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RELATIVE AND TATE COHOMOLOGY OF

DING MODULES AND COMPLEXES

Chunxia Zhang

Abstract. We investigate the relative and Tate cohomology theories
with respect to Ding modules and complexes, consider their relations
with classical and Gorenstein cohomology theories. As an application,
the Avramov-Martsinkovsky type exact sequence of Ding modules is ob-
tained.

1. Introduction

The subject of relative and Tate cohomology theories goes back to Avramov
and Martsinkovsky [2]. They studied the theories in the subcategory of modules
of finite G-dimension and made an intensive study of the interaction between
the three cohomology theories: i.e., the absolute, the relative and the Tate
cohomology theories.

On the other hand G-dimension 0 modules are called Gorenstein projective
by Enochs and Jenda [4]. Note that Ding et al. in [3] and [11] considered
two special cases of Gorenstein projective and Gorenstein injective modules,
which they called strongly Gorenstein flat and Gorenstein FP-injective mod-
ules, respectively. Since over a Ding-Chen ring the strongly Gorenstein flat
and Gorenstein FP-injective modules have many nice properties analogous to
Gorenstein projective and Gorenstein injective modules over a Gorenstein ring,
Gillespie [6] renamed these modules as Ding projective and Ding injective mod-
ules, respectively.

Subsequent work of the relative cohomology of Ding homological modules
has been made by Yang in [17]. He showed that over a Ding-Chen ring R, for
any R-modules M , N and any i ≥ 1 one has

ExtiDP(M,N) ∼= ExtiDI(M,N).

Though we don’t know whether or not every R-module has finite Ding injective
or Ding projective dimension when R is a Ding-Chen ring (see [3, Thm. 3.6]
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and [11, Lem. 3.1] for partial answer), we have the following interesting result
(see Theorem 3.5).

Theorem A. LetM be an R-module with finite Ding projective dimension and

N be an R-module with finite Ding injective dimension. Then for all i ≥ 1, we
have isomorphisms

ExtiDP(M,N) ∼= ExtiDI(M,N).

Let M be an R-module admitting a proper left DP-resolution and N be an
arbitrary R-module. Recently, Ren, Liu and Yang in [13] considered Iacob’s

generalized Tate cohomology Êxt
n

DP(M,N). Since every R-module with finite
Ding projective dimension has a proper left DP-resolution (see Proposition

3.2), we define the Tate cohomology D̂ext
n

R(M,N) for an R-module M with
finite Ding projective dimension and an arbitrary R-module N . Also we will
show that the Tate cohomology of ours and the generalized Tate cohomology
of Ren et al.’s are identical under the following general condition (see Theorem
5.2).

Theorem B. Let M be an R-module with finite Ding projective dimension.

Then for each R-module N and each n ≥ 1 we have

D̂ext
n

R(M,N) ∼= Êxt
n

DP(M,N).

The close relations between absolute, relative and Tate cohomologies are
illuminated by an Avramov-Martsinkovsky type exact sequence (see [2, Thm.
7.1]). As an application of the relative and Tate cohomology theories of Ding
homological modules, we get the Avramov-Martsinkovsky type exact sequence
of Ding homological modules (see Theorem 5.6).

Theorem C. Let R be a Ding-Chen ring. Then for any R-modules M with

finite Ding projective dimension and N with finite Ding injective dimension

there is an Avramov-Martsinkovsky type exact sequence

0 // Ext1DI(M,N) // Ext1R(M,N) // D̂ext
1

R(M,N) // · · ·

// ExtiDI(M,N) // ExtiR(M,N) // D̂ext
i

R(M,N) // · · · .

The layout of this paper is as follows: In Section 2, we review some def-
initions and notations which are basic to the rest of the paper. Section 3 is
devoted to defining and studying the relative cohomology theory of Ding ho-
mological modules. We show that this theory has intimate connections with
the classical cohomolgy and Gorenstein cohomology theories. In Section 4, the
Tate cohomology theory of complexes with finite Ding injective dimension is
treated. Finally, as an application, the Avramov-Martsinkovsky type exact
sequence with respect to Ding homological modules is obtained in Section 5.



RELATIVE AND TATE COHOMOLOGY OF DING MODULES AND COMPLEXES 823

2. Preliminaries and notions

Throughout this paper, R denotes an associative ring with identity, and
modules are left R-module. In this section, we recall basic definitions and
notions used in this paper.

2.1. Complex

The category of leftR-modules is denotedM = M(R) and C = C(R) denotes
the category of R-complexes.

Definition 2.1. An R-complex X is a sequence of R-modules Xl and R-linear
maps ∂Xl , l ∈ Z,

X = · · · −→ Xl+1

∂X
l+1

−→ Xl

∂X
l−→ Xl−1 −→ · · ·

such that ∂Xl ∂
X
l+1=0 for all l ∈ Z. For an R-complex X and any i ∈ Z, let

Zi(X) = Ker∂Xi , Bi(X) = Im∂Xi+1, and Ci(X) = Coker∂Xi+1. The residue
class module Hi(X) = Zi(X)/Bi(X) is called the ith homology module of
X . The homology complex H(X) is defined by setting H(X)i = Hi(X) and

∂
H(X)
i = 0 for all i ∈ Z. Furthermore, we set supX = sup{i ∈ Z | Xi 6= 0} and

infX = inf{i ∈ Z | Xi 6= 0}.
Given an R-module M , we denote by M the complex with M in the 0th

place and 0 elsewhere, and identify M with M occasionally if there is no risk
of ambiguity.

