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COLOCALIZATION OF LOCAL HOMOLOGY MODULES

SHAHRAM REZAEI

ABSTRACT. Let I be an ideal of Noetherian local ring (R, m) and M an
artinian R-module. In this paper, we study colocalization of local homol-
ogy modules. In fact we give Colocal-global Principle for the artinianness
and minimaxness of local homology modules, which is a dual case of
Local-global Principle for the finiteness of local cohomology modules. We
define the representation dimension r! (M) of M and the artinianness di-
mension a! (M) of M relative to I by v/ (M) = inf{i € Ng : H{ (M) is not
representable}, and a! (M) = inf{i € Ng : Hf (M) is not artinian} and we
will prove that
i) al (M) =rI(M) = inf{r % (,M) : p € Spec(R)} > inf{a! s (, M) :
p € Spec(R)},
it) inf{s € No : HI(M) is not minimax} = inf{r!Fr(,M) : p €
Spec(R) \ {m}}.
Also, we define the upper representation dimension RI(M) of M relative
to I by RI(M) = sup{i € Np : H{ (M) is not representable}, and we will
show that
i) sup{s € No : HI (M) # 0} = sup{i € Ng : H} (M) is not artinian} =
sup{R%» (, M) : p € Spec(R)},
ii) sup{i € No : HI(M) is not finitely generated} = sup{i € Np :
HI(M) is not minimax} = sup{R!*» (, M) : p € Spec(R) \ {m}}.

1. Introduction

Throughout this paper assume that (R,m) is a commutative Noetherian
local ring, I is an ideal of R and M is an R-module. Cuong and Nam in [2]
defined the local homology modules Hf (M) with respect to I by

H; (M) = lim Tor{*(R/I", M).

This definition is dual to Grothendieck’s definition of local cohomology modules
and coincides with the definition of Greenless and May in [5] for an artinian
R-module M. For basic results about local homology we refer the reader to
[2], [4] and [13]; for local cohomology refer to [1].
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An important problem in local cohomology is Faltings’ Local-global Principle
for finiteness of local cohomology modules which states that for a positive
integer n and an ideal a of R the Rp-module H’ r, (Mp) is finitely generated
for all ¢ < n and for all p € Spec(R) if and only if H:(M) is finitely generated
R-module for all ¢ < n. In the other word, in terms of the finiteness dimension
fa(M) of M relative to a we have

fa(M) = inf{fa,, (M) : p € Spec(R)},

where, fo(M) := inf{i € Ny : H, (M) is not finitely generated}.
In this paper, we investigate the dual of Faltings’ Local-global Principle and
we call it Colocal-global Principle for artinianness of local homology modules.

At first, for a representable R-module M, we define the representation dimen-
sion (M) of M relative to I by

rI (M) = inf{i € Ny : H/ (M) is not representable}
and artinianness dimension a! (M) of M relative to I by
al (M) = inf{i € Ny : HI (M) is not artinian}
and we prove the following main result:

Theorem 1.1. Let (R,m) be a Noetherian local ring, I C m be an ideal of
R and M an artinian R-module. Let n be an integer. Then the following
conditions are equivalent:
i) HY (M) is an artinian R-module for alli < n,
ii) HI (M) is a representable R-module for all i < n,
i) ,(Hf (M)) is a representable Ry-module for all i < n and all p €
Spec(R),
and we conclude that
al (M) = r'(M) = inf{r' (,M) : p € Spec(R)}
> inf{a’® (,M) : p € Spec(R)}.

In the second main result we study Colocal-global Principle for minimax
local homology modules by proving the following result:

Theorem 1.2. Let (R,m) be a Noetherian local ring, I C m be an ideal of
R and M an artinian R-module. Let n be an integer. Then the following
conditions are equivalent:
i) HY (M) is minimaz R-module for alli < n,
ii) ,(Hf(M)) is a representable Ry-module for all i < n and
all p € Spec(R)\{m},

And so we obtain that inf{i : H} (M) is not minimax} = inf{r/®e (, M) : p €
Spec(R) \ {m}}. Also, we define the upper representation dimension R (M) of
M relative to I by

RI(M) = sup{i € Ny : H! (M) is not representable},



COLOCALIZATION OF LOCAL HOMOLOGY MODULES 169

and we will show that

i) sup{i € Ny : H] (M) # 0} = sup{i € Ny : H! (M) is not artinian} =
sup{RIE» (, M) : p € Spec(R)},
i) sup{i € Ny : H (M) is not finitely generated} = sup{i € Ny : H! (M)

is not minimax} = sup{R! % (,M) : p € Spec(R) \ {m}}.

