East Asian Math. J. 13 (1997), No 2, pp 197-201

VALIDITY OF OKA'S PRINCIPLE FOR RELATIVE COHOMOLOGY

SEIKO OHGAI

In the previous paper[4], the author extended Kajiwara-Shon[3]'s infinite dimensional vanishing cohomology theorem, which asserts that

(1)
$$\mathrm{H}^p(D-A,\mathcal{O})=0$$

for the cohomology of degree $p \leq \operatorname{codim} A - 2$ of the complement D - A of an analytic subset A of a pseudoconvex open set D of a vector space E equipped with the finite open topology.

Let F be a Fréchet space and \mathcal{O}_F be the sheaf of germs of holomorphic mappings into F. By Fujimato[1], the study of F-valued holomorphic functions is not only to generalize the results on ordinary holomorphic functions, but also to contribute to the study of ordinary holomorphic functions on a product space.

In the previous paper[5], the author generalized the above results[4] to the category of the F-valued holomorphic functions over infinite dimensional domains as follows:

Let E be a C-vector Hausdorff space and \mathcal{O} be its structural sheaf. Let D be a domain of E. A real valued C^{∞} function φ on D is said to be q - convex if there exists a positive integer n_0 such that, for any integer n with $n \ge n_0$ and for any n-dimensional C-linear subspace H of E, the Levi form of the restriction $\varphi | D \cap H$ of the function φ to the n-dimensional domain $D \cap H$ has n - q + 1 positive eigen values at every point of $D \cap H$.

In the previous paper[5], the author generalized the above results and proved the vanishing cohomology

(2)
$$\mathrm{H}^{p}(\{x \in D; \varphi(x) > c\}, \mathcal{O}_{\mathcal{F}}) = 0$$

for any pseudoconvex domain D, for any positive integers p and q, and for any q-convex function φ on D.

Received July 20, 1997 Revised Sep 9, 1997.

On the other hands, Kajiwara-Kazama[2] established the validity of the Oka's principle for relative cohomology sets for pairs of Stein spaces X and analytic subset A for complex Lie group L modelled with Banach spaces.

The aim of the present paper is to extend the above results[2] to infinite dimensional domains as follows:

Let X be the infinite dimensional locally convex space with the finite open topology, D be the pseudoconvex domain of X and A be an analytic subset of D. Moreover, let L be a complex Lie group modelled with a complex Banach space with the unit element e and $\mathcal{A}_L(A)$ and $\mathcal{E}_L^0(A)$ be, respectively, the sheaves of germs of holomorphic and continuous mappings in L, which takes the value e on the analytic set A. We prove the quasi-injectivity of the canonical mapping

(3)
$$\iota: H^1(\Omega, \mathcal{A}_L(A)) \to H^1(\Omega, \mathcal{E}^0_L(A))$$

and infinite dimensionalize the Kajiwara-Kazama's results[2]. The class of represented by coboundarys of type of coverings, of cohomology set $H^1(\Omega, \mathcal{E}^0_L(A))$, is called the neutral element of the cohomology set.

MAIN THEOREM. Let E be the infinite dimensional locally convex space with the finite open topology, D be the pseudoconvex domain of X, A be an analytic subset of D, L be a complex Lie group modelled with a complex Banach space, $\mathcal{A}_L(A)$ and $\mathcal{E}_L^0(A)$ be, respectively, the sheaves of germs of holomorphic and continuous mappings in L, which take the value e on the analytic set A. Then the inverse image of the neutral element of the cohomology set $H^1(\Omega, \mathcal{E}_L^0(A))$ is also a neutral element of the cohomology set $H^1(\Omega, \mathcal{A}_L(A))$.

Proof. Since E is locally convex, the family of convex open coverings of D is cofinal in the family of open coverings of D. We may exclusively discuss a convex open covering $\mathcal{U} := \{U_i; i \in I\}$ of D and a 1-cocycle $h := \{h_{ij}; i, j \in I\} \in \mathbb{Z}^1(\mathcal{U}, \mathcal{A}_L(A))$, for which there exists a 0-cochain $g := \{g_i; i \in I\} \in \mathbb{C}^0(\mathcal{U}, \mathcal{E}_L^0(A))$ of the covering \mathcal{U} with values in $\mathcal{E}_L^0(A)$, the coboundary of which is the cochain $h := \{h_{ij}; i, j \in I\} \in \mathbb{Z}^1(\mathcal{U}, \mathcal{A}_L(A))$.

Each g_i is a continuous mapping of U_i in L with values the unit element e on the analytic set A and there holds,

(4)
$$h_{ij} = g_j^{-1} g_i \qquad in \qquad U_{ij} := U_i \cap U_j$$

for each $i, j \in I$.

