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COLOCALIZATION OF LOCAL HOMOLOGY MODULES

Shahram Rezaei

Abstract. Let I be an ideal of Noetherian local ring (R,m) and M an

artinian R-module. In this paper, we study colocalization of local homol-
ogy modules. In fact we give Colocal-global Principle for the artinianness

and minimaxness of local homology modules, which is a dual case of

Local-global Principle for the finiteness of local cohomology modules. We
define the representation dimension rI(M) of M and the artinianness di-

mension aI(M) of M relative to I by rI(M) = inf{i ∈ N0 : HI
i (M) is not

representable}, and aI(M) = inf{i ∈ N0 : HI
i (M) is not artinian} and we

will prove that
i) aI(M) = rI(M) = inf{rIRp (pM) : p ∈ Spec(R)} ≥ inf{aIRp (pM) :

p ∈ Spec(R)},
ii) inf{i ∈ N0 : HI

i (M) is not minimax} = inf{rIRp (pM) : p ∈
Spec(R) \ {m}}.

Also, we define the upper representation dimension RI(M) of M relative

to I by RI(M) = sup{i ∈ N0 : HI
i (M) is not representable}, and we will

show that

i) sup{i ∈ N0 : HI
i (M) 6= 0} = sup{i ∈ N0 : HI

i (M) is not artinian} =

sup{RIRp (pM) : p ∈ Spec(R)},
ii) sup{i ∈ N0 : HI

i (M) is not finitely generated} = sup{i ∈ N0 :

HI
i (M) is not minimax} = sup{RIRp (pM) : p ∈ Spec(R) \ {m}}.

1. Introduction

Throughout this paper assume that (R,m) is a commutative Noetherian
local ring, I is an ideal of R and M is an R-module. Cuong and Nam in [2]

defined the local homology modules HI
i (M) with respect to I by

HI
i (M) = lim←−

n

TorRi (R/In,M).

This definition is dual to Grothendieck’s definition of local cohomology modules
and coincides with the definition of Greenless and May in [5] for an artinian
R-module M . For basic results about local homology we refer the reader to
[2], [4] and [13]; for local cohomology refer to [1].
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An important problem in local cohomology is Faltings’ Local-global Principle
for finiteness of local cohomology modules which states that for a positive
integer n and an ideal a of R the Rp-module Hi

aRp
(Mp) is finitely generated

for all i < n and for all p ∈ Spec(R) if and only if Hi
a(M) is finitely generated

R-module for all i < n. In the other word, in terms of the finiteness dimension
fa(M) of M relative to a we have

fa(M) = inf{faRp
(Mp) : p ∈ Spec(R)},

where, fa(M) := inf{i ∈ N0 : Hi
a(M) is not finitely generated}.

In this paper, we investigate the dual of Faltings’ Local-global Principle and
we call it Colocal-global Principle for artinianness of local homology modules.
At first, for a representable R-module M , we define the representation dimen-
sion rI(M) of M relative to I by

rI(M) = inf{i ∈ N0 : HI
i (M) is not representable}

and artinianness dimension aI(M) of M relative to I by

aI(M) = inf{i ∈ N0 : HI
i (M) is not artinian}

and we prove the following main result:

Theorem 1.1. Let (R,m) be a Noetherian local ring, I ⊆ m be an ideal of
R and M an artinian R-module. Let n be an integer. Then the following
conditions are equivalent:

i) HI
i (M) is an artinian R-module for all i < n,

ii) HI
i (M) is a representable R-module for all i < n,

iii) p(HI
i (M)) is a representable Rp-module for all i < n and all p ∈

Spec(R),
and we conclude that

aI(M) = rI(M) = inf{rIRp(pM) : p ∈ Spec(R)}
≥ inf{aIRp(pM) : p ∈ Spec(R)}.