2. The results

A Hausdorff linearly topologized R-module M is said to be linearly compact
if M has the following property: if F is a family of closed cosets (i.e., the cosets
of closed submodules) in M which has the finite intersection property, then the
cosets in F have a non-empty intersection. It is clear that artinian R-modules
are linearly compact with the discrete topology. If (R, m) is a complete local
ring, then finitely generated R-modules are also linearly compact and discrete.
The local homology modules H! (M) of a linearly compact R-module M are
also linearly compact R-modules by [4, Proposition 3.3]. For more facts about
linearly compact modules see [7] and [15].

We need the concept of Noetherian dimension of an R-module in some of
our proofs. Let M be an artinian R-module. The Noetherian dimension of M,
Ndimg(M), is defined by induction. If M = 0, we put Ndimg(M) = 1. For
any integer ¢t > 0, if Ndimg (M) < t is false and whenever M7 C My C --- is
an ascending chain of submodules of M then there exists an integer mg such
that Ndimpg (M, +1/M,,) < t for all m > mg, then we put Ndimg(M) =¢. In
case M is an artinian module, Ndimpg(M) < oo (see [6]).

The R-module M is said to be a minimax module if there is a finitely gen-
erated submodule N of M, such that M/N is artinian. The class of minimax
modules includes all finitely generated and all artinian modules. Moreover it
is closed under taking submodules, quotients and extensions, i.e., it is a Serre
subcategory of the category of R-modules.

A module is called cocyclic if it is a submodule of E(R/m) for some maximal
ideal m of R. A prime ideal p is called coassociated to a non-zero R-module M
if there is a cocyclic homomorphic image T of M with p = Anng T [14]. The
set of coassociated primes of M is denoted by Coassgr(M).

Let S C R be a multiplicative set. The Rg-module Homp(Rg, M) is called
the co-localization of M with respect to S and denoted by M. When M is an
artinian R-module, it is known that ¢ M is almost never an artinian Rg-module
(see [9]), while by [9, Theorem 3.2] ¢M is a representable Rg-module. Thus
the functor co-localization is not closed on the category artinian modules. In
the case M is linearly compact R-module, gM is a linearly compact R-module.

The cosupport of M is defined by Cosg M = {p € SpecR : ,M # 0} (see
[9]). Next, Yassemi [14] defined the co-support of an R-module M, denoted
by Cosuppg(M), to be the set of primes p such that there exists a cocyclic
homomorphic image L of M with Ann(L) C p. It is well known that in case
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M is an artinian R-module or M is a linearly compact R-module the equality
Cosr(M) = Cosuppp (M) is true.

Definition 2.1. Let M be a representable R-module. We define the represen-
tation dimension r!(M) of M relative to I by
(M) = inf{i € Ny : H! (M) is not representable},
artinianness dimension a (M) of M relative to I by
al (M) = inf{i € Ny : H (M) is not artinian}
and the upper representation dimension R!(M) of M relative to I by
RI(M) = sup{i € Ny : H (M) is not representable}.

Note that, if M is an artinian R-module, then in [12, Theorem 2.3] we have
proved that
inf{i € No : H (M) is not artinian}=inf{i € Ny : H! (M) is not representable}
which implies that rf(M) = a!(M).

We need the following lemma in the proof of some of our results.

Lemma 2.2. Let R be a Noetherian ring, I an ideal of R and M a linearly
compact R-module. Then
i) IMand M/IM are linearly compact R-modules,
i) p(IM) ~ I,(, M) for any prime ideal p € Spec(R),
iii) Coassr(IM) C Coassg M.