Definition 2.2. Given an R-complex X and an integer n, ΣnX denotes the
complex X shifted n degrees to the left, i.e., (ΣnX)i = Xi−n and ∂Σ

nX
i =

(−1)n∂Xi−n.

Definition 2.3. A homomorphism ϕ : X → Y of degree n is a family (ϕi)i∈Z

of homomorphisms of R-modules ϕi : Xi → Yi+n. All such homomorphisms
form an abelian group, denoted HomR(X,Y )n; it is clearly isomorphic to
Πi∈ZHomR(Xi, Yi+n). We let HomR(X,Y ) denote the complex of Z-modules
with nth component HomR(X , Y )n and differential ∂(ϕ) = ∂Y ϕ− (−1)|ϕ|ϕ∂X .

A homomorphism ϕ ∈ HomR(X,Y )n is called a chain map if ∂(ϕ) = 0, i.e.,
if

∂Yi+nϕi = (−1)|ϕ|ϕi−1∂
X
i for all i ∈ Z.

A chain map of degree 0 is called a morphism. Homomorphisms ϕ and ϕ′ in
HomR(X,Y )n are called homotopic, denoted ϕ ∼ ϕ′, if there exists a degree
n + 1 homomorphism µ, called a homotopy, such that ∂(µ) = ϕ − ϕ′. A
homotopy equivalence is a morphism ϕ : X → Y for which there exists a
morphism ψ : Y → X such that ϕψ ∼ idY and ψϕ ∼ idX .

Definition 2.4. A morphism α : X → Y of R-complexes is called a quasi-
isomorphism if H(α) is an isomorphism. For a morphism α : X → Y , we
denote by Cone(α) the mapping cone of α. It is given by Cone(α)i = Yi⊕Xi−1

and ∂
Cone(α)
i (yi, xi−1) = (∂Yi (yi) + αi−1(xi−1),−∂

X
i−1(xi−1)).
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2.2. Ding homological modules

We denote the classes of projective, flat, injective and FP-injective R-mod-
ules by P = P(R), F = F(R), I = I(R) and FI = FI(R), respectively.

Definition 2.5. Consider the complex X with Xn ∈ P(R) such that

Hn(X) = Hn(HomR(X,P(R))) = 0

for all n ∈ Z. The syzygies of this complex are called Gorenstein projective
R-modules. We denote the class of Gorenstein projective R-modules by GP.

An R-module N is called Gorenstein injective, if there exists an exact com-
plex Y of injective R-modules such that N is isomorphic to a cokernel of Y ,
and

Hn(HomR(I(R), Y )) = 0.

We denote the class of Gorenstein injective R-modules by GI.

Definition 2.6 ([6]). An R-module M is called Ding projective if there exists
a HomR(−, F(R))-exact exact sequence of projective R-modules

· · · → P1 → P0 → P 0 → P 1 → · · ·

with M = Ker(P 0 → P 1). Denote the class of Ding projective R-modules by
DP .

An R-module N is called Ding injective if there exists a HomR(FI(R),−)-
exact exact sequence of injective R-modules

· · · → I1 → I0 → I0 → I1 → · · ·

with N = Coker(I1 → I0). Denote the class of Ding injective R-modules by
DI.

Remark 2.7. Note that every Ding projective (respectively, Ding injective)
module is Gorenstein projective (respectively, Gorenstein injective). If R is
Noetherian, then any FP-injective module is injective by [12, Thm. 1.6], and
so any Gorenstein injective module is Ding injective. Clearly, any Gorenstein
projective module over a perfect ring is Ding projective. Also, it follows from [6,
Cor. 4.6] that any Gorenstein projective (respectively, Gorenstein injective)
module over a Gorenstein ring is Ding projective (respectively, Ding injective).

Definition 2.8. Let X be a class of R-modules and M an R-module. An
X -resolution of M is a complex of R-modules in X of the form

X = · · · → Xn → Xn−1 → · · · → X1 → X0 → 0

such that H0(X) ∼= M and Hn(X) = 0 for all n ≥ 1, and the following exact
sequence is the augmented X -resolution of M associated to X :

X+ = · · · → Xn → Xn−1 → · · · → X1 → X0 →M → 0.

The X -projective dimension of M is the quantity

X -pdR(M) = inf{sup{n ≥ 0 | Xn 6= 0} | X is an X -resolution of M}.
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In particular, one has X -pdR(0) = −∞. The modules of X -projective dimen-
sion 0 are the nonzero modules of X . We set

X̃ = the subcategory of R-modules with X -pdR(M) <∞.

An X -resolution X of M is proper if the augmented resolution X+ is
HomR(X ,−)-exact. And we set

X = the subcategory of R-modules admitting a proper X -resolution.

We define (proper) X -coresolution and X -injective dimension dually. And
the X -injective dimension of M is denoted X -idR(M).

Notation 2.9. When X is the class of projective (Ding projective) R-modules,
we write pdRM (DpdRM) for the associated homological dimension and call
it the projective (Ding projective) dimension of M , respectively. Similarly, the
injective (Ding injective) and flat dimensions ofM are denoted idRM (DidRM)
and fdRM , respectively.

In particular, we abbreviate as follows:

D̃P = the subcategory of R-modules with DpdRM <∞.

