Acknowledgement
This work was financially supported by the NSF of China (No. 12161013) and the innovative exploration and new academic seedling project of Guizhou University of Finance and Economics (No. 2022XSXMA17).
References
- C. Bai, O. Bellier, L. Guo, and X. Ni, Splitting of operations, Manin products, and Rota-Baxter operators, Int. Math. Res. Not. IMRN 2013 (2013), no. 3, 485-524. https://doi.org/10.1093/imrn/rnr266
- D. Balavoine, Deformations of algebras over a quadratic operad, in Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), 207-234, Contemp. Math., 202, Amer. Math. Soc., Providence, RI, 1997. https://doi.org/10.1090/conm/202/02581
- G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math. 10 (1960), 731-742. http://projecteuclid.org/euclid.pjm/1103038223 103038223
- A. Bloh, On a generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR 165 (1965), 471-473.
- M. Bordemann and F. Wagemann, Global integration of Leibniz algebras, J. Lie Theory 27 (2017), no. 2, 555-567.
- T. Brzezinski, Rota-Baxter systems, dendriform algebras and covariant bialgebras, J. Algebra 460 (2016), 1-25. https://doi.org/10.1016/j.jalgebra.2016.04.018
- V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1995.
- A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem, Comm. Math. Phys. 210 (2000), no. 1, 249-273. https://doi.org/10.1007/s002200050779
- S. Covez, The local integration of Leibniz algebras, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 1, 1-35. https://doi.org/10.5802/aif.2754
- A. Das, Deformations of associative Rota-Baxter operators, J. Algebra 560 (2020), 144-180. https://doi.org/10.1016/j.jalgebra.2020.05.016
- A. Das, Generalized Rota-Baxter systems, preprint (2020), arXiv: 2007.13652.
- B. Dherin and F. Wagemann, Deformation quantization of Leibniz algebras, Adv. Math. 270 (2015), 21-48. https://doi.org/10.1016/j.aim.2014.10.022
- Y. Fregier and M. Zambon, Simultaneous deformations of algebras and morphisms via derived brackets, J. Pure Appl. Algebra 219 (2015), no. 12, 5344-5362. https://doi.org/10.1016/j.jpaa.2015.05.018
- M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267-288. https://doi.org/10.2307/1970343
- M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. (2) 79 (1964), 59-103. https://doi.org/10.2307/1970484
- L. Guo, An introduction to Rota-Baxter algebra, Surveys of Modern Mathematics, 4, International Press, Somerville, MA, 2012.
- A. Kotov and T. Strobl, The embedding tensor, Leibniz-Loday algebras, and their higher gauge theories, Comm. Math. Phys. 376 (2020), no. 1, 235-258. https://doi.org/10.1007/s00220-019-03569-3
- J.-L. Loday, Une version non commutative des algebres de Lie: les algebres de Leibniz, Enseign. Math. (2) 39 (1993), no. 3-4, 269-293.
- J.-L. Loday, Dialgebras, in Dialgebras and related operads, 7-66, Lecture Notes in Math., 1763, Springer, Berlin, 2001. https://doi.org/10.1007/3-540-45328-8_2
- J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann. 296 (1993), no. 1, 139-158. https://doi.org/10.1007/BF01445099
- A. Nijenhuis and R. W. Richardson, Jr., Cohomology and deformations in graded Lie algebras, Bull. Amer. Math. Soc. 72 (1966), 1-29. https://doi.org/10.1090/S0002-9904-1966-11401-5
- A. Nijenhuis and R. W. Richardson, Jr., Commutative algebra cohomology and deformations of Lie and associative algebras, J. Algebra 9 (1968), 42-53. https://doi.org/10.1016/0021-8693(68)90004-5
- F. Panaite and F. Van Oystaeyen, Twisted algebras and Rota-Baxter type operators, J. Algebra Appl. 16 (2017), no. 4, 1750079, 18 pp. https://doi.org/10.1142/S0219498817500797
- J. Pei, C. Bai, and L. Guo, Splitting of operads and Rota-Baxter operators on operads, Appl. Categ. Structures 25 (2017), no. 4, 505-538. https://doi.org/10.1007/s10485-016-9431-5
- M. A. Semenov-Tyan-Shanskii, What is a classical r-matrix?, Funct. Anal. Appl. 17 (1983), 259-272. https://doi.org/10.1007/BF01076717
- T. Strobl and F. Wagemann, Enhanced Leibniz algebras: structure theorem and induced Lie 2-algebra, Comm. Math. Phys. 376 (2020), no. 1, 51-79. https://doi.org/10.1007/s00220-019-03522-4
- R. Tang, C. Bai, L. Guo, and Y. Sheng, Deformations and their controlling cohomologies of O-operators, Comm. Math. Phys. 368 (2019), no. 2, 665-700. https://doi.org/10.1007/s00220-019-03286-x
- R. Tang and Y. Sheng, Leibniz bialgebras, relative Rota-Baxter operators and the classical Leibniz Yang-Baxter equation, J. Noncommutative Geom. to appear.
- R. Tang, Y. Sheng, and Y. Zhou, Deformations of relative Rota-Baxter operators on Leibniz algebras, Int. J. Geom. Methods Mod. Phys. 17 (2020), no. 12, 2050174, 21 pp. https://doi.org/10.1142/S0219887820501741