• 제목/요약/키워드: regular module

검색결과 105건 처리시간 0.016초

ON SEMI-REGULAR INJECTIVE MODULES AND STRONG DEDEKIND RINGS

  • Renchun Qu
    • 대한수학회보
    • /
    • 제60권4호
    • /
    • pp.1071-1083
    • /
    • 2023
  • The main motivation of this paper is to introduce and study the notions of strong Dedekind rings and semi-regular injective modules. Specifically, a ring R is called strong Dedekind if every semi-regular ideal is Q0-invertible, and an R-module E is called a semi-regular injective module provided Ext1R(T, E) = 0 for every 𝓠-torsion module T. In this paper, we first characterize rings over which all semi-regular injective modules are injective, and then study the semi-regular injective envelopes of R-modules. Moreover, we introduce and study the semi-regular global dimensions sr-gl.dim(R) of commutative rings R. Finally, we obtain that a ring R is a DQ-ring if and only if sr-gl.dim(R) = 0, and a ring R is a strong Dedekind ring if and only if sr-gl.dim(R) ≤ 1, if and only if any semi-regular ideal is projective. Besides, we show that the semi-regular dimensions of strong Dedekind rings are at most one.

On regular groups over their endomorphism rings

  • Chung, Jae-Myung
    • 대한수학회논문집
    • /
    • 제11권2호
    • /
    • pp.311-314
    • /
    • 1996
  • Let G be an abelian group of finite rink and E be the endomorphism ring of G. Then G is a left E-module by defining $f\cdota = f(a)$ for $f \in E$ and $a \in G$. In this case a condition for an E-module G to be regular is given.

  • PDF

CHARACTERIZING S-FLAT MODULES AND S-VON NEUMANN REGULAR RINGS BY UNIFORMITY

  • Zhang, Xiaolei
    • 대한수학회보
    • /
    • 제59권3호
    • /
    • pp.643-657
    • /
    • 2022
  • Let R be a ring and S a multiplicative subset of R. An R-module T is called u-S-torsion (u-always abbreviates uniformly) provided that sT = 0 for some s ∈ S. The notion of u-S-exact sequences is also introduced from the viewpoint of uniformity. An R-module F is called u-S-flat provided that the induced sequence 0 → A ⊗R F → B ⊗R F → C ⊗R F → 0 is u-S-exact for any u-S-exact sequence 0 → A → B → C → 0. A ring R is called u-S-von Neumann regular provided there exists an element s ∈ S satisfying that for any a ∈ R there exists r ∈ R such that sα = rα2. We obtain that a ring R is a u-S-von Neumann regular ring if and only if any R-module is u-S-flat. Several properties of u-S-flat modules and u-S-von Neumann regular rings are obtained.

THE HOMOLOGICAL PROPERTIES OF REGULAR INJECTIVE MODULES

  • Wei Qi;Xiaolei Zhang
    • 대한수학회논문집
    • /
    • 제39권1호
    • /
    • pp.59-69
    • /
    • 2024
  • Let R be a commutative ring. An R-module E is said to be regular injective provided that Ext1R(R/I, E) = 0 for any regular ideal I of R. We first show that the class of regular injective modules have the hereditary property, and then introduce and study the regular injective dimension of modules and regular global dimension of rings. Finally, we give some homological characterizations of total rings of quotients and Dedekind rings.

A HOMOLOGICAL CHARACTERIZATION OF PRÜFER v-MULTIPLICATION RINGS

  • Zhang, Xiaolei
    • 대한수학회보
    • /
    • 제59권1호
    • /
    • pp.213-226
    • /
    • 2022
  • Let R be a ring and M an R-module. Then M is said to be regular w-flat provided that the natural homomorphism I ⊗R M → R ⊗R M is a w-monomorphism for any regular ideal I. We distinguish regular w-flat modules from regular flat modules and w-flat modules by idealization constructions. Then we give some characterizations of total quotient rings and Prüfer v-multiplication rings (PvMRs for short) utilizing the homological properties of regular w-flat modules.