D̃I = the subcategory of R-modules with DidRM <∞.
DP = the subcategory of R-modules admitting a proper DP-resolution.
DI = the subcategory of R-modules admitting a proper DI-coresolution.

Definition 2.10. Let X be any class of R-modules and M an R-module. An
X -precover of M is an R-homomorphism ϕ : X → M , where X ∈ X and such
that the sequence

HomR(X
′, X)

HomR(X′,ϕ)
−−−−−−−−→ HomR(X

′,M) −−−−→ 0

is exact for every X ′ ∈ X . If, moreover, ϕf = ϕ for f ∈ HomR(X,X) implies
f is an automorphism of X , then ϕ is called an X -cover of M . Also, an X -
preenvelope and X -envelope of M are defined “dually”.

3. Relative cohomology

It is well known over any associative ring R it is standard to derive
HomR(−,−) using projective resolutions in the first variable, or injective reso-
lutions in the second variable, and doing this, one obtains ExtnR(−,−) in both
cases. In this section, we examine the situation where projective and injective
modules are replaced by Ding projective and Ding injective ones, respectively.

At first, we will need the following:

Lemma 3.1. (1) If M is a Ding projective R-module, then Ext≥1
R (M,W ) = 0

for all R-modules W of finite flat or finite injective dimension.

(2) If N is a Ding injective R-module, then Ext≥1
R (U,N) = 0 for all R-

modules U of finite projective dimension.

(3) Let R be a left coherent ring. If N is a Ding injective R-module, then

Ext≥1
R (U,N) = 0 for all R-modules U of finite FP-injective dimension.
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Proof. (1) For an R-module W of finite flat dimension, Ext≥1
R (M,W ) = 0 is

an immediate consequence of [3, Lem. 2.4(1)].
Assume that idRW = m <∞. SinceM is Ding projective, we have an exact

sequence
0 →M → P 0 → P 1 → · · · → P 1−m → C → 0,

where all P i are projective R-modules. Breaking this sequence into short exact
ones, we see that ExtiR(M,W ) ∼= Exti+m

R (C,W ) for i > 0, so the Exts vanish

as desired since Exti+m
R (C,W ) = 0 for i > 0.

(2) The proof is dual to (1).
(3) Note that [11, Thm. 2.4], the proof is similar to that of (1). �

Furthermore, we will need the following from [16, Lem. 2.5]:

Proposition 3.2. (1) If M is an R-module with DpdRM < ∞, then there

exists a short exact sequence 0 → K → D → M → 0, where D → M is a

DP-precover of M , and pdRK = DpdRM − 1 (in the case where M is Ding

projective, this should be interpreted as K = 0).
Consequently, every R-module with finite Ding projective dimension has a

proper left DP-resolution (that is, there is an inclusion D̃P ⊆ DP).
(2) If N is an R-module with DidRN < ∞, then there exists a short exact

sequence 0 → N → E → C → 0, where N → E is a DI-preenvelope of N ,

and idRC = DidRN − 1 (in the case where N is Ding injective, this should be

interpreted as C = 0).
Consequently, every R-module with finite Ding injective dimension has a

proper right DI-coresolution (that is, there is an inclusion D̃I ⊆ DI).

Lemma 3.3. (1) Let M ∈ D̃P. Then any proper left DP-resolution D → M
of M is HomR(−,DI)-exact.

(2) Let N ∈ D̃I. Then any proper right DI-coresolution N → E of N is

HomR(DP ,−)-exact.

Proof. (1) Let D = · · · → D1 → D0 → M → 0 be a proper left DP-resolution
of M . We split the resolution D into short exact sequences. Hence it suffices
to show exactness of HomR(T, H) for all Ding injective R-modules H and all
short exact sequences

T = 0 → L→ D →M → 0,

where D →M is a DP-precover of M . By Proposition 3.2(1), there is a short
exact sequence

T′ = 0 // L′ ι // D′ π // M // 0 ,

where π : D′ →M is a DP-precover of M and pdRL
′ <∞.

By [8, Prop. 2.2], the complexes T and T′ are homotopically equivalent,
and thus so are the complexes HomR(T, H) and HomR(T

′, H) for every (Ding
injective) R-moduleH . Hence it suffices to show the exactness of HomR(T

′, H)
whenever H is Ding injective.
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Now let H be any Ding injective R-module. We need to prove the exactness
of

HomR(D
′, H)

HomR(ι,H)
−−−−−−−→ HomR(L

′, H) −−−−→ 0.

To show this, let f : L′ → H be any homomorphism. We wish to find g : D′ →
H such that gι = f . Now pick an exact sequence

0 // H ′ // I
α // H // 0 ,

where I is injective, and H ′ is Ding injective. Since H ′ is Ding injective and
pdRL

′ < ∞, we get Ext1R(L
′, H ′) = 0 by Lemma 3.1(2), and thus a lifting

µ : L′ → I with αµ = f :

L′

f

~~⑥⑥
⑥
⑥
⑥
⑥
⑥
⑥

µ

��

ι // D′

µ′

~~

H I.
α

oo

Next, injectivity of I gives µ′ : D′ → I with µ′ι = µ. Now g = αµ′ : D′ → H
is the desired map.

(2) Dual the proof of (1). �

Definition 3.4. Let M ∈ DP and consider a proper left DP-resolution D →
M . For every n ∈ Z and every R-module N , define a relative cohomology
group

ExtnDP(M,N) = Hn(HomR(D, N)).