In the second main result we study Colocal-global Principle for minimax
local homology modules by proving the following result:

Theorem 1.2. Let (R,m) be a Noetherian local ring, I ⊆ m be an ideal of
R and M an artinian R-module. Let n be an integer. Then the following
conditions are equivalent:

i) HI
i (M) is minimax R-module for all i < n,

ii) p(HI
i (M)) is a representable Rp-module for all i < n and

all p ∈ Spec(R)\{m},

And so we obtain that inf{i : HI
i (M) is not minimax} = inf{rIRp(pM) : p ∈

Spec(R) \ {m}}. Also, we define the upper representation dimension RI(M) of
M relative to I by

RI(M) = sup{i ∈ N0 : HI
i (M) is not representable},
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and we will show that

i) sup{i ∈ N0 : HI
i (M) 6= 0} = sup{i ∈ N0 : HI

i (M) is not artinian} =
sup{RIRp(pM) : p ∈ Spec(R)},

ii) sup{i ∈ N0 : HI
i (M) is not finitely generated} = sup{i ∈ N0 : HI

i (M)
is not minimax} = sup{RIRp(pM) : p ∈ Spec(R) \ {m}}.

2. The results

A Hausdorff linearly topologized R-module M is said to be linearly compact
if M has the following property: if F is a family of closed cosets (i.e., the cosets
of closed submodules) in M which has the finite intersection property, then the
cosets in F have a non-empty intersection. It is clear that artinian R-modules
are linearly compact with the discrete topology. If (R,m) is a complete local
ring, then finitely generated R-modules are also linearly compact and discrete.
The local homology modules HI

i (M) of a linearly compact R-module M are
also linearly compact R-modules by [4, Proposition 3.3]. For more facts about
linearly compact modules see [7] and [15].

We need the concept of Noetherian dimension of an R-module in some of
our proofs. Let M be an artinian R-module. The Noetherian dimension of M ,
NdimR(M), is defined by induction. If M = 0, we put NdimR(M) = 1. For
any integer t ≥ 0, if NdimR(M) < t is false and whenever M1 ⊆ M2 ⊆ · · · is
an ascending chain of submodules of M then there exists an integer m0 such
that NdimR(Mm+1/Mm) < t for all m ≥ m0, then we put NdimR(M) = t. In
case M is an artinian module, NdimR(M) <∞ (see [6]).

The R-module M is said to be a minimax module if there is a finitely gen-
erated submodule N of M , such that M/N is artinian. The class of minimax
modules includes all finitely generated and all artinian modules. Moreover it
is closed under taking submodules, quotients and extensions, i.e., it is a Serre
subcategory of the category of R-modules.

A module is called cocyclic if it is a submodule of E(R/m) for some maximal
ideal m of R. A prime ideal p is called coassociated to a non-zero R-module M
if there is a cocyclic homomorphic image T of M with p = AnnR T [14]. The
set of coassociated primes of M is denoted by CoassR(M).

Let S ⊆ R be a multiplicative set. The RS-module HomR(RS ,M) is called
the co-localization of M with respect to S and denoted by SM . When M is an
artinian R-module, it is known that SM is almost never an artinian RS-module
(see [9]), while by [9, Theorem 3.2] SM is a representable RS-module. Thus
the functor co-localization is not closed on the category artinian modules. In
the case M is linearly compact R-module, SM is a linearly compact R-module.

The cosupport of M is defined by CosRM = {p ∈ SpecR : pM 6= 0} (see
[9]). Next, Yassemi [14] defined the co-support of an R-module M , denoted
by CosuppR(M), to be the set of primes p such that there exists a cocyclic
homomorphic image L of M with Ann(L) ⊆ p. It is well known that in case
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M is an artinian R-module or M is a linearly compact R-module the equality
CosR(M) = CosuppR(M) is true.

Definition 2.1. Let M be a representable R-module. We define the represen-
tation dimension rI(M) of M relative to I by

rI(M) = inf{i ∈ N0 : HI
i (M) is not representable},

artinianness dimension aI(M) of M relative to I by

aI(M) = inf{i ∈ N0 : HI
i (M) is not artinian}

and the upper representation dimension RI(M) of M relative to I by

RI(M) = sup{i ∈ N0 : HI
i (M) is not representable}.

Note that, if M is an artinian R-module, then in [12, Theorem 2.3] we have
proved that

inf{i ∈ N0 : HI
i (M) is not artinian}=inf{i ∈ N0 : HI

i (M) is not representable}
which implies that rI(M) = aI(M).

