2.17 ([2, Theorem 2.5], [3, Theorem 2.10]). Let I be an ideal of R
and N a finitely generated R-module. Then

fn
I (M,N) := inf{fIRp

(Np) | p ∈ SuppR(N/IN) and dimR/p ≥ n}
= inf{i ∈ N0 |Hi

I(N) is not in dimension < n}.
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