Similarly, choosing for each N ∈ DI a proper right DI-coresolution N → E,
we define for each n ∈ Z and each R-module M a relative cohomology group

ExtnDI(M,N) = Hn(HomR(M,E)).

Recall that a ring R is called an n-FC ring if it is both left and right coherent
and FP-id(RR) and FP-id(RR) are both less than or equal to n. A ring R is
called Ding-Chen if it is an n-FC ring for some non-negative integer n. It
follows from [13, Cor. 4.5] and [17, Thm. 3.6] that over a Ding-Chen ring R,
for any R-modules M , N and any i ∈ Z we have

ExtiDP(M,N) ∼= ExtiDI(M,N).

Though we don’t know whether or not every R-module has finite Ding injective
(or projective) dimension when R is a Ding-Chen ring (see [3, Thm. 3.6] and [11,
Lem. 3.1] for partial answer), the above lemma can be stated in the language
of Enochs and Jenda [5, Thm. 8.2.13] as follows: the bifunctor HomR(−,−) is

right balanced by D̃P × D̃I. So we have the following interesting result.

Theorem 3.5. Let M ∈ D̃P and N ∈ D̃I. Then for all i ∈ Z, we have

isomorphisms

ExtiDP(M,N) ∼= ExtiDI(M,N).

Proof. Use [8, Thm. 2.6]. �
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Definition 3.6 (Definition of Dext). Let M ∈ D̃P and N ∈ D̃I. Then we
write

DextnR(M,N) := ExtnDP(M,N) ∼= ExtnDI(M,N)

for the isomorphic abelian groups in Theorem 3.5 above.

The following proposition corresponds to [2, (2.b), (4.2), (4.4), (4.6)], whose
proofs extend verbatim to the more general setting below.

Proposition 3.7. (1) Dext0R(−,−) = HomR(−,−).
(2) If the exact sequence 0 → M ′ → M → M ′′ → 0 of R-modules in DP is

HomR(DP ,−)-exact, then for each R-module N there is a long exact sequence

· · · → ExtiDP(M,N) → ExtiDP(M
′, N) → Exti+1

DP (M
′′, N) → · · · .

(3) If the exact sequence 0 → N ′ → N → N ′′ → 0 of R-modules is

HomR(DP ,−)-exact, then for each R-module M ∈ DP there is a long exact

sequence

· · · → ExtiDP(M,N) → ExtiDP(M,N ′′) → Exti+1
DP (M,N ′) → · · · .

(4) There are natural transformations

DextiR(−,−) −→ ExtiR(−,−)

which are also natural in the long exact sequences as in (2) and (3) above.

In the following, we want to compare Dext with the classical Ext.

Theorem 3.8. Let M , N be any R-modules. Then the following conclusions

hold:
(1) There are natural isomorphisms ExtnDP(M,N) ∼= ExtnR(M,N) under

each of the conditions

(a) pdRM <∞ or (b) M ∈ DP and idRN <∞.

(2) There are natural isomorphisms ExtnDI(M,N) ∼= ExtnR(M,N) under

each of the conditions

(a) idRN <∞ or (b) N ∈ DI and pdRM <∞.

(3) Assume thatM ∈ D̃P and N ∈ D̃I. If either pdRM <∞ or idRN <∞,

then

DextnR(M,N) ∼= ExtnR(M,N)

is functorial in M and N .

Proof. (1) (a) Assume that pdRM < ∞, and pick any projective resolution P

of M . Since P is also a proper left DP-resolution of M , and thus

ExtnDP(M,N) = Hn(HomR(P, N)) = ExtnR(M,N).

(b) Assume that M ∈ DP and idRN = m < ∞. By Lemma 3.1(1), we

see that ExtiR(D,N) = 0 for every Ding projective R-module D and all i > 0.



RELATIVE AND TATE COHOMOLOGY OF DING MODULES AND COMPLEXES 829

Therefore [7, Chapter III, Prop. 1.2 A] implies that ExtiR(−, N) can be com-
puted using (proper) left DP-resolutions of the argument in the first variable,
as desired.

The proof of (2) is similar.
The claim (3) is a direct consequence of (1) and (2), together with the

Definition 3.6 of DextiR(−,−). �

In [8], Holm proved that one can compute right derived functors of
HomR(M,N) using either a proper left GP-resolution of M or a proper right

GI-coresolution of N , these derived functors be denoted by GExtiR(M,N).
Using the theorem above together with [8, Thm. 3.8], we have the following

Corollary 3.9. Let M ∈ D̃P and N ∈ D̃I. If pdRM < ∞ or idRN < ∞,

then there are natural isomorphisms

DextiR(M,N) ∼= GExtiR(M,N).

4. Tate cohomology

In this section, we define and study a Tate cohomology theory for complexes
of Ding homological modules over associative rings.

The following notions are fundamental to our investigation.

Definition 4.1. Let I be an R-complex. Following [1], I is called DG-injective
if HomR(−, I) preserves injective quasi-isomorphisms.

Definition 4.2. A DG-injective resolution of a complexX is a quasi-isomorph-
ism of complexes λ : X → I, with I DG-injective.

Remark 4.3. By [1, (1.6)], every complex X has a injective DG-injective reso-
lution X → I.