We need the following lemma in the proof of some of our results.

Lemma 2.2. Let R be a Noetherian ring, I an ideal of R and M a linearly
compact R-module. Then

i) IMand M/IM are linearly compact R-modules,
ii) p(IM) ' Ip(pM) for any prime ideal p ∈ Spec(R),
iii) CoassR(IM) ⊆ CoassRM .

Proof. i) See [7, Lemma 3.14] and [7, Lemma 3.5].
ii) Let p ∈ Spec(R). By (i), 0 → IM → M → M/IM → 0 is a short exact

sequence of linearly compact R-modules. Now [10, Lemma 3.2] implies that

0→ p(IM)→ pM → p(M/IM)→ 0

is also exact. But, by using [10, Lemma 3.4] we have

p(M/IM) ' p(R/I ⊗R M) ' Rp/IRp ⊗Rp pM ' pM/Ip(pM).

Now, by using the above short exact sequence and the exact sequence

0→ Ip(pM)→ pM → pM/Ip(pM)→ 0,

we obtain the result.
iii) Since IM is a homomorphic image of I ⊗R M we have CoassR(IM) ⊆

CoassR(I ⊗R M). But by [14, Theorem 1.21] CoassR(I ⊗R M) ⊆ CoassRM .
Thus we conclude that CoassR(IM) ⊆ CoassRM . �

Theorem 2.3. Let (R,m) be a Noetherian local ring, I ⊆ m be an ideal of
R and M an artinian R-module. Let n be an integer. Then the following
conditions are equivalent:

i) HI
i (M) is an artinian R-module for all i < n,

ii) HI
i (M) is a representable R-module for all i < n,
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iii) p(HI
i (M)) is a representable Rp-module for all i < n and all p ∈

Spec(R),

Proof. i) ⇔ ii) By [12, Theorem 2.3].
i) ⇒ iii) By [9, Theorem 3.2], colocalization of any artinian R-module is

representable.
iii) ⇒ i) By induction on n. Let n = 1. There exists an epimorphism M →

M/ItM → 0 for all t > 0 and so we have an epimorphism M → HI
0(M) → 0.

Hence HI
0(M) is an artinian R-module. Suppose that n > 1. By the induc-

tive hypothesis, HI
i (M) is an artinian R-module for all i < n − 1. We show

that HI
n−1(M) is artinian. By [3, Theorem 3.6] p(HI

n−1(M)) ' H
IRp

n−1(pM).

Thus, by assumption, H
IRp

n−1(pM) is a representable Rp-module for all p ∈
Spec(R). By [12, Corollary 2.2] for each p ∈ Spec(R), there exists an integer

np such that (IRp)np H
IRp

n−1(pM) = 0. On the other hand, by [3, Theorem 4.5]

CoassR(HI
n−1(M)) is finite. Let k = max{np : p ∈ CoassR(HI

n−1(M))}. Thus

(IRp)k H
IRp

n−1(pM) = 0 for all p ∈ CoassR(HI
n−1(M)). Since by [4, Proposi-

tion 3.3] HI
n−1(M) is linearly compact R-module, Lemma 2.2(ii) implies that

p(Ik HI
n−1(M)) = 0 for all p ∈ CoassR(HI

n−1(M)). But, by Lemma 2.2(iii)

we get that p(Ik HI
n−1(M)) = 0 for all p ∈ CoassR(Ik HI

n−1(M)). By Lemma

2.2(i) Ik HI
n−1(M) is linearly compact R-module and so by [3, Theorem 4.2], it

follows that Ik HI
n−1(M) = 0. Now by using [2, Proposition 4.7] we conclude

that HI
n−1(M) is artinian R-module and the proof is complete. �

Corollary 2.4. Let (R,m) be a Noetherian local ring, I ⊆ m be an ideal of R
and M an artinian R-module. Then

rI(M) = inf{rIRp(pM) : p ∈ Spec(R)}.