Proof. 1) See [7, Lemma 3.14] and [7, Lemma 3.5].
ii) Let p € Spec(R). By (i),0 = IM — M — M/IM — 0 is a short exact
sequence of linearly compact R-modules. Now [10, Lemma 3.2] implies that
0= p(IM)— M — ,(M/IM)—0

is also exact. But, by using [10, Lemma 3.4] we have

p(M/IM) ~ ,(R/I®r M) ~ Ry, /IR, ®r, yM ~ ,M/I,(,M).
Now, by using the above short exact sequence and the exact sequence

0— Ip(pM) = M — M/I,(,M)— 0,

we obtain the result.

iii) Since IM is a homomorphic image of I @ g M we have Coassg(IM) C
Coassr(I ®r M). But by [14, Theorem 1.21] Coassg(I ® g M) C Coassg M.
Thus we conclude that Coassg(IM) C Coassg M. O

Theorem 2.3. Let (R,m) be a Noetherian local ring, I C m be an ideal of
R and M an artinian R-module. Let n be an integer. Then the following
conditions are equivalent:

i) HI (M) is an artinian R-module for all i < n,

ii) H (M) is a representable R-module for all i < n,
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iit) »(HI(M)) is a representable Ry-module for all i < n and all p €
Spec(R),

Proof. i) < ii) By [12, Theorem 2.3].

i) = iii) By [9, Theorem 3.2], colocalization of any artinian R-module is
representable.

ili) = i) By induction on n. Let n = 1. There exists an epimorphism M —
M/I*M — 0 for all t > 0 and so we have an epimorphism M — H{(M) — 0.
Hence Hp (M) is an artinian R-module. Suppose that n > 1. By the induc-
tive hypothesis, H! (M) is an artinian R-module for all i < n — 1. We show
that H._,(M) is artinian. By [3, Theorem 3.6] ,(H.L_,(M)) ~ Hff“l(pM).
Thus, by assumption, Hiljpl(pM ) is a representable R,-module for all p €
Spec(R). By [12, Corollary 2.2] for each p € Spec(R), there exists an integer
ny such that (IR,)"™ Hilj”l(pM) = 0. On the other hand, by [3, Theorem 4.5]
Coassg(H,_;(M)) is finite. Let k = max{n, : p € Coassg(H._,(M))}. Thus
(IRy)* Hilj"l(pM) = 0 for all p € Coassp(H._,(M)). Since by [4, Proposi-
tion 3.3) H., | (M) is linearly compact R-module, Lemma 2.2(ii) implies that
p(IFHL_ [ (M)) = 0 for all p € Coassg(HL_,(M)). But, by Lemma 2.2(iii)
we get that ,(I*HL_,(M)) = 0 for all p € Coassg(I*H,_,(M)). By Lemma
2.2(i) I*H. | (M) is linearly compact R-module and so by [3, Theorem 4.2], it

(M) = 0. Now by using [2, Proposition 4.7] we conclude

follows that I* H! |
that H. | (M) is artinian R-module and the proof is complete. O

n—1

Corollary 2.4. Let (R,m) be a Noetherian local ring, I C m be an ideal of R
and M an artinian R-module. Then

rI(M) = inf{r'®» (,M) : p € Spec(R)}.

Proof. For any integer i and any p € Spec(R) we have ,(H (M)) =~ Hi[R*’ (wM).
Thus, the result follows by Theorem 2.3. (I

Corollary 2.5. Let (R,m) be a Noetherian local ring, I C m be an ideal of
R and M an artinian R-module. Let n be an integer. Then, if ,(H (M)) is
artinian Ry-module for all i <n and all p € Spec(R), then H. (M) is artinian
R-module for all i < n. Thus

a’ (M) > inf{a’®» (,M) : p € Spec(R)}.

Proof. Since any artinian Ry-module is a representable R,-module, the result
follows by Theorem 2.3 iii)= i). O

Recall that, module M is called coatomic, if every proper submodule of M is
contained in a maximal submodule of M. Over Noetherian rings, the coatomic
modules are closed under taking quotients, submodules and extensions. It
is clear that every finitely generated R-module is coatomic and that every
coatomic, artinian module has finite length. Also, it is well known that M is
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coatomic if and only if Coassr(M) consists only of maximal ideals. For more
details of coatomic modules, we refer the reader to [16] and [17].

Theorem 2.6. Let (R,m) be a Noetherian local ring, I C m be an ideal of
R and M an artinian R-module. Let n be an integer. Then the following
conditions are equivalent:

i) HI(M) is of finite length R-module for all i < n,
ii) ,(Hf(M)) is a coatomic and representable Ry,-module for all i < n and
all p € Spec(R).