Definition 4.4. A complex of R-modules S is said to be totally FI-acyclic if
the following conditions are satisfied.

(1) Sn is injective for every n ∈ Z.
(2) S is exact.
(3) HomR(E, S) is exact for every FP-injective R-module E.

Remark 4.5. (1) By the definition of Ding injective R-module M , there exists
a totally FI-acyclic complex S with C0(S) =M .

(2) Recall that an R-complex S is called totally acyclic if Sn ∈ I and
Hn(S) = 0 = Hn(HomR(E, S)) for each E ∈ I and each n ∈ Z [14]. Since
I ⊆ FI, then every totally FI-acyclic complex is totally acyclic.

Definition 4.6. Let X be an R-complex. A Tate FI-coresolution of X is a

diagram X
λ // I

ν // S of morphisms of complexes, where S is a totally FI-
acyclic complex, λ is a DG-injective resolution of X , and νi is bijective for all
i≪ 0.
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The next result is the key for well-definedness and functoriality of Tate
cohomology.

Proposition 4.7. Let X
λ // I

ν // S and X ′ λ′

// I ′
ν′

// S′ be Tate

FI-coresolutions. For each morphism of complexes µ : X → X ′ there is a

morphism µ : I → I ′, unique up to homotopy, making the left-most square in

the next diagram commute up to homotopy,

X
λ //

µ

��

I
ν //

µ

��

S

µ̂

��

X ′ λ′

// I ′
ν′

// S′

and for each choice of µ there exists a unique up to homotopy morphism µ̂,
making the right-most square commute up to homotopy. Moreover, if λ and ν
are injective, then µ and respectively µ̂ can be chosen such that the left-most

square and respectively the right-most square commute.

If µ = idX , then µ and µ̂ are homotopy equivalences.

Proof. The proof is almost dual to that of [2, (5.3)]. �

Definition 4.8. Let X be an R-complex. The Ding injective dimension of X
is defined by

DI-idRX = inf

{
− n ∈ Z X

λ // I
ν // S is a Tate FI-coresolution

with νi : Ii → Si bijective for each i ≤ −n

}
.

The next assertions follow from the definition.

Remark 4.9. (1) Complex X is exact if and only if DI-idRX = −∞.
(2) For every k ∈ Z, DI-idR(Σ

kX) = DI-idRX + k.
(3) Let M be an R-module. Then DI-idR(M) = DidRM .

By [15, Thm. 5.3.15], complexes admitting Tate FI-coresolutions are pre-
cisely these R-complexes of finite Ding injective dimension. This allows us to
define our Tate cohomology functors using the coresolutions.

We let C(D̃I) denote the class of complexes of finite Ding injective dimension.

Definition 4.10. Let N ∈ C(D̃I), and choose a Tate FI-coresolution

N
λ // I

ν // S.

Then for each R-complex M and each n ∈ Z, define a Tate cohomology group
by the equality

Dext
n

R(M,N) = H−n(HomR(M,S)).

The morphism

HomR(M, ν) : HomR(M, I) −→ HomR(M,S)
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induces for every n ∈ Z a homomorphism of abelian groups

Dε
n

R(M,N) : ExtnR(M,N) −→ Dext
n

R(M,N).

Proposition 4.11. The assignment (M,N) 7→ Dext
n

R(M,N) defines a functor

Dext
n

R(−,−) : C × C(D̃I) −→ M(Z),

and the maps Dε
n

R(M,N) yield a morphism of functors

Dε
n

R(−,−) : ExtnR(−,−) −→ Dext
n

R(−,−)

such that the following hold:
(1) The functors Dext

n

R(−,−) and the morphisms Dε
n

R(−,−) are indepen-

dent of choices of coresolutions and liftings.

(2) If M and N are R-modules with DidRN = g <∞, then the natural map

Dε
n

R(M,N) is equal to 0 for n < 0 and is bijective for n > g.
(3) For all n, j ∈ Z, there is an isomorphism

Dext
n

R(−,Σ
−jN) ∼= Dext

n−j

R (−, N).

(4) For any finite set of complexes {M i}i∈I and any family of complexes

{N j}j∈J of finite Ding injective dimensions, there is a natural isomorphism

Dext
n

R(⊕i∈IM
i,Πj∈JN

j) ∼= Π(i,j)∈I×JDext
n

R(M
i, N j) for each n ∈ Z.

Proof. The naturality of Dext
n

R(−,−) and Dε
n

R(−,−) follows from Proposition
4.7 by applying the chosen Tate FI-coresolutions of N and N ′. Their indepen-
dence from the choice of coresolutions and liftings follows from the last part
of the same Proposition. The last assertions follow from the definition of Tate
cohomology Dext

n

R. �

The Tate cohomology theory is rigid in the sense (that is when the complex is
left-bounded) that vanishing of any one of these functors implies the vanishing
of all of them and their vanishing characterizes complexes of finite injective
dimension.

Proposition 4.12. Let M ∈ C(D̃I). The following are equivalent.

(i) idRM <∞.

(ii) Dext
i

R(−,M) = 0 for some i ∈ Z.

(ii)′ Dext
i

R(−,M) = 0 for all i ∈ Z.

When supM <∞, the properties above are also equivalent to the following.

(iii) Dext
i

R(M,−) = 0 for some i ∈ Z.

(iii)′ Dext
i

R(M,−) = 0 for all i ∈ Z.