Proof. For any integer i and any p ∈ Spec(R) we have p(HI
i (M)) ' H

IRp

i (pM).
Thus, the result follows by Theorem 2.3. �

Corollary 2.5. Let (R,m) be a Noetherian local ring, I ⊆ m be an ideal of

R and M an artinian R-module. Let n be an integer. Then, if p(HI
i (M)) is

artinian Rp-module for all i < n and all p ∈ Spec(R), then HI
i (M) is artinian

R-module for all i < n. Thus

aI(M) ≥ inf{aIRp(pM) : p ∈ Spec(R)}.

Proof. Since any artinian Rp-module is a representable Rp-module, the result
follows by Theorem 2.3 iii)⇒ i). �

Recall that, module M is called coatomic, if every proper submodule of M is
contained in a maximal submodule of M . Over Noetherian rings, the coatomic
modules are closed under taking quotients, submodules and extensions. It
is clear that every finitely generated R-module is coatomic and that every
coatomic, artinian module has finite length. Also, it is well known that M is
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coatomic if and only if CoassR(M) consists only of maximal ideals. For more
details of coatomic modules, we refer the reader to [16] and [17].

Theorem 2.6. Let (R,m) be a Noetherian local ring, I ⊆ m be an ideal of
R and M an artinian R-module. Let n be an integer. Then the following
conditions are equivalent:

i) HI
i (M) is of finite length R-module for all i < n,

ii) p(HI
i (M)) is a coatomic and representable Rp-module for all i < n and

all p ∈ Spec(R).

Proof. i)⇒ ii) By assumption HI
i (M) is an artinian R-module for all i < n and

so Theorem 2.3 implies that p(HI
i (M)) is a representable Rp-module for all p ∈

Spec(R). On the other hand, by [9, Proposition 7.4] we have CosR(HI
i (M)) ⊆

{m} for all i < n. Thus p(HI
i (M)) = 0 for all p ∈ Spec(R) \ {m} and all i < n.

It is sufficient to show that m(HI
i (M)) is coatomic Rm-module for all i < n. By

[9, Theorem 3.2] AttRm
(m(HI

i (M))) = {qRm : q ∈ AttR(HI
i (M)) and q ⊆ m}.

But by assumption (i) and [9, Proposition 7.4] we have AttR(HI
i (M)) ⊆ {m}.

Hence it follows that AttRm
(m(HI

i (M))) ⊆ {mRm}. Since m(HI
i (M)) is rep-

resentable by [14, Theorem 1.14] AttRm
(m(HI

i (M))) = CoassRm
(m(HI

i (M))).

Hence, CoassRm
(m(HI

i (M))) ⊆ {mRm} and so m(HI
i (M)) is coatomic Rm-

module for all i < n, as required.
ii) ⇒ i) By Theorem 2.3 HI

i (M) is an artinian R-module for all i < n.

By [9, Proposition 7.4] it is sufficient to show that CosR(HI
i (M)) ⊆ {m} for all

i < n. Let i < n be an integer and p ∈ CosR(HI
i (M)). Then p(HI

i (M)) 6= 0 and

so φ 6= AttRp
(p(HI

i (M))) = {qRp : q ∈ AttR(HI
i (M)) and q ⊆ p}. Thus there

exists q ⊆ p and q ∈ AttR(HI
i (M)). It follows that qRm ∈ AttRm

(m(HI
i (M))).

But by assumption m(HI
i (M)) is a representable and coatomic Rm-module and

so AttRm
(m(HI

i (M))) = CoassRm
(m(HI

i (M))) ⊆ {mRm}. Thus we conclude

that q = m and so p = m. Therefore CosR(HI
i (M)) ⊆ {m}. �

Theorem 2.7. Let (R,m) be a Noetherian local ring, I ⊆ m be an ideal of R

and M an artinian R-module. Let n and t be two arbitrary integers. If HI
i (M)

is minimax for all i < n, then HI
n(M)/It HI

n(M) is minimax.