MODULES THAT SUBMODULES LIE OVER A SUMMAND

  • Min, Kang-Joo
    • 충청수학회지
    • /
    • 제20권4호
    • /
    • pp.569-575
    • /
    • 2007
  • Let M be a nonzero module. M has the property that every submodule of M lies over a direct summand of M. We study some properties of such a module. The endomorphism ring of such a module is also studied. The relationships of such a module to the semi-regular modules, and to the semi-perfect modules are described.

  • PDF

NOTES ON THE REGULAR MODULES

  • Mohajer, Keivan;Yassemi, Siamak
    • 대한수학회보
    • /
    • 제36권4호
    • /
    • pp.693-699
    • /
    • 1999
  • It is a well-known result that a commutative ring R is von Neumann regular if and only if for any maximal ideal m of R the R-module R/m is flat. In this note we bring a generalization of this result for modules.

  • PDF

Semi M-Projective and Semi N-Injective Modules

  • Hakmi, Hamza
    • Kyungpook Mathematical Journal
    • /
    • 제56권1호
    • /
    • pp.83-94
    • /
    • 2016
  • Let M and N be modules over a ring R. The purpose of this paper is to study modules M, N for which the bi-module [M, N] is regular or pi. It is proved that the bi-module [M, N] is regular if and only if a module N is semi M-projective and $Im({\alpha}){\subseteq}^{\oplus}N$ for all ${\alpha}{\in}[M,N]$, if and only if a module M is semi N-injective and $Ker({\alpha}){\subseteq}^{\oplus}N$ for all ${\alpha}{\in}[M,N]$. Also, it is proved that the bi-module [M, N] is pi if and only if a module N is direct M-projective and for any ${\alpha}{\in}[M,N]$ there exists ${\beta}{\in}[M,N]$ such that $Im({\alpha}{\beta}){\subseteq}^{\oplus}N$, if and only if a module M is direct N-injective and for any ${\alpha}{\in}[M,N]$ there exists ${\beta}{\in}[M,N]$ such that $Ker({\beta}{\alpha}){\subseteq}^{\oplus}M$. The relationship between the Jacobson radical and the (co)singular ideal of [M, N] is described.

EAKIN-NAGATA THEOREM FOR COMMUTATIVE RINGS WHOSE REGULAR IDEALS ARE FINITELY GENERATED

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • 제18권3호
    • /
    • pp.271-275
    • /
    • 2010
  • Let R be a commutative ring with identity, T(R) be the total quotient ring of R, and D be a ring such that $R{\subseteq}D{\subseteq}T(R)$ and D is a finite R-module. In this paper, we show that each regular ideal of R is finitely generated if and only if each regular ideal of D is finitely generated. This is a generalization of the Eakin-Nagata theorem that R is Noetherian if and only if D is Noetherian.

ON INJECTIVITY AND P-INJECTIVITY

  • Xiao Guangshi;Tong Wenting
    • 대한수학회보
    • /
    • 제43권2호
    • /
    • pp.299-307
    • /
    • 2006
  • The following results ale extended from P-injective rings to AP-injective rings: (1) R is left self-injective regular if and only if R is a right (resp. left) AP-injective ring such that for every finitely generated left R-module M, $_R(M/Z(M))$ is projective, where Z(M) is the left singular submodule of $_{R}M$; (2) if R is a left nonsingular left AP-injective ring such that every maximal left ideal of R is either injective or a two-sided ideal of R, then R is either left self-injective regular or strongly regular. In addition, we answer a question of Roger Yue Chi Ming [13] in the positive. Let R be a ring whose every simple singular left R-module is Y J-injective. If R is a right MI-ring whose every essential right ideal is an essential left ideal, then R is a left and right self-injective regular, left and right V-ring of bounded index.