(iv) Dext
0

R(M,M) = 0.

Proof. (i)⇒(ii)′. If idRM <∞, then M
λ // I

ν // 0 is a Tate FI-coresolution

for any DG-injective resolution M
λ // I, so the groups Dext

i

R(−,M) = H−i

(HomR(−, 0)) vanish for all i ∈ Z.
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(ii)′⇒(ii) is clear.

(ii)⇒(i). Choose a Tate FI-coresolution M
λ // I

ν // S . Set K = Z−i(S)

and let α : S−(i−1) → K be the canonical surjection. Since 0 = Dext
i

R(M,−) =

H−i (HomR(−, S)), the map HomR(K,α) : HomR(K,S−(i−1)) → HomR(K,K)
is surjective. This means that α splits, so K is injective. Induction on j shows
that Zj(S) is injective for all j ≤ −i. By definition, Zj(I) ∼= Zj(S) for all
j ≤ −DI-idRM , so Zj(I) is injective for all j ≤ min{−i,−DI-idRM}. From
[1, (Thm. 2.4 I)], we get idRM <∞.

For the rest of the proof we assume supM <∞.
(i)⇒(iii)′. By [1, (Thm. 2.4 I)], choose a bounded DG-injective resolution

M → I. Now, apply [15, Lem. 5.3.3].
(iii)′⇒(iii) is clear.

(iii)⇒(iv) follows from the isomorphism Dext
i

R(M,Σ−iM) ∼= Dext
0

R(M,M).
(iv)⇒(i). By [1, (Thm. 2.4 I)], choose a bounded above DG-injective res-

olution M → I and by [15, Thm. 5.3.15] choose a Tate FI-coresolution

M
λ // I

ν // S with νj = idSj for all j ≪ 0. Then we have Dext
0

R(M,M) ∼=
H0(HomR(I, S)) = 0 since I is a DG-injective R-complex. As ν is in
B0(HomR(I, S)), there exists a σ ∈ HomR(I, S)0 such that ∂(σ) = ν in
HomR(I, S). Since νj = idSj for all j ≪ 0 and the complex S is exact, we
obtain the map Ker(∂S−(j+1)) → S−(j+1) splits for all j ≪ 0, so idRM <∞ by

[1, (Thm. 2.4 I)]. �

Remark 4.13. Dually, for any R-complex M , one can define Tate F -resolution

T
u // P

π // M and Ding projective dimension DP-pdRM . Dual the above
results, we have that the complex of finite Ding projective dimension admits a
Tate F -resolution. Accordingly, for any R-complex N and any n ∈ Z, the nth

Tate cohomology group D̂ext
n

R(M,N) is defined as

D̂ext
n

R(M,N) = Hn(HomR(T,N)),

which is independent of choices of resolutions and liftings by dualing Proposi-
tion 4.11.

5. Avramov-Martsinkovsky type exact sequence

In this section M is a left R-module.
Recall that for any R-moduleM with GpdRM <∞, there exists a complete

resolution, that is, a diagram T
ϑ // P

π // M where P
π // M is a projective

resolution, T is a totally acyclic complex (see Remark 4.5(2)), and ϑi is bijective
for all i ≫ 0. For any R-module N and each n ∈ Z, the nth Tate cohomology
group is defined as

Êxt
n

R(M,N) = Hn(HomR(T,N)),
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which is independent of choices of resolutions and liftings. The close rela-
tions between absolute, relative and Tate cohomology are illuminated by an
Avramov-Martsinkovsky type exact sequence (see [2, Thm. 7.1]) as follows:

0 // Ext1GP (M,N) // Ext1R(M,N) // Êxt
1

R(M,N) // Ext2GP(M,N) // · · ·

// ExtiGP (M,N) // ExtiR(M,N) // Êxt
i

R(M,N) // Exti+1
GP (M,N) // · · · .

In [9] Iacob gave another way to prove the existence of above exact sequence.
Recently, Ren, Liu and Yang in [13] considered Iacob’s generalized Tate coho-
mology for Ding modules as follows:

Definition 5.1. LetM be an R-module admitting a proper left DP-resolution
and N be an arbitrary R-module. Let P • → M → 0 and D• → M → 0 be
a projective and a proper left DP-resolution of M respectively. Then there
exists a morphism f : P • → D•. Define a Tate cohomology with respect to
Ding projective modules as

Êxt
n

DP(M,N) = Hn+1(HomR(Cone(f), N)).

Since every R-module with finite Ding projective dimension has a proper
left DP-resolution(see Proposition 3.2(1)), the following result shows that the
Tate cohomology of ours and the generalized Tate cohomology of Ren et al.’s
are identical under the following general condition.

Theorem 5.2. Let M ∈ D̃P. Then for each R-module N and each n ≥ 1, we
have

D̂ext
n

R(M,N) ∼= Êxt
n

DP(M,N).

Proof. Set DpdRM = g <∞. We want to construct a Tate F -resolution ofM .

If 0 // C
i // Pg−1

fg−1
// Pg−2

fg−2
// · · · // P1

f1 // P0
π // M // 0 is a partial

projective resolution of M then C is a Ding projective R-module by [10, Thm.
2.4]. Hence there exists a totally F -acyclic complex

T = · · · // P−2
d−2

// P−1
d−1

// P 0 d0 // P 1 // · · ·

such that C = Kerd0.
Since C = Imd1 = Kerfg−1, the complex

P = · · · // P−2
d−2

// P−1
i◦d−1

// Pg−1

fg−1
// Pg−2

fg−2
// · · · // P1

f1
// P0

π // M // 0

is a projective resolution of M .