Proof. i) We use induction on n. When n = 0, for all positive integers k
the canonical epi-morphisms M → M/IkM induces an epi-morphism M →
ΛI(M) where ΛI(M) = lim←−

k

M/IkM denotes the I-adic completion of M . Thus

ΛI(M) is homomorphic image of an artinian module and so is minimax. Since

HI
0(M) ∼= ΛI(M), the result follows in this case. Now suppose, inductively that

n > 0 and the result is true for n− 1. By [2, Corollary 4.5], we can replace M
by ∩n>0I

nM . But ∩n>0I
nM = IkM for some k ∈ N and so we may assume

that IM = M . Thus there exists x ∈ I such that xM = M by [8, 2.8 ] and so
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xtM = M . From the exact sequence

0→ (0 :M xt)→M
xt

→M → 0

and using [2, Corollary 4.2], we obtain the following long exact sequence

· · · → HI
n(M)

xt

→ HI
n(M)

f→ HI
n−1(0 :M xt)

g→ HI
n−1(M)→ HI

n−1(M)→ · · · .
From the above exact sequence we get

0→ Im f → HI
n−1(0 :M xt)→ Im g → 0,

· · · → HI
n(M)

xt

→ HI
n(M)→ Im f → 0.

Thus we have the following exact sequences:

· · · → TorR1 (R/It, Im g)→ Im f/It Im f

→ HI
n−1(0 :M xt)/It HI

n−1(0 :M xt)→ · · · ,

· · · → HI
n(M)/It HI

n(M)
xt

→ HI
n(M)/It HI

n(M)→ Im f/It Im f → 0.

Induction hypothesis implies that HI
n−1(0 :M xt)/It HI

n−1(0 :M xt) is minimax.
But the class of minimax modules is a Serre subcategory of the category of
R-modules and so it is easy to see that since Im g is minimax TorR1 (R/It, Im g)
is minimax. Hence Im f/It Im f is minimax. Since xt ∈ It, the first map in the

above exact sequence is zero, and therefore HI
n(M)/It HI

n(M) ' Im f/It Im f .

Hence, HI
n(M)/It HI

n(M) is minimax, as desired. �

Proposition 2.8. Let (R,m) be a Noetherian local ring and L a linearly com-
pact R-module. If L is a minimax R-module, then pL is a representable Rp-
module for all p ∈ Spec(R)\{m},

Proof. Let p ∈ Spec(R)\{m}. By assumption there exists a finitely generated
submodule N of L such that L/N is an artinian R-module. By [9, Theorem
3.2] p(L/N) is a representable Rp-module. On the other hand, since L/N is a
linearly compact R-module with the discrete topology, N is an open submodule
L. Thus, N is open, hence N is closed in L. Thus by [4, Lemma 2.3] N is
a linearly compact submodule of L. Now by [10, Lemma 3.2], the short
exact sequence 0 → N → L → L/N → 0 of linearly compact R-modules
induces an exact sequence 0 → pN → pL → p(L/N) → 0. It follows that

pL/pN ' p(L/N) and so pL/pN is a representable Rp-module. Since N is
finitely generated and p ∈ Spec(R)\{m} we have pN = 0 by [14, Theorem 2.10].
Therefore pL is a representable Rp-module and the proof is complete. �

Theorem 2.9. Let (R,m) be a Noetherian local ring, I ⊆ m be an ideal of R

and M an artinian R-module. Let i be an integer. If HI
i (M) is a minimax R-

module, then p(HI
i (M)) is a representable Rp-module for all p ∈ Spec(R)\{m},

Proof. By [4, Proposition 3.3] HI
i (M) is a linearly compact R-module. There-

fore, the result follows by Proposition 2.8. �



174 S. REZAEI

Theorem 2.10. Let (R,m) be a Noetherian local ring, I ⊆ m be an ideal of
R and M an artinian R-module. Let n be an integer. Then the following
conditions are equivalent:

i) HI
i (M) is a minimax R-module for all i < n.

ii) p(HI
i (M)) is a representable Rp-module for all i < n and

all p ∈ Spec(R)\{m}.

Proof. i)⇒ ii) By Theorem 2.9.
ii) ⇒ i) We use induction on n. Let n = 1. There exists an epimor-

phism M → M/ItM → 0 for all t > 0 and so we have an epimorphism

M → HI
0(M) → 0. Hence HI

0(M) is an artinian R-module and so HI
0(M)

is a minimax R-module. Suppose that n > 1. By the inductive hypothe-
sis, HI

i (M) is a minimax R-module for all i < n − 1. It is sufficient to show

that HI
n−1(M) is a minimax R-module. At first, we prove that there exists

an integer t such that CosuppR(It HI
n−1(M)) ⊆ {m}. By [11, Theorem 3.2]

CoassR(HI
n−1(M)) is finite. Let CoassR(HI

n−1(M))\{m} = {p1, . . . , pk}. By

assumption pi(H
I
n−1(M)) is a representable Rpi-module for all 1 ≤ i ≤ k.