Proof. 1) = ii) By assumption H; (M) is an artinian R-module for all i < n and
so Theorem 2.3 implies that ,(H; (M)) is a representable R,-module for all p €
Spec(R). On the other hand, by [9, Proposition 7.4] we have Cosg(H! (M)) C
{m} for all i < n. Thus ,(H!(M)) =0 for all p € Spec(R) \ {m} and all i < n.
It is sufficient to show that n (H} (M)) is coatomic Ry-module for all i < n. By
9, Theorem 3.2] Attg,, (m(H.(M))) = {qRm : q € Attg(H! (M)) and q¢ C m}.
But by assumption (i) and [9, Proposition 7.4] we have Attz(H!(M)) C {m}.
Hence it follows that Attg_ (m(H(M))) C {mRy}. Since (H!(M)) is rep-
resentable by [14, Theorem 1.14] Attg, (m(H} (M))) = Coassg,, (m(H! (M))).
Hence, Coassg,, (m(H!(M))) C {mRy} and so (H!(M)) is coatomic Riy-
module for all ¢ < n, as required.

ii) = i) By Theorem 2.3 H!(M) is an artinian R-module for all i < n.
By [9, Proposition 7.4] it is sufficient to show that Cosz(H{ (M)) C {m} for all
i < n. Let i <n be an integer and p € Cosg(H: (M)). Then ,(H! (M)) # 0 and
so ¢ # Attg, (p(HI (M))) = {qRy : q € Attg(H](M)) and q C p}. Thus there
exists ¢ C p and q € Attg(H! (M)). It follows that Ry € Attr, (m(H! (M))).
But by assumption  (H! (M)) is a representable and coatomic Ry-module and
so Attr, (m(HI(M))) = Coassg, (m(H!(M))) C {mRy}. Thus we conclude
that g = m and so p = m. Therefore Cosg(H! (M)) C {m}. O

I
)
I
)

Theorem 2.7. Let (R,m) be a Noetherian local ring, I C m be an ideal of R
and M an artinian R-module. Let n and t be two arbitrary integers. If H (M)
is minimaz for all i < n, then HL (M) /It HL (M) is minimaz.

Proof. i) We use induction on n. When n = 0, for all positive integers k
the canonical epi-morphisms M — M/I*M induces an epi-morphism M —
A (M) where Aj(M) = @M/IkM denotes the I-adic completion of M. Thus

k
A;(M) is homomorphic image of an artinian module and so is minimax. Since

H} (M) = A(M), the result follows in this case. Now suppose, inductively that
n > 0 and the result is true for n — 1. By [2, Corollary 4.5], we can replace M
by Npsol™M. But Npsol™M = I*M for some k € N and so we may assume
that TM = M. Thus there exists z € I such that M = M by [8, 2.8 ] and so
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z!M = M. From the exact sequence

0—>(O:Mxt)—>Mm—t>M—>O

and using [2, Corollary 4.2], we obtain the following long exact sequence

S HL(M) S HL (M) L HL (0 2t) S ]

n—1

(M) — HI

n—1

(M) —---.
From the above exact sequence we get

0—=Imf—H. _(0:2") = Img—0,

- HY(M) S HEY(M) — Im f — 0.
Thus we have the following exact sequences:
o = Tor®(R/I',Tmg) — Im f/I*Tm f

—H. (02t IPHL (00 2t) — -,

oo HE (M) /T L (M) 25 HE (M) /TP HL (M) = Tm /T8 Tm £ — 0.
Induction hypothesis implies that H. (0 :5; t)/I*HL | (0 :pr 2*) is minimax.
But the class of minimax modules is a Serre subcategory of the category of
R-modules and so it is easy to see that since Im g is minimax Tor?(R/I*, Tm g)
is minimax. Hence Im f/I* Im f is minimax. Since z* € I, the first map in the
above exact sequence is zero, and therefore H! (M) /I* HI (M) ~ Im f/I* Im f.

Hence, H. (M) /It H! (M) is minimax, as desired. O

Proposition 2.8. Let (R,m) be a Noetherian local ring and L a linearly com-
pact R-module. If L is a minimax R-module, then ,L is a representable R-

module for all p € Spec(R)\{m},

Proof. Let p € Spec(R)\{m}. By assumption there exists a finitely generated
submodule N of L such that L/N is an artinian R-module. By [9, Theorem
3.2] y(L/N) is a representable R,-module. On the other hand, since L/N is a
linearly compact R-module with the discrete topology, N is an open submodule
L. Thus, N is open, hence N is closed in L. Thus by [4, Lemma 2.3] N is
a linearly compact submodule of L. Now by [10, Lemma 3.2], the short
exact sequence 0 - N — L — L/N — 0 of linearly compact R-modules
induces an exact sequence 0 - ,N — ,L — ,(L/N) — 0. It follows that
oL/yN ~ ,(L/N) and so ,L/,N is a representable R,-module. Since N is
finitely generated and p € Spec(R)\{m} we have ,N = 0 by [14, Theorem 2.10].
Therefore , L is a representable Ry-module and the proof is complete. O