Now, we remember the construction of the locally convex C-linear vector space E equipped with the finite open topology. It is nothing but the space ΣC explained in the previous papers[4,5]:

For any integers m and n with m < n, we regard the complex mspace C^m as a subspace

(5)

$$C^m = \{z = (z_1, z_2, \cdots, z_n) \in C^n; z_{m+1} = z_{m+2} = \cdots = z_n = 0\}$$

of the superspace \mathbb{C}^n . Let $\pi_{m,n}: \mathbb{C}^m \to \mathbb{C}^n$ be the canonical injection. We put

(6)
$$\Sigma \boldsymbol{C} := \bigcup_{n \ge 1} \boldsymbol{C}^n,$$

$$D^{(n)} := D \cap C^n$$

and, for any $n \ge 1$, denote by $\pi_n : \mathbb{C}^n \to \Sigma \mathbb{C}$ the canonical injection. We induce the strongest topology in $\Sigma \mathbb{C}$ so as each injection π_n is continuous.

The C-linear space ΣC is the locally convex space E with the finite open topology. Its structural sheaf is denoted by \mathcal{O} , which is the sheaf of germs of holomorphic functions over ΣC .

We prove by induction with respect to a positive integer n the proposition P_n which asserts that, for any positive integer $m \leq n$, the restriction of the 1-cocycle h to the covering

(8)
$$\mathcal{U}(m) := \{ U_i \cap C^m ; i \in I \}$$

Seiko Ohgai

is the coboundary $h^{(m)}$ of a 0-cochain $\{k_i^{(m)}; i \in I\}$ of the covering $\mathcal{U}(m)$ with values in the sheaf $\mathcal{A}_L(A)$ and that, for any m < n, each rear $k^{(m+1)}$ is an extension of the preceding $k^{(m)}$.

Since the convex covering is a Leray covering, we have the isomorphism

(9)
$$H^1(\mathcal{U}(n+1),\mathcal{A}_L(A)) \cong H^1(D^{(n+1)},\mathcal{A}_L(A)).$$

By the assumption of the theorem, the cocycle

(10)
$$h^{(n+1)} \in \mathrm{B}^{1}(\mathcal{U}(n+1), \mathcal{E}_{L}^{0}(A))$$

is a coboundary in the category of \mathcal{E}_L^0 and by the finite dimensional results of Kajiwara-Kazama[2] it is a coboundary in the category of \mathcal{A}_L too. In other words, there exists a cochain $g^{(n+1)} := \{g_{ij}^{(n+1)}; i, j \in I\} \in \mathbb{C}^0(\mathcal{U}(n+1), \mathcal{A}_L(A))$ whose coboundary is the cocycle $h^{(n+1)} = \{h_i^{(n+1)}; i \in I\} \in \mathbb{Z}^1(\mathcal{U}(n+1), \mathcal{A}_L(A))$. Hence, we have

(11)
$$h^{(n+1)} = g_j^{(n+1)^{-1}} g_t^{(n+1)}$$

in each $U_i \cap U_j \cap C^{n+1}$. Then we have

(12)
$$g_i^{(n+1)^{-1}} g_i^n = g_j^{(n+1)^{-1}} g_j^n$$

in each $U_i \cap U_j \cap C^n$. Hence the mapping $g^{(n+1)}$ defined by

(13)
$$g^{(n+1)} := g_i^{(n+1)^{-1}} g_i^{(n)}$$

in each $U_i \cap C^n$ is a well defined holomorphic mapping of $D^{(n)}$ in L which takes the value e on the analytic set $A \cap C^n$. Since it is continuously extended to an element of $\mathrm{H}^0(D^{(n+1)}, \mathcal{E}^0_L(A))$ according to the above equation, it is also extended to an element $k^{(n+1)}$ of $\mathrm{H}^0(D^{(n+1)}, \mathcal{A}_L(A))$ by Kajiwara-Kazama[2].

We revise the 0-cochain
$$g^{(n+1)}$$
 by putting
(14) $k_i^{(n+1)} := g_i^{(n+1)} k^{(n+1)}$

in each $U_i \cap C^{n+1}$ and

(15)
$$k^{(n+1)} := \{k_i^{(n+1)}; i \in I\}.$$

Then the coboundary of the revised 0-cochain $k^{(n+1)}$ is the said 1-cocycle $h^{(n+1)}$, what was to be proved.

200

References

- 1 H Fujimoto, Vector-valued holomorphic functions on complex space, J Math Soc. Japan 17 no 1 (1965), 52-66
- 2. J Kajiwara and H Kazama, Oka's principle for relative cohomology sets, Mem. Fac Sci Kyushu Univ 23 no 1 (1969), 33-70
- 3. J Kajiwara and K H. Shon, Continuation and vanishing theorem for cohomology of infinite dimensional space, Pusan Kyöngnam Math J. 9 no 1 (1993), 65-73
- 4 S Ohgai, Cohomology vanishing and validity of Oka's principle for infinite dimensional domains, Proceedings of the Third International Colloquium on Finite or Infinite Dimensional Complex Analysis, Seoul Korea, July 31-August 2 (1995), 283-288.
- 5 _____, Cohomology vanishing and q-convex functions on infinite dimensional domains, to appear in the Proceedings of the International Colloquium on Differential Equations 7 (1997), VSP(Netherland Utrecht).

Graduate School of Mathematics Kyushu University 33 Fukuoka 812-81, Japan