Since pi
(HI

n−1(M)) ' H
IRpi
n−1 (pi

M) for all 1 ≤ i ≤ k, it follows by [12, The-
orem 2.3] that for any integer 1 ≤ i ≤ k there exists an integer ti such that

(IRpi
)ti H

IRpi
n−1 (pi

M) = 0. Let t = Max{t1, . . . , tk}. Thus (IRpi
)t H

IRpi
n−1 (pi

M)

= 0 for all 1 ≤ i ≤ k. By Lemma 2.2(ii), (IRpi)
t H

IRpi
n−1 (piM)'pi(I

t HI
n−1(M))

for all 1 ≤ i ≤ k and so pi
(It HI

n−1(M)) = 0 for all 1 ≤ i ≤ k. Hence

pi /∈ CosuppR(It HI
n−1(M)) for all 1 ≤ i ≤ k and so

{p1, . . . , pk} ∩ CoassR(It HI
n−1(M)) = φ.

On the other hand, by Lemma 2.2(iii)

CoassR(It HI
n−1(M)) \ {m} ⊆ CoassR(HI

n−1(M)) \ {m} = {p1, . . . , pk}.

It follows that CoassR(It HI
n−1(M)) ⊆ {m}. Now by [18, satz 2.4], it follows

that there exists an integer s such that msIt HI
n−1(M) is finitely generated.

Thus Is+t HI
n−1(M) is finitely generated and so is minimax. On the other

hand, by Theorem 2.7 HI
n−1(M)/Is+t HI

n−1(M) is minimax. Since the class
of minimax modules is a Serre subcategory of the category of R-modules, it
follows that HI

n−1(M) is minimax and the proof is complete. �

Corollary 2.11. Let (R,m) be a Noetherian local ring, I ⊆ m be an ideal of
R and M an artinian R-module. Then

inf{i : HI
i (M) is not minimax} = inf{rIRp(pM) | p ∈ Spec(R) \ {m}}.

Proof. It follows by Theorem 2.10. �

Theorem 2.12. Let (R,m) be a Noetherian local ring, I ⊆ m be an ideal of R
and M an artinian R-module. Let n be an integer. Then for any p ∈ Spec(R)
the following conditions are equivalent:
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i) p(HI
i (M)) is a representable Rp-module for all i > n.

ii) IRp ⊆
√

(0 :Rp p(HI
i (M))) for all i > n.

iii) p(HI
i (M)) = 0 for all i > n.

Proof. i) ⇒ ii) Since p(HI
i (M)) ' H

IRp

i (pM), it follows by [12, Corollary 2.2].

ii) ⇒ iii) We use induction on u := NdimRM . Let u = 0. Since HI
i (M) = 0

for all i > 0, by [2, Proposition 4.8], the result follows in this case. Now suppose,
inductively that u > 0 and the result is true for u−1. By Lemma [2, Corollary
4.5], we can replace M by ∩n>0I

nM . But ∩n>0I
nM = IkM for some k ∈ N

and so we may assume that IM = M . Since M is artinian, xM = M for some
x ∈ I by [8, 2.8]. Now for all i > n, from the exact sequence

0→ (0 :M x)→M
x→M → 0

we obtain the following long exact sequence of linearly compact R-modules

· · · → HI
i+1(M)→ HI

i (0 :M x)→ HI
i (M)

x→ HI
i (M)→ · · · .

By [10, Lemma 3.2] we have the following long exact sequence

· · · → p(HI
i+1(M))→ p(HI

i (0 :M x))→ p(HI
i (M))

x/1→ p(HI
i (M))→ · · · .