T = · · · // P−1
d−1

// P 0 d0 //

ug−1

��

P 1 d1 //

ug−2

��

· · · // P g−2
dg−2

//

u1

��

P g−1
dg−1

//

u0

��

P g //

0

��

· · ·

P = · · · // P−1
i◦d−1

// Pg−1

fg−1
// Pg−2

fg−2
// · · · // P1

f1 // P0
// 0 // · · ·

Since P g−1 is flat, the complex HomR(T, P
g−1) is exact, there exists ug−1 ∈

HomR(P
0, P g−1) such that i◦d−1 = ug−1 ◦d−1. Similarly there exist ug−2, . . .,
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u1, u0 that make the diagram commutative. Since u : T → P is a morphism of
complexes (with u0, . . . , ug−1 as above and un = idP g−1−n for n ≥ g) with un is

bijective for n ≥ g, it follows that T
u // P

π // M is a Tate F -resolution.
Now, we use the projective resolution P and the Tate F -resolution T to

construct a proper left DP-resolution of M .
Let D = Imdg−1. Then D is a Ding projective R-module by [3, Rem. 2.2]

(3) and there is a commutative diagram:

0 // C // P 0 d0 //

ug−1

��

P 1 d1 //

ug−2

��

· · · // P g−2
dg−2

//

u1

��

P g−1
dg−1

//

u0

��

D //

u

��

0

0 // C // Pg−1

fg−1
// Pg−2

fg−2
// · · · // P1

f1 // P0
π // M // 0

with u defined by u(dg−1(x)) = π(u0(x)).
Since both rows are exact complexes, the associated mapping cone

C = 0 // C // C ⊕ P 0 δ0 // Pg−1 ⊕ P 1 δ1 // Pg−2 ⊕ P 2 // · · ·

// P1 ⊕ P g−1
δg−1

// P0 ⊕D
β

// M // 0

is also an exact complex, so we have an exact complex

D = 0 // P 0 δ0// Pg−1 ⊕ P 1 δ1 // Pg−2 ⊕ P 2 // · · · // P0 ⊕D
β

// M // 0.

Let L be a Ding projective R-module. Since fdRKerβ <∞, we have Ext1R(L,
Kerβ) = 0 by Lemma 3.1(1). The sequence 0 → Kerβ → P0 ⊕D → M → 0
is exact, so we have the associated exact sequence 0 → HomR(L,Kerβ) →
HomR(L, P0 ⊕D) → HomR(L,M) → Ext1R(L,Kerβ) = 0. Thus P0 ⊕D → M
is a Ding projective precover. Similarly P1 ⊕ P g−1 → Kerβ, · · · , P 0 → Kerδ1
is a Ding projective precover respectively. So D is a proper left DP-resolution
of M .

There is a map of complexes e : P → D as follows:

· · · // P−2
d−2

//

0

��

P−1
d−1

//

d−1

��

Pg−1

fg−1
//

eg−1

��

· · · // P 1 f1 //

e1

��

P 0 π //

e0

��

M // 0

· · · // 0 // P 0 δ0// Pg−1 ⊕ P 1δ1 // · · · // P1 ⊕ P g−1
δg−1

// P0 ⊕D
β

// M // 0

with {
e0 : P0 → P0 ⊕D, e0(x) = (x, 0),

ej : Pj → Pj ⊕ P g−j , ej(x) = (x, 0), 1 ≤ j ≤ g − 1.

By assembling the information above, we have P is a projective resolution, D
is a proper left DP-resolution of M and e : P → D is a chain map induced by

idM , so Êxt
n

DP(M,N) = Hn+1(HomR(Cone(e), N)) for all n ≥ 0 by Definition
5.1.

Let

T = · · · // P−1
d−1

// P 0 d0 // · · · // P g−2
dg−2

// P g−1
dg−1

// D // 0 .

We prove that Cone(e) and T [1] are homotopically equivalent.
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There is a map of complexes α : T [1] → Cone(e) with
α0 : P 0 → P 0 ⊕ Pg−1, α0(x) = (x,−ug−1(x)), x ∈ P 0,
αj : P j → Pg−j ⊕ P j ⊕ Pg−j−1, αj(x) = (0, x,−ug−j−1(x)), x ∈ P j , 1 ≤

j ≤ g − 1,
α′ : D → P0 ⊕D, α′(x) = (0, x), x ∈ D,

{
αj = −idP j , if j ≤ −1 is odd;
αj = idP j , if j ≤ −1 is even.

There is also a map of complexes ℓ : Cone(e) → T [1] with
ℓ0 : P

0 ⊕ Pg−1 → P 0, ℓ0(x, y) = x, (x, y) ∈ P 0 ⊕ Pg−1,
ℓj : Pg−j ⊕ P j ⊕ Pg−j−1 → P j , ℓj(x, y, z) = y, (x, y, z) ∈ Pg−j ⊕ P j ⊕

Pg−j−1, 1 ≤ j ≤ g − 1,
ℓ′ : P0 ⊕D → D, ℓ′(x, y) = y, (x, y) ∈ P0 ⊕D,

{
ℓj = −idP j , if j ≤ −1 is odd;
ℓj = idP j , if j ≤ −1 is even.