Theorem 2.9. Let (R, m) be a Noetherian local ring, I C m be an ideal of R
and M an artinian R-module. Let i be an integer. If HZI(M) s @ minimaz R-
module, then ,(H!(M)) is a representable Ry,-module for all p € Spec(R)\{m},

Proof. By [4, Proposition 3.3] H! (M) is a linearly compact R-module. There-
fore, the result follows by Proposition 2.8. (|
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Theorem 2.10. Let (R,m) be a Noetherian local ring, I C m be an ideal of
R and M an artinian R-module. Let n be an integer. Then the following
conditions are equivalent:
i) HY (M) is a minimaz R-module for all i < n.
ii) (Hf(M)) is a representable Ry-module for all i < n and
all p € Spec(R)\{m}.

Proof. i)= ii) By Theorem 2.9.

ii) = i) We use induction on n. Let n = 1. There exists an epimor-
phism M — M/I*M — 0 for all ¢ > 0 and so we have an epimorphism
M — HY(M) — 0. Hence H)(M) is an artinian R-module and so H{ (M)
is a minimax R-module. Suppose that n > 1. By the inductive hypothe-
sis, HZI(M) is a minimax R-module for all ¢ < n — 1. It is sufficient to show
that H, (M) is a minimax R-module. At first, we prove that there exists
an integer ¢ such that Cosuppp(I* H. 1(M)) C {m}. By [11, Theorem 3.2

Coassp(H. | (M)) is finite. Let Coassg(H. _,(M))\{m} = {p1,...,px}. By
assumption ,, (H._;(M)) is a representable Rpi -module for all 1 < < k.

Since ,, (HL (M) ~ HL™i (,, M) for all 1 < i < k, it follows by [12, The-

orem 2.3] that for any integer 1 < i < k there exists an integer ¢; such that
IRM

(IRp,)t HE™i () M) = 0. Let ¢ = Max{t1,...,t;}. Thus (IR, ) H. ™ (, M)
=0forall 1 <i< k. By Lemma 2.2(ii), (IRp, )t HL " (5, M), (I H; (M)

for all 1 < ¢ < k and so ,,(I* HfL 1(M)) =0 for all 1 < i < k. Hence

p; ¢ Cosuppg(I*H. (M) for all 1 < i < k and so

{p1,...,px} N Coassp(I" Hn 1(M)) = ¢.
On the other hand, by Lemma 2.2(iii)

Coassp(I' Hy,_y (M) \ {m} C Coassp(H,,_; (M) \ {m} = {p1,....px}.

It follows that Coassg(I*H. | (M)) C {m}. Now by [18, satz 2.4], it follows

that there exists an integer s such that m*I*H.

Thus 57t Hn 1 (M) is ﬁnitely generated and so is minimax. On the other
hand, by Theorem 2.7 H! | (M)/I*t*H! (M) is minimax. Since the class
of minimax modules is a Serre subcategory of the category of R-modules, it
follows that Hn 1 (M) is minimax and the proof is complete. O

(M) is finitely generated.

Corollary 2.11. Let (R,m) be a Noetherian local ring, I C m be an ideal of
R and M an artinian R-module. Then

inf{i : H (M) is not minimaz} = inf{r'%» (,M) | p € Spec(R) \ {m}}.
Proof. Tt follows by Theorem 2.10. O

Theorem 2.12. Let (R, m) be a Noetherian local ring, I C m be an ideal of R
and M an artinian R-module. Let n be an integer. Then for any p € Spec(R)
the following conditions are equivalent:
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i) p(HI(M)) is a representable Ry-module for all i > n.
it) TR, C1/(0:5, o(H! (M))) for alli > n.
i) ,(H (M)) =0 for alli > n.