By [4, Lemma 4.7] NdimR(0 :M x) ≤ u− 1 and so the induction hypothesis

implies that p(HI
i (0 :M x)) = 0 for all i > n. Thus for any i > n we have

an injection 0 → p(HI
i (M))

x/1→ p(HI
i (M)). Suppose that p(HI

i (M)) 6= 0 for
some i > n. Since x

1 ∈ IRp, by assumption (ii) there exists a positive integer

k such that (x/1)
k
p(HI

i (M)) = 0. Now from the above injection we get a

contradiction. Hence p(HI
i (M)) = 0 for all i > n and the proof is complete.

iii) ⇒i) It is clear. �

Theorem 2.13. Let (R,m) be a Noetherian local ring, I ⊆ m be an ideal of
R and M an artinian R-module. Let n be an integer. Then the following
conditions are equivalent:

i) HI
i (M) is an artinian R-module for all i > n.

ii) p(HI
i (M)) is a representable Rp-module for all i > n and all p ∈

Spec(R).

iii) p(HI
i (M)) = 0 for all i > n and all p ∈ Spec(R).

iv) HI
i (M) = 0 for all i > n.

Proof. i)⇒ ii) By [9, Theorem 3.2], colocalization of any artinian R-module is
representable.

ii) ⇒ iii) By Theorem 2.12 i) ⇒ iii).

iii) ⇒ iv) Assumption implies that CosR(HI
i (M)) = φ for all i > n. Thus

HI
i (M) = 0 for all i > n by [3, 4.3].
iv) ⇒ i) It is clear. �
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Theorem 2.14. Let (R,m) be a Noetherian local ring, I ⊆ m be an ideal of
R and M an artinian R-module. Let n be an integer. Then the following
conditions are equivalent:

i) HI
i (M) is a finitely generated R-module for all i > n.

ii) HI
i (M) is a minimax R-module for all i > n.

iii) p(HI
i (M)) is a representable Rp-module for all i > n and

all p ∈ Spec(R)\{m}.

Proof. i) ⇒ ii): Any finitely generated R-module is minimax.
ii) ⇒ iii): By Theorem 2.9.

iii) ⇒ i): By Theorem 2.12, p(HI
i (M)) = 0 for all i > n and all p ∈

Spec(R)\{m}. Thus CosR((HI
i (M))) ⊆ {m} for all i > n and so

CoassR((HI
i (M))) ⊆ {m}

for all i > n. Now by [18, satz 2.4], for any i > n there exists a positive integer

ti such that Iti HI
i (M) is finitely generated. Since HI

i (M) = 0 for all i >

NdimRM by [2, Proposition 4.8], we can find an integer t such that It HI
i (M)

is finitely generated for all i > n. Now we use induction on u := NdimRM .
Let u = 0. Since HI

i (M) = 0 for all i > 0, by [2, Proposition 4.8], the result
follows in this case. Now suppose, inductively that u > 0 and the result is true
for u− 1. By an argument analogue to that used in the proof of Theorem 2.12,
we may assume that xM = M for some x ∈ I and so xtM = M . Thus for all
i > n, the exact sequence

0→ (0 :M xt)→M
xt

→M → 0

implies that

· · · → HI
i (0 :M xt)

ϕi→ HI
i (M)

xt

→ HI
i (M)→ · · · .

Since NdimR(0 :M xt) ≤ u−1, induction hypothesis implies that HI
i (0 :M xt) is

finitely generated for all i > n and so we have the exact sequence 0→ Imϕi →
HI

i (M) → xt HI
i (M) → 0 for all i > n. Since Imϕi and xt HI

i (M) are finitely

generated we conclude that HI
i (M) is finitely generated for all i > n. �

Corollary 2.15. Let (R,m) be a Noetherian local ring, I ⊆ m be an ideal of
R and M an artinian R-module. Then we have

i) sup{i ∈ N0 : HI
i (M) 6= 0} = sup{i ∈ N0 : HI

i (M) is not artinian} =
sup{RIRp(pM) : p ∈ Spec(R)},

ii) sup{i ∈ N0 : HI
i (M) is not finitely generated} = sup{i ∈ N0 : HI

i (M) is
not minimax} = sup{RIRp(pM) : p ∈ Spec(R) \ {m}}.

Proof. It follows by Theorems 2.13 and 2.14. �
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