We have

ℓ ◦ α = idT [1] and α ◦ ℓ ∼ idCone(e).

(a chain homotopy between α ◦ ℓ and idCone(e) is given by the maps:

~0 : P0 ⊕D → P1 ⊕ P g−1 ⊕ P0, ~0(x, y) = (0, 0,−x),
~j : Pj ⊕ P g−j ⊕ Pj−1 → Pj+1 ⊕ P g−j−1 ⊕ Pj , ~j(x, y, z) = (0, 0,−x), 1 ≤

j ≤ g − 2,
~g−1 : Pg−1 ⊕ P 1 ⊕ Pg−2 → P 0 ⊕ Pg−1, ~g−1(x, y, z) = (0,−x))

So we have Hn+1(HomR(Cone(e), N)) ∼= Hn+1(HomR(T [1], N)), that is

Êxt
n

DP(M,N) ∼= D̂ext
n

R(M,N)

for any R-module N and for all n ≥ 1. �

The next Avramov-Martsinkovsky type exact sequence follows directly from
Proposition 3.2(1), Theorem 5.2 and [13, Prop. 5.2].

Corollary 5.3. Let M ∈ D̃P with DpdRM = g < ∞. For each R-module N
there is an exact sequence

0 // Ext1DP(M,N) // Ext1R(M,N) // D̂ext
1

R(M,N) // · · ·

// ExtiDP(M,N) // ExtiR(M,N) // D̂ext
i

R(M,N) // · · ·

// ExtgR(M,N) // D̂ext
g

R(M,N) // 0.

Dually, we have the following:
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Corollary 5.4. Let M be an R-module, N ∈ D̃I with DidRN = d <∞. Then

there is an exact sequence

0 // Ext1DI(M,N) // Ext1R(M,N) // Dext
1

R(M,N) // · · ·

// ExtiDI(M,N) // ExtiR(M,N) // Dext
i

R(M,N) // · · ·

// ExtdR(M,N) // Dext
d

R(M,N) // 0.

Since ExtiDP(M,N) ∼= ExtiDI(M,N) for all i ∈ Z when M ∈ D̃P and

N ∈ D̃I by Theorem 3.5, together with Definition 3.6, we have the following

Corollary 5.5. Let M ∈ D̃P and N ∈ D̃I. Then there are exact sequences

0 // Dext1R(M,N) // Ext1R(M,N) // D̂ext
1

R(M,N) // · · ·

// DextiR(M,N) // ExtiR(M,N) // D̂ext
i

R(M,N) // · · ·

and

0 // Dext1R(M,N) // Ext1R(M,N) // Dext
1

R(M,N) // · · ·

// DextiR(M,N) // ExtiR(M,N) // Dext
i

R(M,N) // · · · .

Over a Ding-Chen ring, Ren et al. proved that the generalized Tate coho-
mologies which they defined via Ding projective and Ding injective modules
are isomorphic (see [13, Prop. 5.5]). However, as of the writing this paper,
the author does not know whether the balance holds of the Tate cohomology
relative to Ding projectives and Ding injectives in general. Anyhow, we have
the following.

Theorem 5.6. If R is a Ding-Chen ring, then for any R-modules M ∈ D̃P

and N ∈ D̃I there is an Avramov-Martsinkovsky type exact sequence

0 // Dext1R(M,N) // Ext1R(M,N) // D̂ext
1

R(M,N) // · · ·

// DextiR(M,N) // ExtiR(M,N) // D̂ext
i

R(M,N) // · · ·
or

0 // Dext1R(M,N) // Ext1R(M,N) // Dext
1

R(M,N) // · · ·

// DextiR(M,N) // ExtiR(M,N) // Dext
i

R(M,N) // · · · .

At last, Theorem 5.2 and [13, Prop. 5.5] allow us to give an easy proof of
the existence of a long exact sequences of Tate cohomology groups associated
to any short exact sequences.

Proposition 5.7. Let R be a Ding-Chen ring.

(1) Let 0 // M ′ // M // M ′′ // 0 be an exact sequence of R-modules.

For any R-module N ∈ D̃I there exist a long exact sequence of Tate cohomolgy
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groups

· · · // D̂ext
n−1

R (M ′′, N) // D̂ext
n−1

R (M,N) // D̂ext
n−1

R (M ′, N)

// D̂ext
n

R(M
′′, N) // · · · .

(2) Let 0 // N ′ // N // N ′′ // 0 be an exact sequence of R-modules. For

each R-module M ∈ D̃P, there exists a long exact sequence of Tate cohomology

groups

· · · // Dext
n−1

R (M,N ′) // Dext
n−1

R (M,N) // Dext
n−1

R (M,N ′′)

// Dext
n

R(M,N ′) // · · · .

Proof. (1) Let N
λ // I

ν // S be a Tate FI-coresolution of N . Then, by [13,

Prop. 5.5], D̂ext
n

R(M,N) ∼= Dext
n

R(M,N) = H−n(HomR(M,S)) for any R-

module M and any n ∈ Z. Since 0 // M ′ // M // M ′′ // 0 is exact and
each term of S is an injective module, we have an exact sequence of complexes:

0 // HomR(M
′′, S) // HomR(M,S) // HomR(M

′, S) // 0.

Its associated cohomology exact sequence is the desired long exact sequence.
(2) The proof is dual to (1). �
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