Proof. i) = ii) Since ,(H (M)) ~ HfR‘“ (M), it follows by [12, Corollary 2.2].

ii) = iii) We use induction on u := Ndimg M. Let u = 0. Since H! (M) =0
for all i > 0, by [2, Proposition 4.8], the result follows in this case. Now suppose,
inductively that 4 > 0 and the result is true for v — 1. By Lemma [2, Corollary
4.5], we can replace M by N,sol"M. But N,~ol”M = I*M for some k € N
and so we may assume that IM = M. Since M is artinian, zM = M for some
x € I by [8, 2.8]. Now for all i > n, from the exact sequence

0= 0:yz)=M3M-=0
we obtain the following long exact sequence of linearly compact R-modules
o= HY (M) — HI(0 0 ) — HN (M) 5 H(M) — -

By [10, Lemma 3.2] we have the following long exact sequence

o (L (M) = (10 g @) = (M) ™5, (1 (M) — -

By [4, Lemma 4.7]) Ndimpg(0 :ps ) < u — 1 and so the induction hypothesis
implies that ,(H.(0 :pr 2)) = 0 for all 4 > n. Thus for any ¢ > n we have
an injection 0 — ,(Hf (M)) ol o (HI (M)). Suppose that ,(Hf (M)) # 0 for
some i > n. Since §{ € IRy, by assumption (ii) there exists a positive integer
k such that (m/l)kp(Hf(M)) = 0. Now from the above injection we get a
contradiction. Hence ,(H!(M)) = 0 for all i > n and the proof is complete.

iii) =) It is clear. d

Theorem 2.13. Let (R, m) be a Noetherian local ring, I C m be an ideal of
R and M an artinian R-module. Let n be an integer. Then the following
conditions are equivalent:

i) HI (M) is an artinian R-module for all i > n.

ii) o(H!(M)) is a representable Ry-module for all i > n and all p €

Spec(R).
iit) »(H!(M)) =0 for alli > n and all p € Spec(R).
iv) HI(M) =0 for all i > n.

Proof. 1)= ii) By [9, Theorem 3.2], colocalization of any artinian R-module is
representable.

i) = iii) By Theorem 2.12 i) = iii).

iii) = iv) Assumption implies that Cosg(H!(M)) = ¢ for all i > n. Thus
HI (M) =0 for all i > n by [3, 4.3].

iv) = 1) It is clear. O
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Theorem 2.14. Let (R,m) be a Noetherian local ring, I C m be an ideal of
R and M an artinian R-module. Let n be an integer. Then the following
conditions are equivalent:

i) H{(M) is a finitely generated R-module for all i > n.
ii) HI (M) is a minimaz R-module for all i > n.
i) ,(Hf (M)) is a representable Ry-module for all i > n and
all p € Spec(R)\{m}.

Proof. i) = ii): Any finitely generated R-module is minimax.

ii) = iii): By Theorem 2.9.

iii) = i): By Theorem 2.12, ,(H(M)) = 0 for all i > n and all p €
Spec(R)\{m}. Thus Cosg((H!(M))) C {m} for all i > n and so

Coassp((H] (M))) C {m}

for all ¢ > n. Now by [18, satz 2.4], for any ¢ > n there exists a positive integer
t; such that I HI (M) is finitely generated. Since H!(M) = 0 for all i >
Ndimp M by [2, Proposition 4.8], we can find an integer ¢ such that I* H! (M)
is finitely generated for all ¢ > n. Now we use induction on u := Ndimg M.
Let u = 0. Since H/ (M) = 0 for all i > 0, by [2, Proposition 4.8], the result
follows in this case. Now suppose, inductively that « > 0 and the result is true
for u — 1. By an argument analogue to that used in the proof of Theorem 2.12,
we may assume that xM = M for some x € I and so x!M = M. Thus for all
i > n, the exact sequence

t
0= 0:ya) M5 M—=0

implies that
S HI0 2t BSHI(M) S HI(M) = -

Since Ndimp (0 :3s 2*) < u—1, induction hypothesis implies that H} (0 :p 2t) is
finitely generated for all ¢ > n and so we have the exact sequence 0 — Im ¢; —
H (M) — ' HI (M) — 0 for all i > n. Since Imp; and 2! H} (M) are finitely
generated we conclude that HI (M) is finitely generated for all i > n. O

Corollary 2.15. Let (R,m) be a Noetherian local ring, I C m be an ideal of
R and M an artinian R-module. Then we have

i) sup{i € Ng : H (M) # 0} = sup{i € Ny : H! (M) is not artinian} =
sup{ R (,M) : p € Spec(R)},
i) sup{i € No : H (M) is not finitely generated} = sup{i € No : H (M) is

not minimaz} = sup{ R'f (,M) : p € Spec(R) \ {m}}.
Proof. 1t follows by Theorems 2.13 and 2.14. (]
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